## Modern Algebra

Chapter I. Groups

I.1. Semigroups, Monoids, and Groups-Proofs of Theorems







**Proposition I.1.4.** Let G be a semigroup. Then G is a group if and only if for all  $a, b \in G$  the equations ax = b and ya = b have solutions in G.

**Proof.** First, if *G* is a group then *a* and *b* have inverses, so ax = b implies  $a^{-1}(ax) = a^{-1}b$  and by associativity  $(a^{-1}a)x = a^{-1}b$  or  $ex = a^{-1}b$  or  $x = a^{-1}b$ . Similarly ya = b implies that  $y = ba^{-1}$ . So ax = b and ya = b have solutions in *G*.

**Proposition I.1.4.** Let G be a semigroup. Then G is a group if and only if for all  $a, b \in G$  the equations ax = b and ya = b have solutions in G.

**Proof.** First, if G is a group then a and b have inverses, so ax = b implies  $a^{-1}(ax) = a^{-1}b$  and by associativity  $(a^{-1}a)x = a^{-1}b$  or  $ex = a^{-1}b$  or  $x = a^{-1}b$ . Similarly ya = b implies that  $y = ba^{-1}$ . So ax = b and ya = b have solutions in G.

Second, suppose ax = b and ya = b have solutions. By Proposition I.1.3, we need only show that G has a left identity and that each  $a \in G$  has a left inverse. Now for all  $a \in G$ , ya = a has a solution, say  $y = e_a$ . For any  $b \in G$ , notice that the equation ax = b has a solution, say ac = b. We then have  $e_ab = e_a(ac) = (e_aa)c = ac = b$  and so  $e_a$  is a left identity for all elements of G, so we denote it as  $e_a = e$ .

**Proposition I.1.4.** Let G be a semigroup. Then G is a group if and only if for all  $a, b \in G$  the equations ax = b and ya = b have solutions in G.

**Proof.** First, if G is a group then a and b have inverses, so ax = b implies  $a^{-1}(ax) = a^{-1}b$  and by associativity  $(a^{-1}a)x = a^{-1}b$  or  $ex = a^{-1}b$  or  $x = a^{-1}b$ . Similarly ya = b implies that  $y = ba^{-1}$ . So ax = b and ya = b have solutions in G.

Second, suppose ax = b and ya = b have solutions. By Proposition I.1.3, we need only show that G has a left identity and that each  $a \in G$  has a left inverse. Now for all  $a \in G$ , ya = a has a solution, say  $y = e_a$ . For any  $b \in G$ , notice that the equation ax = b has a solution, say ac = b. We then have  $e_ab = e_a(ac) = (e_aa)c = ac = b$  and so  $e_a$  is a left identity for all elements of G, so we denote it as  $e_a = e$ . Finally, the equation ya = e has solution for all  $a \in G$ , so each  $a \in G$  has a left inverse. Therefore, by Proposition I.1.3, G is a group.

**Proposition I.1.4.** Let G be a semigroup. Then G is a group if and only if for all  $a, b \in G$  the equations ax = b and ya = b have solutions in G.

**Proof.** First, if G is a group then a and b have inverses, so ax = b implies  $a^{-1}(ax) = a^{-1}b$  and by associativity  $(a^{-1}a)x = a^{-1}b$  or  $ex = a^{-1}b$  or  $x = a^{-1}b$ . Similarly ya = b implies that  $y = ba^{-1}$ . So ax = b and ya = b have solutions in G.

Second, suppose ax = b and ya = b have solutions. By Proposition I.1.3, we need only show that G has a left identity and that each  $a \in G$  has a left inverse. Now for all  $a \in G$ , ya = a has a solution, say  $y = e_a$ . For any  $b \in G$ , notice that the equation ax = b has a solution, say ac = b. We then have  $e_ab = e_a(ac) = (e_aa)c = ac = b$  and so  $e_a$  is a left identity for all elements of G, so we denote it as  $e_a = e$ . Finally, the equation ya = e has solution for all  $a \in G$ , so each  $a \in G$  has a left inverse. Therefore, by Proposition I.1.3, G is a group.

