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Section 32. Normal Spaces

Note. We give four conditions which each imply that a space is normal (one

of them is metrizability). Two of the big results of this chapter, the Urysohn

Metrization Theorem (Section 34) and the Tietze Extension Theorem (Section 35)

apply to normal spaces.

Theorem 32.1. Every regular space with a countable basis is normal.

Note. The following result shows that every metrizable space is normal, so that

we can extend our schematic of topological spaces from Section 31 as follows:

metric spaces ⊂ Normal Spaces ⊂ Regular Spaces

⊂ Hausdorff Spaces ⊂ Tychonoff Spaces.

Theorem 32.2. Every metrizable space is normal.

Theorem 32.3. Every compact Hausdorff space is normal.

Theorem 32.4. Every well-ordered set X is normal in the order topology.



32. Normal Spaces 2

Note. The following two examples show that, in some sense, the normal spaces are

not as well behaved as the regular and Hausdorff spaces (compare these examples

to Theorem 31.2).

Example 1. In Exercise 32.9, you will show that for J uncountable, the product

space RJ is not normal. Notice that R is regular (in fact, R is normal since it is a

metric space; apply Theorem 32.2) and so by Theorem 31.2(b) RJ is regular. So

this example shows that the normal topological spaces are a proper subset of the

regular topological spaces.

Also notice that R is homeomorphic to the interval (0, 1) (a homeomorphism

is given by x 7→ (2x − 1)/(1 − (2x − 1)2); this is the mapping x 7→ 2x − 1 which

maps (0, 1) to (−1, 1) and x 7→ x/(1 − x2) which maps (−1, 1) to R; see Example

5 from Section 18), so RJ is homeomorphic to (0, 1)J , and so (0, 1)J is not normal.

Now [0, 1]J is a product of compact spaces and so is compact (we assume the

Tychonoff Theorem of Section 37 for this claim). So [0, 1]J is a compact Hausdorff

(by Theorem 31,2(a)) space and therefore by Theorem 32.3 is normal. So this

example shows that a subspace ((0, 1)J here) of a normal space ([0, 1]J here) may

not be normal.

Since RJ is an uncountable product of normal space R, this example shows that

an uncountable product of normal spaces may not be normal. In the next example

we will see that the product of two normal spaces may not be normal (and so the

product of a countable number or even a finite number of normal spaces may not

be normal).
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Example 2. In this example, we consider the space SΩ × SΩ. Recall (see Lemma

10.2) that Ω is the largest element of a well-ordered set A where the section SΩ =

{a ∈ A | a < Ω} is uncountable, but every other section Sα of A is uncountable.

SΩ−SΩ∪{Ω}. Let well-ordered SΩ have the order topology and then SΩ is normal

by Theorem 32.4. Give SΩ the subspace topology (which is the same as the order

topology by Theorem 16.4) and so by Theorem 32.4, SΩ is also normal. We will

show that SΩ ×SΩ is not normal. This example then establishes the following (the

first of which was established in Example 1):

1. A regular space (SΩ × SΩ is regular since both SΩ and SΩ are regular [being

normal] by Theorem 31.2(b)) may not be normal, so that the set of normal

spaces (again) is a proper subset of the set of regular spaces.

2. A subspace (SΩ ×SΩ here) of a normal space (SΩ ×SΩ) may not be normal. We

now show that SΩ × SΩ is normal. Notice that SΩ satisfies the least upper

bound property since any subset A ⊂ SΩ has Ω as an upper bound and the

set {s ∈ SΩ | a ≤ s for all a ∈ A} has a least element since SΩ is well-ordered

and this least element is the least upper bound of A. since SΩ is a closed

interval (SΩ = [a,Ω] where a is the least element of SΩ), by Theorem 27.1, SΩ

is compact. By Theorem 17.11, both SΩ is Hausdorff and the product SΩ×SΩ

is Hausdorff. So SΩ × SΩ is a compact Hausdorff space and so is normal by

Theorem 32.3.

