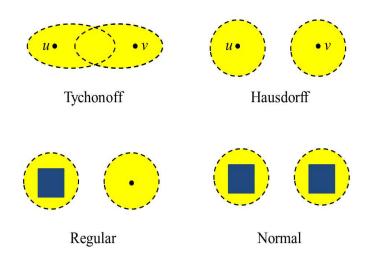
Section 31. The Separation Axioms

Note. Recall that a topological space X is Hausdorff if for any $x, y \in X$ with $x \neq y$, there are disjoint open sets U and V with $x \in U$ and $y \in V$. In this section, Munkres introduces two more separation axioms (we introduce a third).

Definition. A topological space X satisfies the *Tychonoff Separation Property* if for any $x, y \in X$ with $x \neq y$, there are open sets U and V with $x \in U, y \notin U$, and $y \in V, x \notin V$.

Note. A space is Tychonoff if and only if every singleton (one-point set) is a closed set, as you will show in Exercise 31.A. Notice that all Hausdorff spaces are Tychonoff (Hausdorff adds the "disjoint" condition on U and V). In the following definition, the first statement could be replaced with the Tychonoff Separation Property (see my notes based on Royden and Fitzpatrick's *Real Analysis*, 4th Edition, Section 11.2 "The Separation Properties": http://faculty.etsu.edu/gardnerr/5210/ notes/11-2.pdf).

Definition. Suppose that one-point sets are closed in space X. Then X is *regular* if for each pair consisting of a point x and closed set B disjoint from $\{x\}$, there are disjoint open sets U and V with $x \in U$ and $B \subset V$. The space X is *normal* if for each pair A, B of disjoint closed sets of X, there are disjoint open sets U and V with $A \subset U$ and $B \subset V$.



Note. The four separation properties can be illustrated as follows:

We have the following schematics inclusions:

Normal Spaces \subset Regular Spaces \subset Hausdorff Spaces \subset Tychonoff Spaces. We show by example below that the first two inclusions are proper.

Note. We saw the " T_1 Axiom" in section 17 (namely, the property/axiom that finite point sets are closed). So the T_1 property is what we just labeled "Tychonoff." Sometimes this notation is used and a Hausdorff space is labeled " T_2 ," a regular space is " T_3 " and a normal space is " T_4 ." An additional (weaker) separation axiom called " T_0 " requires: For any $x, y \in X$, there is an open set U such that both $x \in U$ and $y \notin U$, or both $y \in U$ and $x \notin U$. To complicate things (!), T_0 spaces are sometimes called Kolmogorov spaces, T_1 spaces are Fréchet spaces, T_2 spaces are Hausdorff spaces, T_3 spaces are Vietoris spaces, and T_4 spaces are Tietze spaces. The inclusion above extends to these new categories to give (schematically): $T_4 \subset T_3 \subset T_2 \subset T_1 \subset T_0$. This information is from the reputable website Wolfram MathWorld: http://mathworld.wolfram.com/SeparationAxioms.html (accessed 8/17/2016). The "T" comes from the German "Trennungsaxiom" which means "separation axiom" (see Munkres' page 211). **Note.** The following lemma gives a classification of regular and normal spaces.

Lemma 31.1. Let X be a topological space. Let one-point sets (singletons) in X be closed.

- (a) X is regular if and only if given a point $x \in X$ and a neighborhood U of X, there is a neighborhood V of x such that $\overline{V} \subset U$.
- (b) X is normal if and only if given a closed set A and an open set U containing A, there is an open set V containing A such that $\overline{V} \subset U$.

Note. The following theorem considers subspaces and products of Hausdorff and regular spaces. The story with regular spaces is more complicated.

Theorem **31.2**.

- (a) A subspace of a Hausdorff space is Hausdorff. A product of Hausdorff spaces is Hausdorff.
- (b) A subspace of a regular space is regular. A product of regular spaces is regular.

Note. There is no result for normal spaces analogous to the results of Theorem 31.2. Products of normal spaces are addressed in Examples 2 and 3 below and in Examples 1 and 2 of the next section.

