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Section 56. The Fundamental Theorem of Algebra

Note. In our graduate program, you have several opportunities to see a proof of

the Fundamental Theorem of Algebra:

(1) It is easily proven in Complex Variables [MATH 4337/5337] and Complex

Analysis [MATH 5510/5520] using Liouville’s Theorem (in fact, the Fraleigh

text which we use in Introduction to Modern Algebra [MATH 4127/5127,

4137/5137] fives this proof). It can also be proved using Rouche’s Theorem.

(2) It is proven almost entirely algebraically (two results from analysis must be

“borrowed”) in Modern Algebra 2 [MATH 5420].

(3) Another opportunity is available now to us here!

The proof given here is based on the fact that the fundamental group of S1 is Z.

So the this proof is based on algebraic topology.

Theorem 56.1. The Fundamental Theorem of Algebra.

A polynomial equation

xn + an−1x
n−1 + · · · + a2x

2 + a1x + a0 = 0

of degree n ≥ 1 with real or complex coefficients has at least one (real or complex)

root.

Proof. We break the proof into four steps.

Step 1. Consider the map f : S1 → S1 given by f(z) = zn where we interpret S1

as the unit circle in C, S1 = {z ∈ C | |z| = 1}.
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Let p0 : I → S1 be the “standard loop” in S1:

p0(s) = e2πis = cos(2πs) + i sin(2πs) = (cos(2πs), sin(2πs)) where s ∈ [0, 1]

and we interpret elements of C as elements of R
2; of course these are homeomorphic

topological spaces. The image of the standard loop under f is the loop

f(p0(s)) = (e2πis)n = cos(2πns)+i sin(2πns) = (cos(2πns), sin(2πns)) for s ∈ [0, 1].

This loop lifts to the path `(s) = ns, s ∈ [0, 1], in the covering space R, because

p0 ◦ `(s) = p0(ns) = e2πi(ns) = (cos(2πns), sin(2πns)) where s ∈ [0, 1].

With ϕ as the lifting correspondence of Theorem 54.4 and Theorem 54.5, we have

ϕ : π1(S
1, b0) → p−1(b0) = Z where b0 = (1, 0).

For path g, ϕ([g]) is the endpoint of the lifting of g (g̃(1) in the notation of Sec-

tion 54), so the loop f ◦ p0 corresponds through ϕ to the integer n. The loop p0

corresponds to the integer 1.

Now consider the homomorphism f∗ induced by the continuous function f . Since

f : S1 → S1 then f∗ : π1(S
1, b0) → π1(S

1, b0). Now, the equivalence class [p0] is

a generator of the domain group of f∗, π1(S
1, b0). So the behavior of f∗ on [p0]

determines the behavior of f∗ on π1(S
1, b0). Now f∗([p0]) = [f ◦ p0] by definition

(see page 333 of Munkres or Section 52 page 4 of these class notes). As commented

above, f ◦ p0 corresponds through the lifting correspondence ϕ to n ∈ Z. Munkres

concludes that f∗ is “multiplication by n.” More precisely, if for [g], [h] ∈ π1(S
1, b0)

we have f∗([g]) = [h], then ϕ([h]) = nϕ([g]), or ϕ(f∗([g])) = nϕ([g]).
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Suppose [g1] 6= [g2]. Since ϕ is one to one as shown in the proof of Theorem

54.5, then ϕ([g1]) 6= ϕ([g2]), and so we have

ϕ(f∗([g1])) = nϕ([g1]) 6= nϕ([g2]) = ϕ(f∗([g2]))

(notice that n 6= 0 since we hypothesized n ≥ 1). Since ϕ is a function and

ϕ(f∗([g1])) 6= ϕ(f∗[g2])), then f∗([g1]) 6= f∗([g2]). We have shown that [g1] 6= [g2]

implies f∗([g1]) 6= f∗([g2]). Therefore f∗ : π1(S
1, b0) → π1(S

1, b0) is one to one

(injective).

