Section 30. The Countability Axioms

Note. In Section 21, we encountered the concept of a topological space being first-countable at some point $x \in X$. In this section, we restate this definition and introduce a new "countability axiom." Both of the countability axioms involve countable (versus uncountable) bases of topologies.

Definition. A topological space X has a *countable basis at point* x if there is a countable collection \mathcal{B} of neighborhoods of x such that each neighborhood of x contains at least one of the elements of \mathcal{B} . A space that has a countable basis at each of the points satisfies the *First Countability Axiom*, or is *first-countable*.

Note. As commented in Section 21, a metrizable space X is first-countable since $\mathcal{B} = \{B_d(x, 1/n) \mid n \in \mathbb{N}\}$ satisfies the definition for each $x \in X$ (with metric d).

Note. As observed in Section 21, if "metrizable" is replaced with "first-countable" in Lemma 21.2 (The Sequence Lemma) and Theorem 21.3, the results still hold (as seen in the proof of each). So these results can be restated as follows.

Theorem 30.1. Let X be a topological space.

- (a) Let A be a subset of X. If there is a sequence of points of A converging to x, then x ∈ A; the converse holds if X is first-countable.
- (b) Let f : X → Y. If f is continuous, then for every convergent sequence x_n → x in X, the sequence f(x_n) converges to f(x). The converse holds if X is firstcountable.

Definition. If a topological space X has a countable basis for its topology, then X satisfies the *Second Countability Axiom*, or is *second-countable*.

Note. Of course, if a space is second-countable then it is first-countable. So secondcountable is more restrictive than first-countable. In fact, there are metric spaces which are not second countable (as we will see, \mathbb{R}^{ω} under the uniform topology is such an example; see Example 2). We will need second-countable for the proof of the Urysohn Metrization Theorem in Section 34.

Example 1. The real line \mathbb{R} (under the standard topology) is first-countable; consider $\mathcal{B} = \{(a, b) \mid a < b, a, b \in \mathbb{Q}\}$. Similarly, \mathbb{R}^n is first-countable; let \mathcal{B} be all products of open intervals with rational endpoints. Even \mathbb{R}^{ω} (with the product topology) is second-countable; let \mathcal{B} be all products $\prod_{n \in \mathbb{N}} U_n$ where finitely many U_n are open intervals with rational endpoints and the remaining $U_n = \mathbb{R}$. **Example 2.** Consider \mathbb{R}^{ω} under the uniform topology (the topology induced by the uniform metric $\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{\overline{d}(x_i, x_j) \mid i, j \in \mathbb{N}\}$ and $\overline{d}(x, y) = \min\{|x - y|, 1\}$ is the standard bounded metric on \mathbb{R}), which is a metric space. Since \mathbb{R}^{ω} is a metric space, it is (as observed above) first-countable. However, it is not second-countable. To establish this, we first show that if a space X has a countable basis \mathcal{B} then any subspace A which has the discrete topology (under the subspace topology) must be countable. Under these conditions for X, \mathcal{B} , and A, for each $a \in A$ there is a basis element B_a that intersects A at point a alone (since set $\{a\}$ is open in the discrete topology). So if $a \neq b$ for $a, b \in A$ then corresponding B_a and B_b are different $(a \in B_1 \text{ but } a \notin B_b, \text{ say})$. So the mapping $a \to B_a$ is one to one and $|A| \leq |B|$. So A must be countable. But subspace A of \mathbb{R}^{ω} consisting of all sequences of 0's and 1's is uncountable (map it to [0, 1] using a binary representation of the elements of [0, 1]) and it has the discrete topology since the uniform metric gives $\overline{\rho}(a, b) = 1$ for any two distinct $a, b \in A$. So \mathbb{R}^{ω} cannot have a countable basis.

Theorem 30.2. A subspace of a first-countable space is first-countable, and a countable product of first-countable spaces is first-countable. A subspace of a second-countable space is second-countable, and a countable product of second-countable spaces is second-countable.

