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Section 26. Compact Sets

Note. You encounter compact sets of real numbers in senior level analysis shortly

after studying open and closed sets. Recall that, in the real setting, a continuous

function on a compact set attains a maximum and minimum (the Extreme Value

Theorem) and a continuous function on a compact set is uniformly continuous. In

addition, any sequence of elements of a compact set has a convergent subsequence

(equivalent to the Bolzano-Weierstrass Theorem). For such results, see my notes for

Analysis 1 (MATH 4217/5217) at: http://faculty.etsu.edu/gardnerr/4217/

notes.htm. The (hopefully) familiar Heine-Borel Theorem states that a set of real

numbers is compact if and only if it is closed and bounded (which we shall estab-

lish in Section 27). But beware that there are settings in which a set is closed

and bounded but not compact! See, for example, my notes for Functional Analysis

(MATH 5740): http://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-4.pdf.

Note. The following historical notes on compact sets are based on

• Analysis by Its History in Springer-Verlag’s Undergraduate Texts in Mathe-

matics Readings in Mathematics, E. Hairer and G. Wanner, NY: Springer-

Verlag (1996).

• The Wikipedia webpage on “Compact Spaces”: https://en.wikipedia.org/

wiki/Compact space. (Accessed July 24, 2016.)

As Munkres states (see page 163), “From the beginnings of topology, it was clear

that the closed interval [a, b] of the real line had a certain property that was crucial
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for proving such theorems as the maximum value theorem and the uniform conti-

nuity theorem. . . . It used to be thought that the crucial property of [a, b] was the

fact that every infinite subset of [a, b] has a limit point, and this property was the

one dignified with the name of compactness. Later, mathematicians realized that

this formulation does not lie at the heart of the matter, but rather that a stronger

formulation, in terms of open coverings of the space, is more central.”

In 1817, Bernard Bolzano (1781–1848) proved that any bounded sequence of

real numbers has a subsequence which converges. His proof is based on dividing

the bounded set in half and observing that one half or the other half must contain

an infinite number of terms of the sequence, and then iterating this process. This

is the same proof presented in Analysis 1 (see the notes for Section 2-3). In the

1860s, Karl Weierstrass (1815–1897)rediscovered this result, which became known

as the Bolzano-Weierstrass Theorem [Wikipedia].

In 1870, Heinrich Eduard Heine (1821–1881) proved, with the use of the ε/δ def-

initions finally formalized by Weierstrass (completing the approach first introduced

by Cauchy in the early 19th century) that a continuous function on a closed and

bounded interval of real numbers is uniformly continuous. In his proof, Heine used

a lemma which claimed that for any countable covering with open intervals of a

closed and bounded interval, there exists a finite subcover. Near the end of the 19th

century, Émile Borel (1871–1956) used a method similar to Heine’s to prove that

a closed and bounded interval of real numbers has the property that every open

cover has a finite subcover (i.e., in modern terminology, is “compact”) [Wikipedia,

Hairer and Wanner page 283]. So the Heine-Borel Theorem states that a set of

real numbers if compact if and only if it is closed and bounded. In 1906, Maurice
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Fréchet (1878–1973) first used the term “compact” in a paper in 1904 and later

used it in his 1906 dissertation. Fréchet used the definition mentioned by Munkres

above [Wikipedia].

The Russian school of point-set topology, lead by Pavel Alexandrov (1896–1982)

and Pavel Urysohn (1898–1924), spread the idea of compactness which we will use

in our (very general) topological space setting [Wikipedia].

Heinrich Heine (1821–1881) Émile Borel (1871–1956)

Images from the MacTutor History of Mathematics archive

Definition. A collection A of subsets of a space X is a covering of X (or is said

to cover X), if the union of the elements of A is equal to X . Covering A is an

open cover of X if its elements are open subsets of X . If Y is a subspace of X , a

collection A of subsets of X covers Y if the union of its elements contains Y .

Definition. A space X is compact if every open cover A of X contains a finite

subcollection that also covers X (called a finite subcover).
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Example 1. The real line R is not compact since the open covering A = {(n, n+1) |

n ∈ Z} has no finite subcover since any finite subset of A can contain only a finite

number of elements of Z.