Step 2. Let g : S1 → R2 \ {(0, 0)} be the map g(z) = zn. Then map g equals the

map f of Step 1 followed by the inclusion map j : S1 → R
2 \{(0, 0)}. Now f∗ is one

to one by Step 1. Let j∗ be the homomorphism induced by j. Since S1 is a retract

of R
2\{(0, 0)}, then j∗ is one to one by Lemma 55.1. Therefore g∗ = (j◦f)∗ = j∗◦f∗

by Theorem 52.4, and so g∗ is one to one and g∗ : π1(S
1, b0) → π1(R

2 \ {(0, 0)}, a0).

Since π1(S
1, b0) ∼= Z by Theorem 54.5, then g∗ cannot be the trivial homomorphism.

So, by Theorem 55.3 (the contrapositive of “(1) implies (3)”) g is not nulhomotopic.

Step 3. We now prove (by contradiction) a special case of the Fundamental The-

orem. For the given polynomial equation, suppose

|an−1|+ |an−2|+ · · ·+ |a1|+ |a0| < 1. (∗)

ASSUME the original polynomial equation has no root in the closed unit disk B2

in C. Then we can define a map k : B2 → R
2 \ {(0, 0)} by the equation

k(z) = zn + an−1z
n−1 + · · · + a1z + a0.

Of course, k is continuous on B2. Let h be the restriction of k to S1. Then h

extends to a continuous map on B2 (namely, map k), so by Lemma 55.3, h is

nulhomotopic.
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On the other hand, define F : S1 × I → R2 \ {(0, 0)} by the equation

F (z, t) = zn + t(an−1z
n−1 + an−2z

n−2 + · · · + a1z + a0).

Then F (z, 0) = zn = g(z) for z ∈ S1, and F (z, 1) = zn +an−1z
n−1 + · · ·+a1z+a0 =

h(z) for z ∈ S1. Now g(z) is never (0, 0) since g(z) ∈ S1 for all z ∈ S1. Also h(z)

is never (0, 0) since its extension k(z) to B2 is never (0, 0) by the assumption. Now

for 0 < t < 1 we have

|F (z, t)| = |zn + t(an−1z
n−1 + · · · + a1z + a0)|

≥ |zn| − |t(an−1z
n−1 + · · · + a1z + a0)| by the Triangle Inequality in C

≥ |zn| − t(|an−1z
n−1| + · · · + |a1z| + |a0|) by the Triangle Inequality

= 1 − t(|an−1| + · · · + |a1| + |a0|) since z ∈ S1 and so |z| = 1

> 0 by (∗).

So F (z, t) is a homotopy from g to h and g 'p h. Since h is nulhomotopic (i.e.,

homotopic to a constant path) then g is nulhomotopic. But in Step 2, we saw

that g is nulhomotopic, so we have a contradiction. This contradiction shows the

assumption that the polynomial equation has no zero in B2 is false. Hence the

polynomial equation under the restriction (∗) has a zero in B2.

Step 4. We now prove the Fundamental Theorem for a general polynomial equa-

tion

xn + an−1x
n−1 + · · · + a2x

2 + a1x + a0 = 0.

Choose real number c > 0 sufficiently large so that
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(this can be done since the limit as c → ∞ of each of the summands is 0). Let

x = cy. The polynomial equation then becomes

(cy)n + an−1(cy)n−1 + · · · + a2(cy)2 + a1(cy) + a0 = 0

or (dividing both sides by cn)

yn +
an−1

c
yn−1 + · · · +

a2

cn−2
y2 +

a1

cn−1
y +

a0

cn
= 0.

Now the polynomial on the left hand side satisfies condition (∗) by the choice of c.

So by Step 3, this equation has a root, say y = y0. Then x0 = cy0 is a root of the

original general polynomial equation.

Note. As stated here, the Fundamental Theorem of Algebra implies that every

complex polynomial (that is, every element of the polynomial ring C[x]) has a

complex zero. This property is sometimes called “algebraically closed.” So the

Fundamental Theorem of Algebra can be restated as “The complex number field

C is algebraically closed.”

Note. By the Factor Theorem (see, for example, John B. Fraleigh’s A First Course

in Abstract Algebra, 7th edition, Corollary 23.3), x = a is a zero of polynomial

p(x) if and only if (x − a) is a factor of p(x). It follows by induction that any

polynomial of degree n with complex coefficients can be factored into a product of

n linear complex terms (counting multiplicity). This is also sometimes taken as a

statement of the Fundamental Theorem of Algebra.
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