3. The product (SΩ ×SΩ here) of two normal spaces (SΩ here) need not be normal.

This resolves the question at the end of Example 1 concerning products of

normal space.
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First, consider the “diagonal” ∆ = {(x, x) | x ∈ XΩ} in SΩ × SΩ. Since SΩ is

Hausdorff, ∆ is closed in SΩ×SΩ for the following reason. For x 6= y ∈ SΩ×SΩ (so

(x, y ∈ SΩ×SΩ \∆), there are open disjoint U and V with x ∈ U and y ∈ V . Then

U × V is an open set containing (x, y) but U × V does not intersect ∆ (because U

and V share no element of SΩ).

Therefore, in the subspace SΩ × SΩ, the set A = ∆ ∩ (SΩ × SΩ) = ∆ \ {(Ω,Ω)}

is closed. Also the set B = SΩ × {Ω} is closed in SΩ × SΩ since SΩ is closed in SΩ

and, since SΩ is Hausdorff by Theorem 17.11, {Ω} is closed by Theorem 17.8 ( a

product of closed sets is closed by Exercise 17.9 and Corollary 17.7). Sets A and

B are disjoint (no element of A has second coordinate Ω while all elements of B

have second coordinate Ω). ASSUME SΩ×SΩ is regular and that there are disjoint

open sets U and V of SΩ ×SΩ with A ⊂ U and B ⊂ V . See Figures 32.2 and 32.3.

Given x ∈ SΩ, consider the “vertical” slice {x} × SΩ. Now if U contains all

points of the form (x, β) for x < β < Ω, then the “top” point (x,Ω) would be a

limit point of U , which it is not since V is an open set containing (x,Ω) which is

disjoint from U . So there is some β with x < β < Ω such that (x, β) 6∈ U . For the
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set of all such β ∈ SΩ, let β(x) denote the least such β (which can be done since

SΩ is well-ordered).

Define a sequence of points of SΩ as follows. Let X1 be any point of SΩ. let

x2 = β(x1) and in general (recursively, that is) let xn+1 = β(xn) (see Figure 32.3).

Since β(x) > x for all x ∈ SΩ, the sequence satisfies x1 < x2 < · · ·. The set {xn} is

countable and therefore has an upper bound in SΩ (see Theorem 10.3). Let b ∈ SΩ

be the least upper bounds of set {xn} (which exists since the set of upper bounds of

set {xn} has a least upper bound because SΩ is well-ordered). Because the sequence

is increasing, it must converge to its least upper bound (if not, there is a smaller

least upper bound). That is, xn → b. Since β(xn) = xn+1 then β(xn) → b. So

the sequence (xn, β(xn)) in SΩ × SΩ converges: (xn, β(xn)) → (b, b) in SΩ × SΩ.

But (b, b) ∈ ∆ ⊂ A ⊂ U . But U contains no points of the sequence (xn, β(xn))

(by the choice of the β(xn)). So by the definition of limit of a sequence, open set

U containing (b, b) and containing no terms of the sequence shows that the limit

of sequence (xn, β(xn)) cannot be (b, b), a CONTRADICTION. So the assumption

that SΩ × SΩ is regular is false and hence SΩ × SΩ is not regular.

Note. In summary, we have the following properties of Hausdorff, regular, and

normal spaces in terms of subset inclusions:

(normal spaces) ( (regular spaces) ( (Hausdorff spaces).

Examples showing the proper inclusions are:

1. Hausdorff by not regular: RK (R under the K-topology; Example 1 of Section

31).
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2. Regular but not normal:

• RJ where J is uncountable (Example 1 of Section 32).

• SΩ × SΩ (Example 2 of Section 32).

In terms of subspaces and products we have:

Space Subspace/Reason Product/Reason

Hausdorff Hausdorff/Theorem 31.2(a) Hausdorff/Theorem 31.2(a)

Regular Regular/Theorem 31.2(b) Regular/Theorem 31.2(b)

Normal Maybe not normal/(0, 1)J ⊂ [0, 1]J , Maybe not normal/R` × R`,

J uncountable (Example 1, §32) (Examples 1, 2, §31)

Maybe not normal/SΩ × SΩ ⊂ SΩ × SΩ Maybe not normal/RJ ,

(Example 2, §32) J uncountable, (Example 1, §32)
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