**Theorem I.1.5.** Let  $R(\sim)$  be an equivalence relation on a monoid G such that  $a_1 \sim a_2$  and  $b_1 \sim b_2$  imply  $a_1b_1 \sim a_2b_2$  for all  $a_i, b_i \in G$ . Such an equivalence relation on G is called a *congruence relation* on G. Then the set G/R of all equivalence classes of G under R is a monoid itself under the binary operation defined by  $(\overline{a})(\overline{b}) = \overline{ab}$ , where  $\overline{x}$  denotes the equivalence class containing x. If G is a group, then so is G/R. If G is abelian, then so is G/R.

**Proof.** Recall that the equivalence classes of an equivalence relation on a set partition the set. So if  $\overline{a}_1 = \overline{a}_2$  and  $\overline{b}_1 = \overline{b}_2$  then  $a_1 \sim a_2$  and  $b_1 \sim b_2$ . By hypothesis,  $a_1b_1 \sim a_2b_2$  and so  $\overline{a_1b_1} = \overline{a_2b_2}$ . So the binary operation on G/R is well defined (i.e., independent of the choice of the representative of the equivalence class in the definition of the binary operation).

**Theorem I.1.5.** Let  $R(\sim)$  be an equivalence relation on a monoid G such that  $a_1 \sim a_2$  and  $b_1 \sim b_2$  imply  $a_1b_1 \sim a_2b_2$  for all  $a_i, b_i \in G$ . Such an equivalence relation on G is called a *congruence relation* on G. Then the set G/R of all equivalence classes of G under R is a monoid itself under the binary operation defined by  $(\overline{a})(\overline{b}) = \overline{ab}$ , where  $\overline{x}$  denotes the equivalence class containing x. If G is a group, then so is G/R. If G is abelian, then so is G/R.

**Proof.** Recall that the equivalence classes of an equivalence relation on a set partition the set. So if  $\overline{a}_1 = \overline{a}_2$  and  $\overline{b}_1 = \overline{b}_2$  then  $a_1 \sim a_2$  and  $b_1 \sim b_2$ . By hypothesis,  $a_1b_1 \sim a_2b_2$  and so  $\overline{a_1b_1} = \overline{a_2b_2}$ . So the binary operation on G/R is well defined (i.e., independent of the choice of the representative of the equivalence class in the definition of the binary operation).

# Proposition I.1.5 (continued 1)

#### Proof (continued). Since

- $\overline{a}(\overline{b}\overline{c}) = \overline{a}(\overline{b}\overline{c})$  by the definition of  $\overline{b}\overline{c}$ 
  - =  $\overline{a(bc)}$  by the definition of  $\overline{a}(\overline{bc})$
  - =  $\overline{(ab)c}$  since associativity holds in G
  - $= (\overline{ab})\overline{c}$  by the definition of  $(\overline{ab})\overline{c}$
  - $= (\overline{a}\overline{b})\overline{c}$  by the definition of  $\overline{a}\overline{b}$

then the binary operation is associative and G/R is a semigroup. The identity of G/R is  $\overline{e}$  since

- $(\overline{a})(\overline{e}) = (\overline{ae})$  by the definition of  $(\overline{a})(\overline{e})$ 
  - =  $\overline{a}$  since *e* is a right identity in *G*
  - = ( $\overline{ea}$ ) since e is a left identity in G
  - =  $(\overline{e})(\overline{a})$  by the definition of  $(\overline{e})(\overline{a})$

for all  $\overline{a} \in G/R$  and so G/R is a monoid.

