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Section 41. Paracompactness

Note. In this section, we define “paracompactness” and see that the definition

involves locally finite open covers. The class of paracompact topological spaces

includes the compact spaces (by definition) and the metrizable spaces (by Theorem

41.4).

Note. Recall that a topological space X is compact if every open covering has a

finite subcovering. Notice that for a given open covering A of X , if B is a finite open

refinement of A that covers X , then each element of B is a subset of an element of

A and so A has a finite subcovering of X . Of course A is a refinement of itself, so

we can say: “A topological space X is compact if and only if every open covering

of X has a finite open refinement B that covers X .”

Definition. A topological space X is paracompact if every open covering of A has

a locally finite open refinement B of X .

Note. Since a finite open covering is trivially a locally finite open covering, then

a compact topological space is a paracompact space.

Note. Munkres comments that Bourbaki includes as part of the definition of

paracompact the condition of Hausdorff. Munkres does not make this assumption.
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Note. “Nicolas Bourbaki” is the name adopted by a group of French mathemati-

cians in 1935. They chose the name in honor of a French general who played an

important role in the Franco-Prussian War of 1870–71. The group was formed

initially to write an analysis textbook. They wanted a book modeled after Euclid’s

Elements of Geometry. The main goal was to standardize mathematical terminol-

ogy and to maintain the highest possible level of rigor. They have since published

books on set theory, algebra, topology, functions of one real variable, topological

vector spaces, integration, commutative algebra, Lie groups and Lie algebras. The

ETSU Sherrod Library has Bourbaki’s Theory of Sets (QA248.B73413). For more

information, see Maurice Mashaal’s Bourbaki—A Secret Society of Mathematicians

(translated from French by Anna Pierrehumbert), American Mathematical Society

(2006).

Example 1. We now show that Rn is paracompact (but Rn is not compact, of

course). Let X = Rn and let A be an open covering of X . We now construct a

locally finite open refinement C of A that covers X . First, we define a collection

of pen balls. Let B0 = ∅ and for each n ∈ N let Bm denote the ball of radius m

centered at 0 (that is, Bm = B(0,m)). Given m, set Bm is compact in R
n by the

Heine-Borel Theorem (Theorem 27.3) so choose finitely many elements of A that

cover Bm and intersect each one with the open set X \Bm−1, and let Cm denote this

collection of open sets (each an open subset of an element of A). So C = ∪∞
m=0Cm

is an open refinement of A. Not C covers X since for any x ∈ X , there is some

smallest m ∈ N such that x ∈ Bm (namely, some m where ‖x‖ ≤ m < ‖x‖ + 1)

and so x is an element of Cm. Now collection C is locally finite since for given
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x ∈ X , neighborhood Bm intersects only finitely many elements of C, namely those

elements in collection C1 ∪ C2 ∪ · · · ∪ Cm. So C is a locally finite open refinement of

A that covers X and hence X is paracompact.

Note. Paracompact spaces share some properties with compact spaces, as illus-

trated in the results of this section.

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Theorem 41.2. Every closed subspace of a paracompact space is paracompact.

Note. The following two examples show that subspaces of paracompact spaces

need not have certain properties.

Example 2. We claim that a paracompact subspace Y of a Hausdorff space X

need not be closed in X . Let X = R and = (0, 1). Then X is Hausdorff and Y is

paracompact by Example 1 (since Y = (0, 1) is homeomorphic to R), but Y = (0, 1)

is not closed in X = R.



41. Paracompactness 4

Example 3. We claim (unsurprisingly, perhaps) that a subspace Y of a paracom-

pact space X need not be paracompact. Consider the space X = SΩ × SΩ. Now

SΩ is compact (in fact, SΩ is homeomorphic to the one-point compactification of

SΩ by Exercise 29.7), so SΩ × SΩ is compact by Theorem 26.7. Hence it is also

paracompact. The subspace Y = SΩ × SΩ is Hausdorff (see Example 2 of Section

32 and Theorem 17.11) but it is not normal by Example 2 of Section 32. So by

Theorem 41.1, Y cannot be paracompact (otherwise, Y would be normal).

Note. The following is a major step in our proof that every metrizable space is

paracompact (Theorem 41.4). The result is due to Ernest Michael (1925–2013)

and originally appeared in “A Note on Paracompact Spaces,” Proceedings of the

American Mathematical Society 4 (1953), 831–838. Notice that condition (4) of

Lemma 41.3 is the condition of paracompactness. Michael shows that an Fσ subset

of a paracompact space is paracompact (in contrast to the previous example and

generalizing Lemma 41.2). Although he does not seem to address metrizability,

he does give a couple of results on products of spaces. You can likely find this

paper online in the public domain. It seems that Michael (and others) attributes

the introduction of the idea of paracampactness to Jean Dieudonné (1906–1992)

in “Une généralization des espaces compacts,” Journal de Mathématiques Pures et

Appliquées 23 (1944), 65-76. Dieudonné seems to have given first proof of Theorem

41.1 (possibly in his 1944 paper), as it is referred to as a “Theorem of Dieudonné”

on Wikipedia (as of 10/26/2016; see the article on “Paracompact space”). By the

way, Dieudonné was one of the founding members of the Bourbaki group.
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Lemma 41.3. Let X be a regular topological space. The following conditions on

X are equivalent. Every open covering of X has a refinement that is:

(1) an open covering of X and countably locally finite,

(2) a covering of X and locally finite,

(3) a closed covering of X and locally finite, and

(4) an open covering of X and locally finite (that is, X is paracompact).