Definition. A subset A of a space X is *dense* in X if $\overline{A} = X$.

Note. The set of rationals \mathbb{Q} is dense in \mathbb{R} . The set of irrationals $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} . In fact, the set of algebraic numbers \mathbb{A} is also dense in \mathbb{R} .

Theorem 30.3. Suppose X has a countable basis. Then:

- (a) Every open covering of X contains a countable subcover.
- (b) There exists a countable subset of X that is dense in X.

Note. A topological space for which every open cover has a countable subcover is often called a *Lindelöff space*. Since \mathbb{R} is second-countable then \mathbb{R} is a Lindelöf space, by Theorem 30.3(a) (see Theorem 3-9 of http://faculty.etsu.edu/ gardnerr/4217/notes/3-1.pdf). A topological space with a countable dense subset is called *separable* (not to be confused with the concept of a "separation" from Section 23). This is an important property of "Hilbert spaces" for which separability allows the introduction of a countable basis. (see Theorem 5.4.8 of http://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-4.pdf).

Note. In a metrizable space, the two conditions of Theorem 30.3 (Lindelöf and separable, respectively) are each equivalent to second-countable, as shown in Exercise 30.5. The following example shows the existence of a space which is first-countable, Lendelöf, and separable, but it is not second-countable (and so is not metrizable).

Example 3. Consider \mathbb{R}_{ℓ} , $X = \mathbb{R}$ with the lower limit topology which has basis $\{[a,b) \mid a < b, a, b \in \mathbb{R}\}$. Given $x \in \mathbb{R}_{\ell}$, the set of all basis elements of the form $\{[x, x + 1/n) \mid n \in \mathbb{N}\}$ is a countable basis at x and so \mathbb{R}_{ℓ} is *first-countable*. Also, the rationals \mathbb{Q} are dense in \mathbb{R}_{ℓ} , so \mathbb{R}_{ℓ} is *separable*.

Let \mathcal{B} be a basis for \mathbb{R}_{ℓ} . For each $x \in \mathbb{R}_{\ell}$, there is some $B_x \in \mathcal{B}$ such that $x \in B_x$ and $B_x \subset [x, x + 1)$. If $x \neq y$ then $B_x \neq B_y$ (since $x = \inf(B_x)$ and $y = \inf B_y$). So the mapping $x \to B_x$ of \mathbb{R}_{ℓ} onto \mathcal{B} is one to one and hence $|\mathcal{B}| = |\mathbb{R}_{\ell}|$ and \mathcal{B} is uncountable. That is, \mathbb{R}_{ℓ} is not second-countable.

Now we show that \mathbb{R}_{ℓ} is Lindelöf. We do so by showing that every open covering of \mathbb{R}_{ℓ} by basis elements has a countable subcover (if we start with an arbitrary open cover, for each x is one of the open sets there is a basis element containing x which is a subset of the open set; we can then convert the countable subcover of basis elements back into a countable subcover of the original covering). So let $\mathcal{A} = \{[a_{\alpha}, b_{\alpha}) \mid \alpha \in J\}$ be a covering of \mathbb{R} by basis elements for the lower limit topology. Let $C = \bigcup_{\alpha \in J} (A_{\alpha}, b_{\alpha})$ so that $C \subset \mathbb{R}$. We first show that $\mathbb{R} \setminus C$ is countable. Let $x \in \mathbb{R} \setminus C$. Then x is in no (a_{α}, b_{α}) , so we must have $x = a_{\beta}$ for some $\beta \in J$ and so $x \in [a_{\beta}, b_{\beta})$. Choose some $q_x \in \mathbb{Q}$ with $q_x \in (a_{\beta}, b_{\beta})$. Since $(x, q_x) = (a_\beta, q_x) \subset (a_\beta, b_\beta) \subset C$, then for $x, y \in \mathbb{R} \setminus C$ with x < y we have $q_x < q_y$ (otherwise we would have $x < y < q_y \le q_x$ and $y \in (x, q_x) \subset C$, a contradiction). Therefore the map $x \mapsto q_x$ of $\mathbb{R} \setminus C$ into \mathbb{Q} is one to one. So $|\mathbb{R} \setminus C| \leq |\mathbb{Q}|$ and $\mathbb{R} \setminus C$ is countable. We second show that \mathcal{A} has a countable subcover. For each element of countable $\mathbb{R} \setminus C$, choose an element of \mathcal{A} containing it. Combining all such elements of \mathcal{A} yields a countable subcollection \mathcal{A}' of \mathcal{A} that covers $\mathbb{R} \setminus C$. Now C is a union of open intervals in \mathbb{R} and so is an open set in \mathbb{R} ; since \mathbb{R} is Lindelöf then there is a countable subcover of C, $(a_{\alpha_1}, b_{\alpha_1}), (a_{\alpha_2}, b_{\alpha_2}), \ldots$ Define $\mathcal{A}'' = \{[a_{\alpha}, b_{\alpha}) \mid \alpha = \alpha_1, \alpha_2, \ldots\}$. Then $\mathcal{A}'' \subset \mathcal{A}$ is a countable covering of C and so $\mathcal{A}' \cup \mathcal{A}''$ is a countable subcover of \mathbb{R}_{ℓ} . That is, \mathbb{R}_{ℓ} is *Lindelöf*.