# Proposition I.1.5 (continued 1)

#### Proof (continued). Since

- $\overline{a}(\overline{b}\overline{c}) = \overline{a}(\overline{b}\overline{c})$  by the definition of  $\overline{b}\overline{c}$ =  $\overline{a(bc)}$  by the definition of  $\overline{a}(\overline{bc})$ 
  - = (ab)c since associativity holds in G
  - $= (\overline{ab})\overline{c}$  by the definition of  $(\overline{ab})\overline{c}$
  - $= (\overline{a}\overline{b})\overline{c}$  by the definition of  $\overline{a}\overline{b}$

then the binary operation is associative and G/R is a semigroup. The identity of G/R is  $\overline{e}$  since

 $(\overline{a})(\overline{e}) = (\overline{ae}) \text{ by the definition of } (\overline{a})(\overline{e})$ =  $\overline{a}$  since e is a right identity in G=  $(\overline{ea})$  since e is a left identity in G=  $(\overline{e})(\overline{a})$  by the definition of  $(\overline{e})(\overline{a})$ 

for all  $\overline{a} \in G/R$  and so G/R is a monoid.

## Proposition I.1.5 (continued 2)

**Proof (continued).** If G is a group then any  $a \in G$  has an inverse  $a^{-1} \in G$  and

$$(\overline{a^{-1}})(\overline{a}) = (\overline{a^{-1}a}) \text{ by the definition of } (\overline{a^{-1}})(\overline{a})$$
$$= \overline{e} \text{ since } a^{-1}a = e \text{ in } G$$
$$= (\overline{aa^{-1}}) \text{ since } aa^{-1} = e \text{ in } G$$
$$= (\overline{a})(\overline{a^{-1}}) \text{ by the definition of } (\overline{a})(\overline{a^{-1}})$$

and so G/R is a group. If G is abelian then ab = ba for all  $a, b \in G$  and so

$$\begin{aligned} (\overline{a})(\overline{b}) &= (\overline{ab}) \text{ by the definition of } (\overline{a})(\overline{b}) \\ &= (\overline{ba}) \text{ since } ab = ba \text{ in } G \\ &= (\overline{b})(\overline{a}) \text{ by the definition of } (\overline{b})(\overline{a}) \end{aligned}$$

for all  $\overline{a}, \overline{b} \in G/R$  and so G/R is abelian.

# Proposition I.1.5 (continued 2)

**Proof (continued).** If G is a group then any  $a \in G$  has an inverse  $a^{-1} \in G$  and

$$(\overline{a^{-1}})(\overline{a}) = (\overline{a^{-1}a}) \text{ by the definition of } (\overline{a^{-1}})(\overline{a})$$
$$= \overline{e} \text{ since } a^{-1}a = e \text{ in } G$$
$$= (\overline{aa^{-1}}) \text{ since } aa^{-1} = e \text{ in } G$$
$$= (\overline{a})(\overline{a^{-1}}) \text{ by the definition of } (\overline{a})(\overline{a^{-1}})$$

and so G/R is a group. If G is abelian then ab = ba for all  $a, b \in G$  and so

$$(\overline{a})(\overline{b}) = (\overline{ab})$$
 by the definition of  $(\overline{a})(\overline{b})$   
=  $(\overline{ba})$  since  $ab = ba$  in  $G$   
=  $(\overline{b})(\overline{a})$  by the definition of  $(\overline{b})(\overline{a})$ 

for all  $\overline{a}, \overline{b} \in G/R$  and so G/R is abelian.

## Theorem I.1.6

#### Theorem I.1.6. Generalized Associative Law.

If G is a semigroup and  $a_1, a_2, \ldots, a_n \in G$  then any two meaningful products of  $a_1, a_2, \ldots, a_n \in G$  in this order are equal.

**Proof.** We use induction to show that for all  $n \in \mathbb{N}$ , any meaningful product of  $a_1, a_2, \ldots, a_n$  is equal to the standard n product  $\prod_{i=1}^n a_i$ . This is easily true for n = 1 and n = 2. If n > 2, then by definition  $(a_1a_2\cdots a_n) = (a_1a_2\cdots a_m)(a_{m+1}a_{m+2}\cdots a_n)$  for some m < n.

