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Section 31. The Separation Axioms

Note. Recall that a topological space X is Hausdorff if for any x, y ∈ X with

x 6= y, there are disjoint open sets U and V with x ∈ U and y ∈ V . In this section,

Munkres introduces two more separation axioms (we introduce a third).

Definition. A topological space X satisfies the Tychonoff Separation Property if

for any x, y ∈ X with x 6= y, there are open sets U and V with x ∈ U , y 6∈ U , and

y ∈ V , x 6∈ V .

Note. A space is Tychonoff if and only if every singleton (one-point set) is a closed

set, as you will show in Exercise 31.A. Notice that all Hausdorff spaces are Tychonoff

(Hausdorff adds the “disjoint” condition on U and V ). In the following definition,

the first statement could be replaced with the Tychonoff Separation Property (see

my notes based on Royden and Fitzpatrick’s Real Analysis, 4th Edition, Section

11.2 “The Separation Properties”: http://faculty.etsu.edu/gardnerr/5210/

notes/11-2.pdf).

Definition. Suppose that one-point sets are closed in space X . Then X is regular

if for each pair consisting of a point x and closed set B disjoint from {x}, there are

disjoint open sets U and V with x ∈ U and B ⊂ V . The space X is normal if for

each pair A,B of disjoint closed sets of X , there are disjoint open sets U and V

with A ⊂ U and B ⊂ V .
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Note. The four separation properties can be illustrated as follows:

We have the following schematics inclusions:

Normal Spaces ⊂ Regular Spaces ⊂ Hausdorff Spaces ⊂ Tychonoff Spaces.

We show by example below that the first two inclusions are proper.

Note. We saw the “T1 Axiom” in section 17 (namely, the property/axiom that fi-

nite point sets are closed). So the T1 property is what we just labeled “Tychonoff.”

Sometimes this notation is used and a Hausdorff space is labeled “T2,” a regular

space is “T3” and a normal space is “T4.” An additional (weaker) separation axiom

called “T0” requires: For any x, y ∈ X , there is an open set U such that both x ∈ U

and y 6∈ U , or both y ∈ U and x 6∈ U . To complicate things (!), T0 spaces are some-

times called Kolmogorov spaces, T1 spaces are Fréchet spaces, T2 spaces are Haus-

dorff spaces, T3 spaces are Vietoris spaces, and T4 spaces are Tietze spaces. The

inclusion above extends to these new categories to give (schematically): T4 ⊂ T3 ⊂

T2 ⊂ T1 ⊂ T0. This information is from the reputable website Wolfram MathWorld:

http://mathworld.wolfram.com/SeparationAxioms.html (accessed 8/17/2016).

The “T” comes from the German “Trennungsaxiom” which means “separation ax-

iom” (see Munkres’ page 211).
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Note. The following lemma gives a classification of regular and normal spaces.

Lemma 31.1. Let X be a topological space. Let one-point sets (singletons) in X

be closed.

(a) X is regular if and only if given a point x ∈ X and a neighborhood U of X ,

there is a neighborhood V of x such that V ⊂ U .

(b) X is normal if and only if given a closed set A and an open set U containing

A, there is an open set V containing A such that V ⊂ U .

Note. The following theorem considers subspaces and products of Hausdorff and

regular spaces. The story with regular spaces is more complicated.

Theorem 31.2.

(a) A subspace of a Hausdorff space is Hausdorff. A product of Hausdorff spaces

is Hausdorff.

(b) A subspace of a regular space is regular. A product of regular spaces is regular.

Note. There is no result for normal spaces analogous to the results of Theorem

31.2. Products of normal spaces are addressed in Examples 2 and 3 below and in

Examples 1 and 2 of the next section.
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Example 1. Recall that the K-topology on R (see page 82) has as its basis

Bn = {(a, b), (a, b) \K | a, b ∈ R, a < b} where K = {1/n | n ∈ N}. This space is

denoted RK . Then RK is Hausdorff since it includes all open (a, b).

Now set K is closed because it contains its limit points (of which there are none;

see Corollary 17.7): any point in R\(K∪{0}) is in a neighborhood of the form (a, b)

not intersecting K, and (−1, 1) \K is a neighborhood of 0 which does not intersect

K. We consider closed set K and point x = 0 to show that RK is not regular.

ASSUME there exist disjoint open sets U and V containing 0 and K, respectively.

Then there is a basis element N containing 0 lying in U . This basis element must

be of the form N = (a, b)\K, since each basis element of the form (a, b) containing

0 intersectsK. Choose n ∈ N large enough that 1/n ∈ (a, b) (where (a, b)\K = N).

Since 1/n ∈ K ⊂ V and V is open, then there is a basis element M ⊂ V containing

1/n. Then M must be of the form (c, d), since 1/n ∈ M . But then M contains

some z ∈ N ⊂ U (namely, any z such that max{c, 1/(n + 1)} < z < 1/n). So

z ∈ U ∩V and U and V are not disjoint, a CONTRADICTION. So the assumption

of the existence of such U and V is false and RK is not regular. So RK is an example

of a nonregular Hausdorff space showing that the set of regular spaces is a proper

subset of the set of Hausdorff spaces.