Example 4. In this example we show that a product of two Lindelöf spaces may not be Lindelöf. We saw in the previous example that \mathbb{R}_{ℓ} $(X = \mathbb{R}$ under the lower limit topology) is Lindelöf. Consider $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell} = \mathbb{R}_{\ell}^2$ under the product topology (this topological space is called the *Sorgenfrey plane*). A basis for \mathbb{R}_{ℓ}^2 is $\mathcal{B} = \{[a, b) \times [c, d) \mid a, b, c, d \in \mathbb{R}, a < b, c < d\}$. To show that \mathbb{R}_{ℓ}^2 is not Lindelöf, we consider the subspace $L = \{(x, -x) \mid x \in \mathbb{R}_{\ell}\}$ (this is geometrically the line y = -x). Notice that $L \subset \mathbb{R}_{\ell}^2$ is closed and so $\mathbb{R}_{\ell}^2 \setminus L$ is open. Now we cover L with the basis elements $\mathcal{A}' = \{[a, a + 1) \times [-a, -a + 1) \mid a \in \mathbb{R}\}$. Notice that each of these basis elements intersects L in exactly one point: $[a, a+1) \times [-a, -a+1) \cap L =$ $\{(a, -a)\}$. So there is no proper subset of \mathcal{A}' which covers L. Then $\mathcal{A} = \mathcal{A}' \cup \{\mathbb{R}_{\ell}^2 \setminus L\}$ is an open covering of \mathbb{R}_{ℓ}^2 with no countable subcover (in fact, no proper subcover) because L is uncountable $(|L| = |\mathbb{R}|)$. so \mathbb{R}_{ℓ}^2 is *not Lindelöf*.

Example 5. In this example we show that a subspace of a Lindelöf space may not be Lindelöf. Recall that I_0^2 is the ordered square $[0,1] \times [0,1]$ under the order topology induced by the dictionary order. In this topology (which is different from the subspace topology on $[0,1] \times [0,1]$ as a subspace of $\mathbb{R} \times \mathbb{R}$ with the dictionary order topology; see page 90), $I_0^2 = [(0,), (1,1)]$, a closed interval. By Theorem 27.1, I_0^2 is compact (and therefore Lindelöf; finite subcovers are certainly countable). However, consider the subspace $A = [0,1] \times (0,1)$. An open covering of A is given by $\{U_x\}_{x \in [0,1]}$ where $U_x = \{x\} \times (0,1)$ (notice that U_x is the open interval ((x,0), (x,1)). Then the covering is uncountable and there is no proper subcover (and hence no countable subcover). Hence subspace A is not Lindelöf, where space I_0^2 is Lindelöf.

Revised: 8/12/2016