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Munkres Chapter 9.

The Fundamental Group

Note. These supplemental notes are based on James R. Munkres’ Topology, 2nd

edition, Prentice Hall (2000).

Note. We are interested in when two topological spaces are homeomorphic. There

is no general method to determine when there is such a homeomorphism. However,

if we can find a property which homeomorphic spaces share, and show that this

property is not shared be two spaces, then we know the spaces are not homeomor-

phic. For example, [0, 1] and (0, 1) (with the usual subspace topology inherited

from R) are no homeomorphic because [0, 1] is compact and (0, 1) is not. In this

chapter we associate a group (called the fundamental group) with a topological

space. We then can show that certain spaces are not homeomorphic because they

have different fundamental groups.

Section 51. Homotopy of Paths

Note. When we define the fundamental group of a topological space (in Section

52) the elements of the group will be closed paths (technically, equivalence classes

of closed paths). In this section, we define path and what it means for two paths

to be equivalent in a topological space.
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Note. From now on in these supplemental notes, we drop the specific topology

when refering to a topological space. That is, we refer to “space X” instead of

“topological space (X,T ).”

Definition. If f and f ′ are continuous maps of the space X into the space Y , we

say that f is homotopic to f ′ if there is a continuous map F : X ×I → Y such that

F (x, 0) = f(x) and F (x, 1) = f ′(x)

for all x ∈ X , where I = [0, 1]. (Do not confuse f ′ with the derivative of f—it is

simply some continuous function.) The map F is a homotopy between f and f ′. If

f is homotopic to f ′, we will write f ' f ′. If f ' f ′ and f ′ is a contant map, then

f is said to be nulhomotopic.

Note. We think of homotopy F (x, t) as continuously deforming f to f ′, starting

at f when t = 0 and finishing at f ′ when t = 1.

Definition. If f : [0, 1] → X is continuous and f(0) = x0, f(1) = x1, then f is a

path from x0 to x1.
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Definition. Two paths f and f ′ mapping the interval I = [0, 1] into space X are

path homotopic if they have the same initial point x0 = f(0) = f ′(0) and the same

final point x1 = f(1) = f ′(1), and if there is a continuous map F : I × I → X such

that

F (s, 0) = f(s) and F (s, 1) = f ′(s)

F (0, t) = x0 and F (1, t) = x1

for each s ∈ I and each t ∈ I . F is then called a path homotopy between f and f ′.

If f is path homotopic to f ′ then we denote this as f 'p f ′.

Note. As with homotopy of continuous maps, path homotopy is a continuous

deformation of path f to path f ′:
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Note. The idea of path homotopy plays a big role in complex analysis. If two paths

in the complex plane are path homotopic (and of bounded variation—such paths

are called rectifiable), then the complex integral of an analytic function over one

path equals the complex integral of the analytic function over the other path. This

is called “Cauchy’s Theorem.” For more details, see the notes for Complex Analysis

1 and 2 (MATH 5510/5520): http://faculty.etsu.edu/gardnerr/5510/notes/

IV-6.pdf.

Lemma 51.1. The relations ' and 'p are equivalence relations.

Note. Since 'p is an equivalence relation, then the equivalence classes of 'p

partition the set of paths. We denote the equivalence class containing path f as

[f ].

Example 51.1. Let f and g be any two maps of a space X into R
2. Then

F (x, t) = (1 − t)f(x) + tg(x)

is a homotopy between f and g. It is called a straight line homotopy since each

point on the graph of f(x) is mapped along a straight line as t varies from 0 to

1 to a corresponding point on the graph of g(x). If A is a convex subspace of R
n

(that is, for any two points in set A the line segment joining the points is also in

set A) then any two paths from x0 to x1 are path homotopic under the straight

line homotopy.
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Example 51.2. Let X = R
2 \ {(0, 0)} be the punctured plane. Consider the paths

in X from (1, 0) to (−1, 0):

f(s) = (cos(πs), sin(πs)),

g(s) = (cos(πs), 2 sin(πs)),

h(s) = (cos(πs),− sin(πs)).

Then f and g are path homotopic in X—in fact the straight line homotopy holds

between f and g. However, the straight line homotopy does not hold between f

and h (since this would require us to map the point (0, 1) on f to the point (0,−1)

on h by passing through (0, 0)). This alone does not show that f and h are not

path homotopic, but they are not! We’ll return to this example later.

Note. In defining the fundamental group of a space, we need a binary operation

on the equivalence classes of paths. In that direction, we have the following.

Definition. If f is a path in X from x0 to x1 and g is a path in X from x1 to x2,

we define the product f ∗ g of f and g to be the path h from x0 to x2 given by

h(s) =







f(2s) for s ∈ [0, 1/2]

g(2s − 1) for s ∈ (1/2, 1].

Lemma 51.A. The operation ∗ on equivalence classes of paths defined as [f ]∗[g] =

[f ∗ g] is well-defined. That is, if f ∈ [f ], g ∈ [g], and f ∗ g ∈ [f ∗ g], then for any

f ′ ∈ [f ] and g′ ∈ [g], we have f ′ ∗ g′ ∈ [f ∗ g].
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Proof. Let f, f ′ ∈ [f ] and g, g′ ∈ [g]. Say F is a path homotopy between f and f ′

and G is a path homotopy between g and g′. Define

H(s) =







F (2s, t) for s ∈ [0, 1/2]

G(2s − 1, t) for s ∈ (1/2, 1].

Then H is a path homotopy between f ∗ g and f ′ ∗ g′.

Note. The product of two paths is only defined, say f ∗ g, when f(1) = x1 = g(0).

So we cannot make a group our of all equivalence classes of paths since the binary

operation between equivalence classes is sometimes not defined. However, when

the binary operation is defined then we get the usual type of group behavior (asso-

ciativity, identities, and inverses). An algebraic structure satisfying the properties

given in the next result is called a groupoid.

Theorem 51.2. The operation ∗ on the equivalence classes of paths in space X

satisfies the following properties:

(1) Associativity: If [f ] ∗ ([g] ∗ [h]) is defined, then so is ([f ] ∗ [g]) ∗ [h] and they

are equal.

(2) Right and left Identities: Given x ∈ X , let ex denote the constant path ex :

I → X carrying all of I to the point x. If f is a path in X from x0 to x1 then

[f ] ∗ [ex1
] = [f ] and [ex0

] ∗ [f ] = [f ].

(3) Inverses: Given the path f in X from x0 to x1 let f be the path defined by

f(s) = f(1 − s). Then f is called the reverse of f , [f ] ∗ [f ] = [ex0
] and

[f ] ∗ [f ] = [ex1
].
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Note. We can inductively extend the proof for associativity to a product of more

than three paths to get the following.

Theorem 51.3. Let f be a path in X , and let a0, a1, . . . , an be numbers such that

0 = a0 < a1 < · · · < an = 1. Let fi : I → X be the path that equals the positive

linear map of I onto [ai−1, ai] followed by f . Then

[f ] = [f1] ∗ [f2] ∗ · · · ∗ [fn].
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