Example 1. Recall that the K-topology on \mathbb{R} (see page 82) has as its basis $\mathcal{B}^n = \{(a, b), (a, b) \setminus K \mid a, b \in \mathbb{R}, a < b\}$ where $K = \{1/n \mid n \in \mathbb{N}\}$. This space is denoted \mathbb{R}_K . Then \mathbb{R}_K is Hausdorff since it includes all open (a, b).

Now set K is closed because it contains its limit points (of which there are none; see Corollary 17.7): any point in $\mathbb{R}\setminus (K\cup\{0\})$ is in a neighborhood of the form (a, b)not intersecting K, and $(-1, 1)\setminus K$ is a neighborhood of 0 which does not intersect K. We consider closed set K and point x = 0 to show that \mathbb{R}_K is not regular. ASSUME there exist disjoint open sets U and V containing 0 and K, respectively. Then there is a basis element N containing 0 lying in U. This basis element must be of the form $N = (a, b)\setminus K$, since each basis element of the form (a, b) containing 0 intersects K. Choose $n \in \mathbb{N}$ large enough that $1/n \in (a, b)$ (where $(a, b)\setminus K = N$). Since $1/n \in K \subset V$ and V is open, then there is a basis element $M \subset V$ containing 1/n. Then M must be of the form (c, d), since $1/n \in M$. But then M contains some $z \in N \subset U$ (namely, any z such that $\max\{c, 1/(n + 1)\} < z < 1/n$). So $z \in U \cap V$ and U and V are not disjoint, a CONTRADICTION. So the assumption of the existence of such U and V is false and \mathbb{R}_K is not regular. So \mathbb{R}_K is an example of a nonregular Hausdorff space showing that the set of regular spaces is a proper subset of the set of Hausdorff spaces.

Example 2. In this example, we show that \mathbb{R}_{ℓ} is normal. By Lemma 13.4, the topology of \mathbb{R}_{ℓ} is finer than the standard topology on \mathbb{R} so one-point sets are closed in \mathbb{R}_{ℓ} Let A and B be disjoint closed sets in \mathbb{R}_{ℓ} . For each $a \in A$, there is a basis element for the lower limit topology $[a, x_a)$ not intersecting B (since B is closed, it contains its limit points by Corollary 17.7 and s a is not a limit point of B since

 $a \notin B$). Similarly, for each $b \in B$ there is a basis element $[b, x_b)$ not intersecting A. Then

$$U = \bigcup_{a \in A} [a, x_a)$$
 and $V = \bigcup_{b \in B} [b, x_b)$

are disjoint open sets with $A \subset U$ and $B \subset V$. So \mathbb{R}_{ℓ} is normal.

Example 3. I this example we show that the Sorgenfrey plane \mathbb{R}^2_{ℓ} (see Example 4 of Section 30) is not normal. Since $\mathbb{R}^2_{\ell} = \mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$, this example (combined with the previous) shows that a product of normal spaces may not be normal. Also, since \mathbb{R}_{ℓ} is regular by the previous example (normal spaces are regular) then $\mathbb{R}^2_{\ell} = \mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$ is regular by Theorem 31.2(b). So the Sorgenfrey plane \mathbb{R}^2_{ℓ} is an example of a regular space which is not normal, showing that the set of normal spaces is a proper subset of the set of regular spaces.

ASSUME \mathbb{R}^2_{ℓ} is normal. Let L be the subspace of \mathbb{R}^2_{ℓ} consisting of all points of the form (x, -x) (geometrically, the line y = -x). Now L is closed in \mathbb{R}^2_{ℓ} and has the discrete topology (as in example 4 of Section 30, every one-point set in L is open: $(a, -a) = L \cap ([a, a + 1) \times [-a, -a + 1)))$. So every subset $A \subset L$ is closed in L (and open!) and by Theorem 17.3 is closed in \mathbb{R}^2_{ℓ} . So $L \setminus A$ is also closed in \mathbb{R}^2_{ℓ} . Since we assumed \mathbb{R}^2_{ℓ} is normal, there are disjoint open sets U_A and V_A such that $A \subset U_A$ and $L \setminus A \subset V_A$.