Example A. The bounded open interval (a, b) ⊂ R is not compact since open

covering A = {(a + 1/n, b − 1/n) | n ∈ N, 1/n < (b − a)/2} has no finite subcover,

since any finite subset of A only covers (a + 1/N, b − 1/N) for some N ∈ N.

Example 2. Consider X = {0} sup{1/n | n ∈ N} ⊂ R. Given any open covering

A of X , there is an element U of A containing 0. The open set U contains all but

finitely many of the points 1/n. For each point of X not in U , choose an element

of A containing the point. Then U , along with these finite number of elements of

A, form a finite subcover of X . So X is compact.

Example 3. Any space X containing only finitely many points is necessarily

compact.

Note. Notice that to show a space is not compact, you can just find an open

covering with no finite subcover. However, to show a space is compact by definition,

you must consider all possible open coverings.

Lemma 26.1. Let Y be a subspace of X . Then Y is compact if and only if every

covering of Y by sets open in X contains a finite subcollection covering Y .
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Theorem 26.2. Every closed subspace of a compact space is compact.

Note. The following lemma and theorem give a property of compact Hausdorff

spaces.

Lemma 26.4. If Y is a compact subspace of the Hausdorff space X and x0 6∈ Y ,

then there exists disjoint open sets U and V of X containing x0 and Y , respectively.

Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Note. We can use Theorem 26.3 to show that some subspaces are not compact by

showing that they are not closed.

Example 5. Since R is Hausdorff, we know that any nonclosed subset of R is not

compact. For example, neither (a, b], [a, b), nor (a, b) are compact.

Example 6. The Hausdorff condition is necessary in Theorem 26.3. Consider the

finite complement topology on R (see Example 3 of Section 12) in which the open

sets are all sets U for which X \U is either finite or is all of X . So the only closed

sets are the finite sets and R. But every subset of R is compact (as you will show

in Exercise 26.A); so there are compact subspaces which are not closed. This is

possible because the finite complement topology on R is not Hausdorff (as you will

show in Exercise 26.A).
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Note. The following result shows that a continuous function maps compact sets

to compact sets. This complements Theorem 23.5 which states that a continuous

function maps connected sets to connected sets. These two results give us the

“Three Cs”: Continuity, Connected, and Compact (notice that “Closed” is not

one of the Cs).

Theorem 26.5. The image of a compact space under a continuous map is compact.

Note. The following result uses the theorems of this section to give a condition

indicating that a continuous mapping is in fact a homeomorphism.

Theorem 26.6. Let f : X → Y be a bijective continuous function. If X is

compact and Y is Hausdorff, then f is a homeomorphism.

Note. The following lemma allows us to address the compactness of a product of

compact spaces.

Lemma 26.8. The Tube Lemma.

Consider the product space X × Y where Y is compact. If N is an open set of

X×Y containing the slice {x0}×Y of X×Y , then N contains some “tube” W ×Y

about {x0} × Y , where W is a neighborhood of x0 in X .
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Theorem 26.7. The product of finitely many compact spaces is compact.

Note. In fact, a product of an arbitrary number of compact spaces is compact.

This result is called the Tychonoff Theorem and is addressed in Section 37. The

proof is involved and uses Zorn’s Lemma and the Axiom of Choice, is given in

Exercise 37.5).

Note. The following definition will lead to a condition equivalent to a space being

compact.

Definition. A collection C of subsets of X has the finite intersection property if for

every finite subcollection {C1, C2, . . . , Cn} of C, the intersection C1 ∩C2 ∩ · · · ∩Cn

is nonempty.

Theorem 26.9. Let X be a topological space. Then X is compact if and only

if for every collection C of closed sets in X having the finite intersection property,

the intersection ∩C∈CC for all elements of C is nonempty.

Note. An easy corollary to Theorem 26.9 is the following.

Corollary 26.A. Let X be a compact topological space and let C1 ⊃ C2 ⊃ · · · ⊃

Cn ⊃ Cn+1 ⊃ · · · be a nested sequence of closed sets in X . If each Cn is nonempty,

then ∩n∈NCn is nonempty.
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