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Section 45. Compactness in Metric Spaces

Note. In this section we relate compactness to completeness through the idea

of total boundedness (in Theorem 45.1). We define equicontinuity for a family of

functions and use it to classify the compact subsets of C(X, Rn) (in Theorem 45.4,

the Classical Version of Ascoli’s Theorem).

Note. Recall that, in a metric space, compactness, limit point compactness, and

sequential compactness are equivalent (see Theorem 28.2). Lemma 43.1 states

that a metric space in complete if every Cauchy sequence in X has a convergent

subsequence. So if metric space X is sequentially compact (which is equivalent to

compact) then, by definition, every sequence has a convergent subsequence and so

by Lemma 43.1 metric space X is complete; that is, every compact metric space

is complete. Of course, the converse does not hold (concisder R). So we seek

an additional condition on a complete space which will insure that it si compact.

Inspired by the Heine-Borel Theorem (Theorem 27.3), we expect it to involve some

kind of boundedness (note that a complete space is closed since it contains all of

its limit points [by Theorem 17.6 and the definition of complete in terms of Cauchy

sequences]).

Definition. A metric space (X, d) is totally bounded if for every ε > 0 there is a

finite covering of X by ε-balls.
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Example 45.1. Total boundedness implies boundedness for, with ε = 1/2, a cov-

ering of X with B(x1, 1/2), B(x2, 1/2), . . . , B(xn, 1/2) shows that X has a diameter

of at most 1 + max{d(xi, xj) | i, h ∈ {1, 2, . . . , n}}. The converse does not hold as

we see by considering R under the standard bounded metric d(a, b) = min{1, |a−b|}

(a covering with ε = 1/2 balls is the same with respect to d as it is with respect to

| · | and there is not finite subcover); that is, R is bounded with respect fo d but

not totally bounded.

Example 45.2. Under the metric d(z, b) = |z − b|, R is complete but not totally

bounded, (−1, 1) is totally bounded but not complete, and [−1, 1] is both complete

and totally bounded (and compact!).

Theorem 45.1. A metric space (X, d) is compact if and only if it is complete and

totally bounded.

Note. We next explore compact subsets of C(X, Rn) where we put the uniform

topology on C(X, Rn) (that is, the metric topology induced by the uniform metric

ρ(f, g) = sup{d(f(x), g(x)) | x ∈ R
n}). We need an additional definition.

Definition. Let (Y, d) be a metric space. Let F be a subset of the function space

C(X,Y ). If x0 ∈ X , the set function F of functions is equicontinuous at x0 if given

ε > 0 there is a neighborhood U of x0 such that for all x ∈ U and all f ∈ F ,

d(f(x), d(x0)) < ε. If the set F is equicontinuous at x0 for each x0 ∈ X then set F

is equicontinuous.
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Lemma 45.2. Let X be a topological space and let (Y, d) be a metric space. If the

subset F of C(X,Y ) is totally bounded under the uniform metric corresponding to

d, then F is equicontinuous under d.

Note. We need one more lemma before proving the classical version of Ascoli’s

Theorem.

Lemma 45.3. Let X be a topological space and let (Y, d) be a metric space.

Assume X and Y are compact. If the subset F of C(X,Y ) is equicontinuous under

d, then F is totally bounded under the uniform and sup metrics corresponding to

d.

Definition. If (Y, d) is a metric space, a subset F of C(X,Y ) is pointwise bounded

under d if for each a ∈ X , the subset Fa = {f(a) | f ∈ F} of Y is bounded under

d.

Theorem 45.4. The Classical Version of Ascoli’s Theorem.

Let X be a compact space. Let (Rn, d) denote Euclidean space in either the square

metric or the Euclidean metric. Give C(X, Rn) the corresponding uniform topology.

A subspace F of C(X, Rn) has compact closure if and only if F is equicontinuous

and pointwise bounded under d.