Example 2. In this example, we show that R` is normal. By Lemma 13.4, the

topology of R` is finer than the standard topology on R so one-point sets are closed

in R` Let A and B be disjoint closed sets in R`. For each a ∈ A, there is a basis

element for the lower limit topology [a, xa) not intersecting B (since B is closed, it

contains its limit points by Corollary 17.7 and s a is not a limit point of B since
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a 6∈ B). Similarly, for each b ∈ B there is a basis element [b, xb) not intersecting A.

Then

U = ∪a∈A[a, xa) and V = ∪b∈B[b, xb)

are disjoint open sets with A ⊂ U and B ⊂ V . So R` is normal.

Example 3. I this example we show that the Sorgenfrey plane R2

`
(see Example 4

of Section 30) is not normal. Since R2

`
= R` ×R`, this example (combined with the

previous) shows that a product of normal spaces may not be normal. Also, since R`

is regular by the previous example (normal spaces are regular) then R2

`
= R`×R` is

regular by Theorem 31.2(b). So the Sorgenfrey plane R2

`
is an example of a regular

space which is not normal, showing that the set of normal spaces is a proper subset

of the set of regular spaces.

ASSUME R2

`
is normal. Let L be the subspace of R2

`
consisting of all points of

the form (x,−x) (geometrically, the line y = −x). Now L is closed in R2

`
and has

the discrete topology (as in example 4 of Section 30, every one-point set in L is

open: (a,−a) = L ∩ ([a, a + 1) × [−a,−a + 1))). So every subset A ⊂ L is closed

in L (and open!) and by Theorem 17.3 is closed in R2

`
. So L \ A is also closed in

R2

`
. Since we assumed R2

`
is normal, there are disjoint open sets UA and VA such

that A ⊂ UA and L \A ⊂ VA.

Let D be the set of points of R2

`
having rational coordinates. Then D is dense

in R2

`
(any basis element containing a point in R2

`
\D contains points in D so all

points in R2

`
\D are limit points of D and D = R2

`
). Define θ : P(L) → P(D) (“P”
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for power set) as

θ(A) = D ∩ UA if ∅ ( A ( L

θ(∅) = ∅

θ(A) = D.

Let A and B be two different proper, nonempty subsets of L. Then θ(A) = D∩UA

is neither empty (since D is dense in R2

`
and UA is open; open UA must intersect D

and R2

`
\D) nor all of D (for if D ∩ UA = D then D ⊂ UA and since UA ∩ VA = ∅

we would have D∩VA = ∅, contradicting the fact that D is dense and VA is open).

Since sets A 6= B, then there is some x ∈ R2

`
in one set but not the other; say

x ∈ A, x 6∈ B. Then x ∈ L \ B and so x ∈ A ⊂ UA and x ∈ L \ B ⊂ VB.

That is, x ∈ UA ∩ VB. But UA ∩ VB is a nonempty open set and so must contain

points in dense set D. Such points are in UA and not in UB (since such points

are in VB and UB ∩ VB = ∅). The existence of these points (though we have not

CONSTRUCTED them) shows that there are points in D ∩ UB which are not in

D ∩ UB. That is,

θ(A) = D ∩ UA 6= D ∩ UB = θ(B).

So, θ : P(L) → P(D) is one to one (injective).

We now construct a one to one map ϕ : P(D) → L. “Since D is countably

infinite and L has the cardinality of R” (Munkres, page 198), it suffices to define

a one to one map ψ of P(N) into R. For S ∈ P(N) (so S ⊂ N) define ψ(S) ∈ R

as ψ(S) =
∑∞

i=1
ai/10

i where ai = 0 if i ∈ S and ai = 1 if i 6∈ S. (For example,

if S = N \ {2, 4, 5} then a2 = a4 = a5 = 1 and ai = 0 for all other i. So ψ(S) =

0.0101100 · · · = 0.01011. Also, ψ(∅) = 0.111 · · · = 1/9 and ψ(N) = 0.00 · · · = 0.
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In fact, the range of ψ is [0, 1/9] ⊂ R.) Then ψ is one to one. Similarly, a one to

one ϕ : P(D) → L exists. So the composition ϕ ◦ θ : P(L) → L is one to one. But

the CONTRADICTS Theorem 7.8 (there is no one to one function from the power

set of a set to the set itself; you might be familiar with this as Cantor’s Theorem:

The cardinality of the power set P(A) is strictly greater than the cardinality of the

set A itself; |P(A)| > |A|.) This contradiction shows that the assumption that R2

`

is normal is false and hence the Sorgenfrey plane R2

`
is not normal.

Note. As commented in the argument, we did not explicitly CONSTRUCT a set

A ⊂ L such that closed A and closed L \A violate the regularity of R2

`
. However,

as shown in Exercise 31.9, the set A of all elements of L with rational coefficients

is such a set.
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