## Theorem I.1.6

#### Theorem I.1.6. Generalized Associative Law.

If G is a semigroup and  $a_1, a_2, \ldots, a_n \in G$  then any two meaningful products of  $a_1, a_2, \ldots, a_n \in G$  in this order are equal.

**Proof.** We use induction to show that for all  $n \in \mathbb{N}$ , any meaningful product of  $a_1, a_2, \ldots, a_n$  is equal to the standard n product  $\prod_{i=1}^n a_i$ . This is easily true for n = 1 and n = 2. If n > 2, then by definition  $(a_1a_2\cdots a_n) = (a_1a_2\cdots a_m)(a_{m+1}a_{m+2}\cdots a_n)$  for some m < n. Suppose we have established that  $(a_1a_2\cdots a_k) = \prod_{i=1}^k a_i$  for  $k \le n$ . Consider k = n + 1:

$$(a_1a_2\cdots a_{n+1}) = (a_1a_2\cdots a_m)(a_{m+1}a_{m+2}\cdots a_{n+1})$$
 by the  
definition of meaningful product

## Theorem I.1.6

#### Theorem I.1.6. Generalized Associative Law.

If G is a semigroup and  $a_1, a_2, \ldots, a_n \in G$  then any two meaningful products of  $a_1, a_2, \ldots, a_n \in G$  in this order are equal.

**Proof.** We use induction to show that for all  $n \in \mathbb{N}$ , any meaningful product of  $a_1, a_2, \ldots, a_n$  is equal to the standard n product  $\prod_{i=1}^n a_i$ . This is easily true for n = 1 and n = 2. If n > 2, then by definition  $(a_1a_2 \cdots a_n) = (a_1a_2 \cdots a_m)(a_{m+1}a_{m+2} \cdots a_n)$  for some m < n. Suppose we have established that  $(a_1a_2 \cdots a_k) = \prod_{i=1}^k a_i$  for  $k \le n$ . Consider k = n + 1:

$$(a_1a_2\cdots a_{n+1}) = (a_1a_2\cdots a_m)(a_{m+1}a_{m+2}\cdots a_{n+1})$$
 by the  
definition of meaningful product

# Theorem I.1.6 (continued 1)

#### Proof (continued).

$$= \left(\prod_{i=1}^{m} a_i\right) \left(\prod_{i=1}^{n+1-m} a_{m+i}\right) \text{ by the induction hypothesis}$$
  
for  $k = m$  and  $k = n+1-m$   
$$= \left(\prod_{i=1}^{m} a_i\right) \left(\left(\prod_{i=1}^{n-m} a_{m+i}\right) (a_{n+1})\right) \text{ by the definition}$$
  
of the standard  $n$  product  
$$= \left(\left(\prod_{i=1}^{m} a_i\right) \left(\prod_{i=1}^{n-m} a_{m-i}\right)\right) a_{n+1} \text{ by associativity}$$
  
$$= \left(\prod_{i=1}^{n} a_i\right) a_{n+1} \text{ by the induction hypothesis for } k = n$$

# Theorem I.1.6 (continued 2)

#### Theorem I.1.6. Generalized Associative Law.

If G is a semigroup and  $a_1, a_2, \ldots, a_n \in G$  then any two meaningful products of  $a_1, a_2, \ldots, a_n \in G$  then any two meaningful products of  $a_1, a_2, \ldots, a_n$  in this order are equal.

#### Proof (continued).

$$= \prod_{i=1}^{n+1} a_i$$
 by the definition of standard *n* product.

So the result holds for k = n + 1 and hence holds for all  $k \in \mathbb{N}$ . So any meaningful product of  $a_1, a_2, \ldots, a_n$  is equal to the standard *n* product and hence all meaningful products of  $a_1, a_2, \ldots, a_n$  are equal to each other.  $\Box$