45. Compactness in Metric Spaces 4

Corollary 45.5. Let X be compact. Let d denote either the square metric or the

Euclidean metric on Rn. Give C(X, Rn) the corresponding uniform topology. A

subspace F of C(X, Rn) is compact if and only if it is closed, bounded under the

sup metric ρ, and equicontinuous under d.

Note. Arzela’s Theorem, given in the exercises, shifts the focus from a subspace

of C(X, Rn) to a sequence in C(X, Rn).

Exercise 45.3. Arzela’s Theorem. Let X be compact. Let fn ∈ C(X, Rk).

If the collection {fn} is pointwise bounded and equicontinuous, then the sequence

fn has a uniformly convergent subsequence (and so the limit of the subsequence is

continuous)

Note. In section 47, we generalize the Classical Version of Ascoli’s Theorem as

follows.

Theorem 47.1. Ascoli’s Theorem. Let X be a topological space and let (Y, d)

be a metric space. Give C(X,Y ) the topology of compact convergence. let F be a

subset of C(X,Y ).

(a) If F is equicontinuous under d and the set Fa = {f(a) | f ∈ F} has compact

closure for each a ∈ X , then F is contained in a compact subspace of C(X,Y ).

(b) The converse holds if X is locally compact Hausdorff.
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Note. This in turn leads to a generalization of Arzela’s Theorem.

Exercise 47.4. Arzela’s Theorem, General Version. Let X be a Hausdorff

space that is σ-compact. Let fn be a sequence of functions fn : X → R
k. If

the collection {fn} is pointwise bounded and equicontinuous, then the sequence fn

has a subsequence that converges, in the topology of compact convergence, to a

continuous function.

Note. Giulio Ascoli, a 19th century Italian mathematician, introduced the idea

of equicontinuity in 1884. In 1889 another Italian mathematician, Cesare Arzelà,

generalized Ascoli’s Theorem into the ArzelàAscoli Theorem concerning convergent

subsequences of equicontinuous sequences of continuous functions. These comments

are based on the Wikipedia pages for “The Arzelà-Ascoli Theorem” and “Giulio

Ascoli.”

Giulio Ascoli Cesare Arzelà

January 20, 1843–July 12, 1896 March 6, 1847–March 15, 1912



45. Compactness in Metric Spaces 6

Note. In Royden and Fitzpatrick’s Real Analysis, 4th edition (Pearson/Prentice

Hall, 2010), the text used in our Real Analysis sequence (MATH 5210-5220), the

following version of Ascoli’s and Arzelà’s work is given (in Section 10.1):

The Arzelà-Ascoli Theorem. Let X be a compact metric space and {fn} is

uniformly bounded, equicontinuous sequence of real-valued functions on X . Then

{fn} has a subsequence that converges uniformly on X to a continuous function f

on X .

Note. In Conway’s Functions of One Complex Variable I, 2nd edition (Springer-

Verlag, 1978), the text use in our Complex Analysis sequence (MATH 5510-5520),

continuous functions mapping an open set in C to a metric space (Ω, d) is ad-

dressed. S subset F ⊂ C(G,Ω) is defined to be normal if each sequence in F has a

subsequence which converges to a function f in C(G,Ω). We then have (in Section

VII.1):

The Arzelà-Ascoli Theorem. A set F ⊂ C(G,Ω) is normal if and only if the

following two conditions are satisfied:

(a) For each z ∈ G, we have that {f(z) | f ∈ F} has compact closure in ω;

(b) F is equicontinuous at each point of G.
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Note. In Promislow’s A First Course in Functional Analysis (John Wiley & Sons,

2008), the text we use in our Fundamentals of Functional Analysis (MATH 5740)

class, a set if defined to be relatively compact if its closure is compact. We then

have (in Section 9.2):

The Arzelà-Ascoli Theorem. If S is a compact metric space, a subset A of C(S)

(the set of continuous real valued or complex valued functionals on S) is relatively

compact if and only if it is bounded and equicontinuous.
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