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Proposition I.1.4

Proposition I.1.4

Proposition I.1.4. Let G be a semigroup. Then G is a group if and only
if for all a, b ∈ G the equations ax = b and ya = b have solutions in G .

Proof. First, if G is a group then a and b have inverses, so ax = b implies
a−1(ax) = a−1b and by associativity (a−1a)x = a−1b or ex = a−1b or
x = a−1b. Similarly ya = b implies that y = ba−1. So ax = b and ya = b
have solutions in G .

Second, suppose ax = b and ya = b have solutions. By Proposition I.1.3,
we need only show that G has a left identity and that each a ∈ G has a
left inverse. Now for all a ∈ G , ya = a has a solution, say y = ea. For any
b ∈ G , notice that the equation ax = b has a solution, say ac = b. We
then have eab = ea(ac) = (eaa)c = ac = b and so ea is a left identity for
all elements of G , so we denote it as ea = e. Finally, the equation ya = e
has solution for all a ∈ G , so each a ∈ G has a left inverse. Therefore, by
Proposition I.1.3, G is a group.
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Proposition I.1.5

Proposition I.1.5

Theorem I.1.5. Let R(∼) be an equivalence relation on a monoid G such
that a1 ∼ a2 and b1 ∼ b2 imply a1b1 ∼ a2b2 for all ai , bi ∈ G . Such an
equivalence relation on G is called a congruence relation on G . Then the
set G/R of all equivalence classes of G under R is a monoid itself under
the binary operation defined by (a)(b) = ab, where x denotes the
equivalence class containing x . If G is a group, then so is G/R. If G is
abelian, then so is G/R.

Proof. Recall that the equivalence classes of an equivalence relation on a
set partition the set. So if a1 = a2 and b1 = b2 then a1 ∼ a2 and b1 ∼ b2.
By hypothesis, a1b1 ∼ a2b2 and so a1b1 = a2b2. So the binary operation
on G/R is well defined (i.e., independent of the choice of the
representative of the equivalence class in the definition of the binary
operation).
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Proposition I.1.5

Proposition I.1.5 (continued 1)

Proof (continued). Since

a(bc) = a(bc) by the definition of bc

= a(bc) by the definition of a(bc)

= (ab)c since associativity holds in G

= (ab)c by the definition of (ab)c

= (ab)c by the definition of ab

then the binary operation is associative and G/R is a semigroup. The
identity of G/R is e since

(a)(e) = (ae) by the definition of (a)(e)

= a since e is a right identity in G

= (ea) since e is a left identity in G

= (e)(a) by the definition of (e)(a)

for all a ∈ G/R and so G/R is a monoid.
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Proposition I.1.5

Proposition I.1.5 (continued 2)

Proof (continued). If G is a group then any a ∈ G has an inverse
a−1 ∈ G and

(a−1)(a) = (a−1a) by the definition of (a−1)(a)

= e since a−1a = e in G

= (aa−1) since aa−1 = e in G

= (a)(a−1) by the definition of (a)(a−1)

and so G/R is a group. If G is abelian then ab = ba for all a, b ∈ G and so

(a)(b) = (ab) by the definition of (a)(b)

= (ba) since ab = ba in G

= (b)(a) by the definition of (b)(a)

for all a, b ∈ G/R and so G/R is abelian.
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Theorem I.1.6

Theorem I.1.6

Theorem I.1.6. Generalized Associative Law.
If G is a semigroup and a1, a2, . . . , an ∈ G then any two meaningful
products of a1, a2, . . . , an ∈ G in this order are equal.

Proof. We use induction to show that for all n ∈ N, any meaningful
product of a1, a2, . . . , an is equal to the standard n product

∏n
i=1 ai . This

is easily true for n = 1 and n = 2. If n > 2, then by definition
(a1a2 · · · an) = (a1a2 · · · am)(am+1am+2 · · · an) for some m < n.

Suppose
we have established that (a1a2 · · · ak) =

∏k
i=1 ai for k ≤ n. Consider

k = n + 1:

(a1a2 · · · an+1) = (a1a2 · · · am)(am+1am+2 · · · an+1) by the

definition of meaningful product
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Theorem I.1.6

Theorem I.1.6 (continued 1)

Proof (continued).

=

(
m∏

i=1

ai

)(
n+1−m∏

i=1

am+i

)
by the induction hypothesis

for k = m and k = n + 1−m

=

(
m∏

i=1

ai

)((
n−m∏
i=1

am+i

)
(an+1)

)
by the definition

of the standard n product

=

((
m∏

i=1

ai

)(
n−m∏
i=1

am−i

))
an+1 by associativity

=

(
n∏

i=1

ai

)
an+1 by the induction hypothesis for k = n
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Theorem I.1.6

Theorem I.1.6 (continued 2)

Theorem I.1.6. Generalized Associative Law.
If G is a semigroup and a1, a2, . . . , an ∈ G then any two meaningful
products of a1, a2, . . . , an ∈ G then any two meaningful products of
a1, a2, . . . , an in this order are equal.

Proof (continued).

=
n+1∏
i=1

ai by the definition of standard n product.

So the result holds for k = n + 1 and hence holds for all k ∈ N. So any
meaningful product of a1, a2, . . . , an is equal to the standard n product and
hence all meaningful products of a1, a2, . . . , an are equal to each other.
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