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Section 30. The Countability Axioms

Note. In Section 21, we encountered the concept of a topological space being

first-countable at some point x ∈ X . In this section, we restate this definition and

introduce a new “countability axiom.” Both of the countability axioms involve

countable (versus uncountable) bases of topologies.

Definition. A topological space X has a countable basis at point x if there is a

countable collection B of neighborhoods of x such that each neighborhood of x

contains at least one of the elements of B. A space that has a countable basis at

each of the points satisfies the First Countability Axiom, or is first-countable.

Note. As commented in Section 21, a metrizable space X is first-countable since

B = {Bd(x, 1/n) | n ∈ N} satisfies the definition for each x ∈ X (with metric d).

Note. As observed in Section 21, if “metrizable” is replaced with “first-countable”

in Lemma 21.2 (The Sequence Lemma) and Theorem 21.3, the results still hold (as

seen in the proof of each). So these results can be restated as follows.
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Theorem 30.1. Let X be a topological space.

(a) Let A be a subset of X . If there is a sequence of points of A converging to x,

then x ∈ A; the converse holds if X is first-countable.

(b) Let f : X → Y . If f is continuous, then for every convergent sequence xn → x

in X , the sequence f(xn) converges to f(x). The converse holds if X is first-

countable.

Definition. If a topological space X has a countable basis for its topology, then

X satisfies the Second Countability Axiom, or is second-countable.

Note. Of course, if a space is second-countable then it is first-countable. So second-

countable is more restrictive than first-countable. In fact, there are metric spaces

which are not second countable (as we will see, Rω under the uniform topology is

such an example; see Example 2). We will need second-countable for the proof of

the Urysohn Metrization Theorem in Section 34.

Example 1. The real line R (under the standard topology) is first-countable;

consider B = {(a, b) | a < b, a, b ∈ Q}. Similarly, Rn is first-countable; let B be

all products of open intervals with rational endpoints. Even Rω (with the product

topology) is second-countable; let B be all products
∏

n∈N
Un where finitely many

Un are open intervals with rational endpoints and the remaining Un = R.
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Example 2. Consider Rω under the uniform topology (the topology induced by

the uniform metric ρ(x,y) = sup{d(xi, xj) | i, j ∈ N} and d(x, y) = min{|x− y|, 1}

is the standard bounded metric on R), which is a metric space. Since Rω is a metric

space, it is (as observed above) first-countable. However, it is not second-countable.

To establish this, we first show that if a space X has a countable basis B then any

subspace A which has the discrete topology (under the subspace topology) must be

countable. Under these conditions for X , B, and A, for each a ∈ A there is a basis

element Ba that intersects A at point a alone (since set {a} is open in the discrete

topology). So if a 6= b for a, b ∈ A then corresponding Ba and Bb are different

(a ∈ B1 but a 6∈ Bb, say). So the mapping a → Ba is one to one and |A| ≤ |B|. So

A must be countable. But subspace A of Rω consisting of all sequences of 0’s and

1’s is uncountable (map it to [0, 1] using a binary representation of the elements of

[0, 1]) and it has the discrete topology since the uniform metric gives ρ(a, b) = 1

for any two distinct a, b ∈ A. So Rω cannot have a countable basis.

Theorem 30.2. A subspace of a first-countable space is first-countable, and a

countable product of first-countable spaces is first-countable. A subspace of a

second-countable space is second-countable, and a countable product of second-

countable spaces is second-countable.

Definition. A subset A of a space X is dense in X if A = X .
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Note. The set of rationals Q is dense in R. The set of irrationals R \ Q is dense

in R. In fact, the set of algebraic numbers A is also dense in R.

Theorem 30.3. Suppose X has a countable basis. Then:

(a) Every open covering of X contains a countable subcover.

(b) There exists a countable subset of X that is dense in X .

Note. A topological space for which every open cover has a countable subcover

is often called a Lindelöff space. Since R is second-countable then R is a Lin-

delöf space, by Theorem 30.3(a) (see Theorem 3-9 of http://faculty.etsu.edu/

gardnerr/4217/notes/3-1.pdf). A topological space with a countable dense sub-

set is called separable (not to be confused with the concept of a “separation”

from Section 23). This is an important property of “Hilbert spaces” for which

separability allows the introduction of a countable basis. (see Theorem 5.4.8 of

http://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-4.pdf).

