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Section 28. Limit Point Compactness

Note. In this brief section we introduce two properties equivalent to compactness

for metrizable spaces. One of the properties is stronger than compactness in a more

general setting. We also introduce other examples of a nonmetrizable space.

Definition. A space X is limit point compact if every infinite subset of X has a

limit point.

Note. The term “limit point compact” is due to Munkres (see page 179, line 3).

Munkres comments that the property is sometimes also called “Fréchet compact-

ness” or the “Bolzano-Weierstrass property.” Recall that the Bolzano-Weierstrass

Theorem states that a bounded infinite set of real numbers (or elements of Rn)

must have a limit point.

Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Example 1. Let Y = {y1, y2} and let the topology on Y consist of ∅ and Y .

Consider X = N×Y with the product topology where N has the discrete topology.

Then for A ⊂ X , A 6= ∅, A has an element of the form (n, yi). Any open set

containing (n, yi) also contains the point (n, yj) where j = 3 − i, and so every

nonempty A ⊂ X has a limit point and so X is limit point compact. However, X

is not compact since the covering of X by the open sets Un = {n} × Y for n ∈ N

has no subcollection covering X (and so no finite subcollection covering X).
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Definition. Let X be a topological space. If {xn}
∞
n=1 is a sequence of points in X

and if n1 < n2 < · · · < ni < · · · is an increasing sequence of natural numbers, then

the sequence {yi}
∞
i=1 defined as yi = xni

is a subsequence of the sequence {xn}. The

space X is sequentially compact if every sequence of points of X has a convergent

subsequence.

Note. We now show that each of three three types of compactness are the same

in metrizable spaces. We follow Munkres’ proof, but break it into pieces, including

two preliminary lemmas.

Lemma 28.A. Let X be metrizable. If X is also sequentially compact then the

conclusion of the Lebesgue Number Lemma (Lemma 27.5) holds for X .

Lemma 28.B. Let X be metrizable. If X is also sequentially compact, then for

all ε > 0 there exists a finite covering of X by open ε-balls.

Theorem 28.2. Let X be a metrizable space. Then the following are equivalent:

(1) X is compact.

(2) X is limit point compact.

(3) X is sequentially compact.
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Note. Munkres gives another “less trivial” example of a space which is limit point

compact but not compact. We review some definitions from set theory before

stating the example.

Definition. (From Section 3) A relation Con a set A is an ordered relation (or

simple order or linear order) if:

(1) (Comparability) For all x, y ∈ A for which x 6= y, either xCy or yCx.

(2) (Nonreflexivity) For no x ∈ A does xCx hold.

(3) (Transitivity) If xCy and yCx then xCz.

Example. A = R has order relations greater than > and less than <. We could

also take A as N, Z, or Q under either > or <.

Definition. (From Section 10) A set A with order relation < is well-ordered if

every nonempty subset A has a smallest element.

Example. A = R under the usual less than, <, is NOT well-ordered. A = N

under the usual less than IS well-ordered.
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Note. The Well-Ordering Principle (see page 65 of Section 10) states that every

set A has an order relation for which A is well-ordered. In fact, this property is

equivalent to the Axiom of Choice (which Munkres takes as given and so observes

that the Well-Ordering Principle can be proved; that’s why Munkres calls it the

“Well-Ordering Theorem”).

Definition. (From Section 10) Let X be a well-ordered set. Given α ∈ X , let

Xα = {x | x ∈ X and x < α}. This is called the section of X by α.

Lemma 10.2. There exists a well-ordered set A having a largest element Ω, such

that the section SΩ of A by Ω is uncountable but every other section of A is

uncountable.

Definition. For well-ordered set A with largest element Ω as described in Lemma

10.2, the section SΩ is a minimal uncountable well-ordered set. The well-ordered

set SΩ ∪ {Ω} is denoted SΩ. We put the order topology on both SΩ and SΩ.

Theorem 10.3. If A is a countable subset of SΩ, then A has an upper bound in

SΩ.
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Example 2a. We claim that the space SΩ is limit point compact. Let A be an

infinite subset of SΩ. Choose a countable infinite subset B of A (which can be done

since the “smallest infinity” is countable infinite). Since B ⊂ SΩ is countable, by

Theorem 10.3 set B has an upper bound b in SΩ. Let a0 be the smallest element

of SΩ (which exists because SΩ is well-ordered). Then B ⊂ [a0, b]. SΩ has the

least upper bound property by Exercise 10.1 (in fact, the exercise shows that every

well-ordered set has the least upper bound property), so by Theorem 27.1 the

interval [a0, b] is compact. By Theorem 28.1, [a0, b] is limit point compact and so

set B ⊂ [a0, b] has a limit point x ∈ [a0, b]. Then x is also a limit point of A (since

[a0, b] ⊂ A). Therefore, SΩ is limit point compact.

Example 2b. We claim that SΩ is not compact. Munkres justifies this with the

single claim that SΩ has no largest element.

Note. Since the two examples given above, X = N × {y1, y2} and X = SΩ, are of

spaces which are limit point compact but not compact then, by Theorem 28.2, we

see that these spaces are not metrizable.

Example 3. We claim that SΩ = SΩ ∪ {Ω} is not metrizable. Since SΩ = {x |

x ∈ A, x < Ω}, then Ω ∈ SΩ is a limit point of SΩ. But any sequence of elements

of SΩ is bounded by an element of SΩ, and so Ω is not the limit of any sequence of

elements of SΩ. By The Sequence Lemma (lemma 21.2), SΩ is not metrizible (the

“converse” part).
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