Let D be the set of points of \mathbb{R}^2_{ℓ} having rational coordinates. Then D is dense in \mathbb{R}^2_{ℓ} (any basis element containing a point in $\mathbb{R}^2_{\ell} \setminus D$ contains points in D so all points in $\mathbb{R}^2_{\ell} \setminus D$ are limit points of D and $\overline{D} = \mathbb{R}^2_{\ell}$). Define $\theta : \mathcal{P}(L) \to \mathcal{P}(D)$ (" \mathcal{P} " for power set) as

$$\begin{aligned} \theta(A) &= D \cap U_A \text{ if } \varnothing \subsetneq A \subsetneq L \\ \theta(\varnothing) &= \varnothing \\ \theta(A) &= D. \end{aligned}$$

Let A and B be two different proper, nonempty subsets of L. Then $\theta(A) = D \cap U_A$ is neither empty (since D is dense in \mathbb{R}^2_{ℓ} and U_A is open; open U_A must intersect D and $\mathbb{R}^2_{\ell} \setminus D$) nor all of D (for if $D \cap U_A = D$ then $D \subset U_A$ and since $U_A \cap V_A = \emptyset$ we would have $D \cap V_A = \emptyset$, contradicting the fact that D is dense and V_A is open). Since sets $A \neq B$, then there is some $x \in \mathbb{R}^2_{\ell}$ in one set but not the other; say $x \in A, x \notin B$. Then $x \in L \setminus B$ and so $x \in A \subset U_A$ and $x \in L \setminus B \subset V_B$. That is, $x \in U_A \cap V_B$. But $U_A \cap V_B$ is a nonempty open set and so must contain points in dense set D. Such points are in U_A and not in U_B (since such points are in V_B and $U_B \cap V_B = \emptyset$). The existence of these points (though we have not CONSTRUCTED them) shows that there are points in $D \cap U_B$ which are not in $D \cap U_B$. That is,

$$\theta(A) = D \cap U_A \neq D \cap U_B = \theta(B).$$

So, $\theta : \mathcal{P}(L) \to \mathcal{P}(D)$ is one to one (injective).

We now construct a one to one map $\varphi : \mathcal{P}(D) \to L$. "Since D is countably infinite and L has the cardinality of \mathbb{R} " (Munkres, page 198), it suffices to define a one to one map ψ of $\mathcal{P}(\mathbb{N})$ into \mathbb{R} . For $S \in \mathcal{P}(\mathbb{N})$ (so $S \subset \mathbb{N}$) define $\psi(S) \in \mathbb{R}$ as $\psi(S) = \sum_{i=1}^{\infty} a_i/10^i$ where $a_i = 0$ if $i \in S$ and $a_i = 1$ if $i \notin S$. (For example, if $S = \mathbb{N} \setminus \{2, 4, 5\}$ then $a_2 = a_4 = a_5 = 1$ and $a_i = 0$ for all other i. So $\psi(S) =$ $0.0101100 \dots = 0.01011$. Also, $\psi(\emptyset) = 0.111 \dots = 1/9$ and $\psi(\mathbb{N}) = 0.00 \dots = 0$. In fact, the range of ψ is $[0, 1/9] \subset \mathbb{R}$.) Then ψ is one to one. Similarly, a one to one $\varphi : \mathcal{P}(D) \to L$ exists. So the composition $\varphi \circ \theta : \mathcal{P}(L) \to L$ is one to one. But the CONTRADICTS Theorem 7.8 (there is no one to one function from the power set of a set to the set itself; you might be familiar with this as Cantor's Theorem: The cardinality of the power set $\mathcal{P}(A)$ is strictly greater than the cardinality of the set A itself; $|\mathcal{P}(A)| > |A|$.) This contradiction shows that the assumption that \mathbb{R}^2_{ℓ} is normal is false and hence the Sorgenfrey plane \mathbb{R}^2_{ℓ} is not normal.

Note. As commented in the argument, we did not explicitly CONSTRUCT a set $A \subset L$ such that closed A and closed $L \setminus A$ violate the regularity of \mathbb{R}^2_{ℓ} . However, as shown in Exercise 31.9, the set A of all elements of L with rational coefficients is such a set.

Revised: 8/30/2016