Note. In a metrizable space, the two conditions of Theorem 30.3 (Lindelöf and sep-

arable, respectively) are each equivalent to second-countable, as shown in Exercise

30.5. The following example shows the existence of a space which is first-countable,

Lendelöf, and separable, but it is not second-countable (and so is not metrizable).
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Example 3. Consider R`, X = R with the lower limit topology which has basis

{[a, b) | a < b, a, b ∈ R}. Given x ∈ R`, the set of all basis elements of the form

{[x, x + 1/n) | n ∈ N} is a countable basis at x and so R` is first-countable. Also,

the rationals Q are dense in R`, so R` is separable.

Let B be a basis for R`. For each x ∈ R`, there is some Bx ∈ B such that x ∈ Bx

and Bx ⊂ [x, x + 1). If x 6= y then Bx 6= By (since x = inf(Bx) and y = inf By).

So the mapping x → Bx of R` onto B is one to one and hence |B| = |R`| and B is

uncountable. That is, R` is not second-countable.

Now we show that R` is Lindelöf. We do so by showing that every open covering

of R` by basis elements has a countable subcover (if we start with an arbitrary

open cover, for each x is one of the open sets there is a basis element containing

x which is a subset of the open set; we can then convert the countable subcover

of basis elements back into a countable subcover of the original covering). So let

A = {[aα, bα) | α ∈ J} be a covering of R by basis elements for the lower limit

topology. Let C = ∪α∈J(Aα, bα) so that C ⊂ R. We first show that R \ C is

countable. Let x ∈ R \ C. Then x is in no (aα, bα), so we must have x = aβ for

some β ∈ J and so x ∈ [aβ, bβ). Choose some qx ∈ Q with qx ∈ (aβ, bβ). Since

(x, qx) = (aβ, qx) ⊂ (aβ, bβ) ⊂ C, then for x, y ∈ R \ C with x < y we have qx < qy

(otherwise we would have x < y < qy ≤ qx and y ∈ (x, qx) ⊂ C, a contradiction).

Therefore the map x 7→ qx of R \ C into Q is one to one. So |R \ C| ≤ |Q| and

R \ C is countable. We second show that A has a countable subcover. For each

element of countable R \ C, choose an element of A containing it. Combining all

such elements of A yields a countable subcollection A′ of A that covers R \ C.

Now C is a union of open intervals in R and so is an open set in R; since R is
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Lindelöf then there is a countable subcover of C, (aα1
, bα1

), (aα2
, bα2

), . . .. Define

A′′ = {[aα, bα) | α = α1, α2, . . .}. Then A′′ ⊂ A is a countable covering of C and so

A′ ∪ A′′ is a countable subcover of R`. That is, R` is Lindelöf.

Example 4. In this example we show that a product of two Lindelöf spaces

may not be Lindelöf. We saw in the previous example that R` (X = R under

the lower limit topology) is Lindelöf. Consider R` × R` = R2
` under the product

topology (this topological space is called the Sorgenfrey plane). A basis for R2
` is

B = {[a, b) × [c, d) | a, b, c, d ∈ R, a < b, c < d}. To show that R2
` is not Lindelöf,

we consider the subspace L = {(x,−x) | x ∈ R`} (this is geometrically the line

y = −x). Notice that L ⊂ R2
` is closed and so R2

` \L is open. Now we cover L with

the basis elements A′ = {[a, a + 1) × [−a,−a + 1) | a ∈ R}. Notice that each of

these basis elements intersects L in exactly one point: [a, a+1)×[−a,−a+1)∩L =

{(a,−a)}. So there is no proper subset of A′ which covers L. Then A = A′∪{R2
`\L}

is an open covering of R2
` with no countable subcover (in fact, no proper subcover)

because L is uncountable (|L| = |R|). so R2
` is not Lindelöf.

Example 5. In this example we show that a subspace of a Lindelöf space may

not be Lindelöf. Recall that I2
0 is the ordered square [0, 1] × [0, 1] under the order

topology induced by the dictionary order. In this topology (which is different from

the subspace topology on [0, 1] × [0, 1] as a subspace of R × R with the dictionary

order topology; see page 90), I2
0 = [(0, ), (1, 1)], a closed interval. By Theorem 27.1,

I2
0 is compact (and therefore Lindelöf; finite subcovers are certainly countable).
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However, consider the subspace A = [0, 1] × (0, 1). An open covering of A is

given by {Ux}x∈[0,1] where Ux = {x} × (0, 1) (notice that Ux is the open interval

((x, 0), (x, 1)). Then the covering is uncountable and there is no proper subcover

(and hence no countable subcover). Hence subspace A is not Lindelöf, where space

I2
0 is Lindelöf.
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