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Section 60. Fundamental Groups of Some Surfaces

Note. In Section 36 of Chapter 4 we defined an m-manifold as a Hausdorff space

X with a countable basis such that each point x ∈ X has a neighborhood that

is homeomorphic with an open subset of R
m. A 1-manifold is a curve and a 2-

manifold is a surface. In this section, we consider the fundamental groups of the

projective plane, the torus, and the double torus. This will allow us to show that

these surfaces and S2 are all topologically distinct.

Note. The 2-sphere S2, torus, and projective plane play very fundamental roles in

the classification of all compact surfaces (up to homeomorphism). This classifica-

tion is accomplished in Chapter 12.

Note. Recall that if 〈G, ∗〉 and 〈G′, ∗′〉 are groups, then the Cartesian product

G × G′ is a group under the binary operation

(a, a′) · (b, b′) = (a ∗ b) × (a′ ∗′ b′).

If h : C → A and k : C → B are group homomorphisms then Φ : C → A × B

defined as Φ(c) = h(c) × k(c) is a group homomorphism. The following result will

allow us to deal with the torus S1 × S1.

Theorem 60.1. Let X and Y be topological spaces and x0 ∈ X , y0 ∈ Y . The

group π1(X × Y, x0 × y0) is isomorphic to π1(X,x0) × π1(Y, y0).
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Note. Since the fundamental group of S1 is Z by Theorem 59.3, then Theorem

60.1 gives the following.

Corollary 60.2. The fundamental group of the torus T = S1 × S1 is isomorphic

to the group Z × Z.

Note. We have now established the profound result that S2 and T are not home-

omorphic, since they have different fundamental groups.

Definition. The projective plane P 2 is the quotient space obtained from S2 by

identifying each point ~x ∈ S2 with its antipodal point −~x. More precisely, P 2

consists of equivalence classes of points of S2 under the equivalence relation ~x ∼ ~y

if and only if ~y = ±~x.

Note. Munkres claims that the projective plane P 2 cannot be embedded in R
3

(and hence is hard to visualize). In fact, the projective plane is a “nonorientable”

surface. The following result shows that it is a surface.

Note. We need a model of P 2 to help us visualize its behavior. One way to do this

is to take the closed upper half of S2 and to say that the points along the boundary

(the “equator”) correspond when they are antipodal on S2. An alternate way is

to partition S2 into two pieces where no two anitpodal points lie in the same set.
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With S2 represented as

S2 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1},

define

S2

N = {~x ∈ S2 | z > 0} ∪ {(x, y, 0) | y > 0} ∪ {(1, 0, 0)}

and S2

S
= S2 \ S2

N
:

Now on S2

N
, we imagine antipodal boundary points are coincident.

Notice that if we take a loop based at N = (0, 0, 1) which contains all points on

S2

N
with x-coordinate 0, then this loop cannot be homotopic to a constant. This is

because any continuous mapping of the loop must still contain a boundary point

of S2

N
and so contains points near antipodal points on the boundary. But a funny

thing happens with two such loops.

Imagine S2

N
squashed down to a circle on R

2:

Take two copies of a path based at N which runs left to right in the squashed version
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of S2

N
. Now (homotopically) rotate one copy about N through 180◦. This yields the

reverse of the unrotated path and therefore the equivalence class containing these

paths is its own inverse in π1(P
2, N). Along with the equivalence class of constant

loops based at N , we see that π1(P
2, N) has a subgroup isomorphic to Z2. In fact,

we will see in Corollary 60.4 that the fundamental group itself is isomorphic to Z2.

Theorem 60.3. The projective plane P 2 is a surface, and the quotient map

p : S2 → P 2 defined as p(~x) = [~x] = {−~x, ~x} is a covering map.

Corollary 60.4. π1(P
2, y) is a group of order 2.

Note. Projective n-space P n can be similarly defined by “identifying” ~x and −~x

for each ~x on the n-sphere Sn. The proofs given for Theorem 60.3 and Corollary

60.4 carry through to show that π1(P
n, y) ∼= Z2 for n ≥ 2.

Note. We now study the double torus. The following lemma is a preliminary

result in showing that the fundamental group of a double torus is not abelian.

In the proofs of the next two results, we rely somewhat on pictures instead of

computations.

Lemma 60.5. The fundamental group of the figure eight is not abelian.
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Note. In Example 3 on page 372 of Section 58, the “theta space” is introduced and

it is claimed (based on deformation retracts) that the fundamental group of the

theta space is isomorphic to the fundamental group of the figure eight. In Example

1 on page 432 of Section 70, it is shown that the fundamental group of the theta

space (and therefore, up to isomorphism, the figure eight) is the free product of

two infinite cyclic groups; that is, a free group on two generators.

Theorem 60.6. The fundamental group of the double torus is not abelian.

Corollary 60.7. The 2-sphere, torus, projective plane, and double torus are topo-

logically distinct.

Proof. The fundamental group of the 2-sphere is the trivial group since S2 is simply

connected by Theorem 59.3. The fundamental group of the torus is congruent

to Z × Z by Corollary 60.2. The fundamental group of the projective plane is

isomorphic to Z2 by Corollary 60.4. Each of these groups is abelian and distinct.

Since the fundamental group of the double torus is not abelian by Theorem 60.6,

then it is a group distinct from the others. By Corollary 52.5, homeomorphic

spaces have isomorphic fundamental groups, so these four surfaces are topologically

distinct.
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