Note. The following two results give categories of topological spaces which are

paracompact. The first theorem will be used in the next section in the proof of the

Smirnov Metrization Theorem (Theorem 42.1). The next theorem is due to Arthur

H. Stone (1916–2000) and appears in his “Paracompactness and Product Spaces,”

Bulletin of the American Mathematical Society 54 (1948), 977-982.

Theorem 41.4. Every metrizable space is paracompact.

Theorem 41.5. Every regular Lindelöf space is paracompact.

Note. Recall that the product of compact spaces is compact (for a finite product

by Theorem 26.7 and for an arbitrary product by the Tychnoff Theorem, Theo-

rem 37.3). The following example shows that none of this necessarily holds for

paracompact sets and is due to R. H. Sorgenfrey and appeared in 1947 as “On

the Topological Product of Paracompact Spaces,” Bulletin of the American Math-

ematical Society 53, (1947), 631–632. This paper seems to have introduced R
2

`
, the

Sorgenfrey plane.
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Example 4. We show that a product of two paracompact spaces may not be

paracomapct. Recall that R` denotes the lower limit topology on R generated by

{[a, b) | a, b ∈ R, a < b}. R` is Lindelöf as shown in Example 3 of Section 30. R` is

normal be Example 2 of Section 31. So by Theorem 41.5, R` is paracompact. Now

R` = R` × R` is Hausdorff because R` is Hausdorff (for x 6= y, say x ≤ y, consider

[x−1, x+(x+y)/2) and [x+(x+y)/2, y +1)) so R`×R` is Hausdorff by Theorem

17.11. But R
2

`
is not normal as shown in Example 3 of Section 31. So R` × R` is

not paracompact by Theorem 17.11.

Example 6. We claim that R
J (under the product topology) is not paracompact

if J is uncountable. Now R
J is not normal by Example 1 of Section 32 (really, by

Exercise 32.9). R is Hausdorff so RJ is Hausdorff by Theorem 31.2(a). So RJ is

not paracompact by Theorem 41.1.

Note. We now have the equipment to prove the Smirnov Metrization Theorem

(Theorem 42.1 of the next section), so if we are low on time we can skip the rest

of this section.

Note. We now return to the concept of a partition of unity which was introduced

in Section 36 (where the concept was used in proving that a compact m-manifold

can be embedded in R
N , Theorem 36.2).
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Note. Recall that the support of ϕ : X → R is the closure of the set ϕ−1(R \ {0}).

The following definition of “partition of unity” is in the setting of arbitrary open

coverings (instead of finite open coverings as in Section 36) and requires local

finiteness of the indexed family {Support(ϕα}α∈J so that the sum
∑

α∈J
ϕα(x) only

involves finitely many nonzero terms for any given x (so the sum makes sense even

if J is uncountable).

Definition. Let {Uα}α∈J be an indexed open covering of X . An indexed family

of continuous functions ϕα : X → [0, 1] is a partition of unity on X dominated by

{Uα}α∈J if:

(1) Supprt(ϕα) ⊂ Uα for all α ∈ J ,

(2) the indexed family {Support(ϕα)} is locally finite, and

(3)
∑

α∈J
ϕα(x) = 1 for each x ∈ X .

Note. We will show (in Theorem 41.7) that every paracompact Hausdorff space

has a partition of unity {ϕα}α∈J for any given open covering. First, we need a

lemma (which Munkres calls a “shrinking lemma” since, as we have seen before, a

given cover is refined with “smaller” sets).

Lemma 41.6. Let X be a paracompact Hausdorff space. Let {Uα}α∈J be an

indexed family of open sets covering X . Then there exists a locally finite indexed

family {Vα}α∈J of open sets covering X such that V α ⊂ Uα for all α ∈ J .
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Definition. For {Uα}α∈J an indexed family of open sets covering spcae X , a locally

finite indexed family {Vα}α∈J of open sets covering X such that V α ⊂ Uα for all

α ∈ J is a precise refinement of {Uα}α∈J .

Theorem 41.7. Let X be a paracompact Hausdorff space. Let {Uα}α∈J be an

indexed open covering of X . Then there exists a partition of unity on X dominated

by {Uα}α∈J .

Theorem 41.8. Let X be a paracompact Hausdorff space. Let C be a collection

of subsets of X and for each X ∈ C let εC > 0. If C is locally finite, then there is

a continuous function f : X → R such that f(x) > 0 for all x, and f(x) ≤ εC for

x ∈ C.
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