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Section 53. Covering Spaces

Note. The covering space introduced in this section will be useful in computing

some fundamental groups that are nontrivial.

Definition. Let p : E → B be a continuous onto map. The open set U of B

is evenly covered by p if the inverse image p−1(U) can be written as the union of

disjoint open sets Vα ⊆ E such that for each α, the restriction of p to Vα is a

homeomorphism of Vα onto U . The collection {Vα} is a partition of p−1(U) into

slices.

Note. Munkres describes p−1(U) as a “stack of pancakes” each having the same

size and shape as U :

We will see below that an example of an even covering of the unit circle results by

wrapping the real line around the circle, in which case an open set on the circle has

an inverse image consisting of a bunch of open intervals in R (these open intervals

are the “pancakes”).
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Definition. Let p : E → B be continuous and onto. If every point b ∈ B has a

neighborhood U that is evenly covered by p, then p is a covering map and E is said

to be a covering space of B.

Lemma 53.A. Let p : E → B be a covering map. Then p is an open map (that

is, p maps open sets to open sets).

Example 53.1. Let X be a space and define E = X×{1, 2, . . . , n} consisting of n

disjoint copies of X . The map p : E → X given by p(x, i) = x for all i is a covering

map and E is a covering space of X .

Theorem 53.1. The map p : R → S1 (the “1-sphere”) given by the equation

p(x) = (cos(2πx), sin(2πx)) is a covering map.

Note. If p : E → B is a covering map, then p is a local homeomorphism of E

with B. That is, for each e ∈ E there is a neighborhood of e that is mapped

homeomorphically by p onto an open subset of B.
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Example 53.2. The map p : R+ → S1 given by the equation

p(x) = (cos(2πx), sin(2πx))

is onto and is a local homeomorphism. But p is not a covering map because of the

behavior of the point b0 = (1, 0). A small ε-neighborhood of b0 has an inverse image

of small neighborhoods Vn for each n ∈ N which are mapped homeomorphically

onto the neighborhood of b0, but V0 = (0, δ) is not; p(V0) does not even contain b0.

So p is a local homeomorphism, but not a covering map (because of its failure to

evenly cover an ε-neighborhood of b0). This example also shows that the restriction

of a covering map (the map of Theorem 53.1 on R restricted to R
+ here) may not

be a covering map. The following result gives a condition under which a restriction

of a covering map is a covering map.

Theorem 53.2. Let p : E → B be a covering map. If B0 is a subspace of B, and

if E0 = p−1(B0), then the map p0 : E0 → B0 obtained by restricting p to E0 is a

covering map of B0.

Theorem 53.3. If p : E → B and p′ : E ′ → B′ are covering maps, then p × p′ :

E × E ′ → B × B′ is a covering map.
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Example 53.4. The space T = S1 × S1 is the torus. The product map p × p :

R × R → S1 × S1 is a covering map of T by R2 by Theorem 53.5 where p is the

covering map of S1 by R as given in Theorem 53.1. We typically think of S1 as a

subset of R
2, so this representation of the torus “lives” in R

4.

An alternate representation of the torus is as the image of R
2 under the cover-

ing map f(x, y) = ((R + r cos(2πx)) cos(2πy), (R + r cos x) sin(2πy), r sinx), where

R > r. This gives the torus embedded in R
3 as a circle of radius r rotated around

a circle of radius R.

From http://en.wikipedia.org/wiki/Torus, accessed 12/8/2014.

Also see Munkres Figure 53.5. The representation of the torus (which Munkres calls

“the familiar doughnut-shaped surface D) is a subspace of R3. In fact, S1 × S1 is

homeomorphic to D. We will see in Section 60 that the fundamental group of the

torus is isomorphic to Z × Z.
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Example 53.6. Consider the covering map p ∗ i : R × R+ → S1 × R+ where i is

the identity map of R+ and p is the map of R onto S1 of Theorem 53.1. Define

f : S1×R
+ → R\{(0, 0)} as f(~x, t) = t~x (where we represent an element of S1 as a

2-dimensional real vector). Then f is a homeomorphism—it takes the infinite half-

cylinder S1 ×R
+ and “peels” it open to produce the punctured plane R

2 \ {(0, 0)}.

Now if we compose p ∗ i with f we get a homeomorphism between the open upper

half plane R×R
+ with the punctured plane R

2 \ {(0, 0)}. In fact, this is a covering

map. For open U ⊆ R
2 \{(0, 0)} with U = {(x, y) ∈ R

2 | when x = 0 then y > 0},

the slices are of the form (−(1/4)n, (3/4)n) × R
+:

This covering map appears in Complex Analysis (MATH 5510/5520) in relation to

the Riemann surface associated with the complex logarithm function.
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