Modern Algebra

Chapter I. Groups

I.2. Homomorphisms and Subgroups—Proofs of Theorems

Theorem I.2.3. Let $f : G \rightarrow H$ be a homomorphism of groups. Then: (i) f is a monomorphism if and only if $Ker(f) = \{e_G\}$; (ii) f is an isomorphism if and only if there is a homomorphism $f^{-1}: H \to G$ such that $ff^{-1} = 1_H$ and $f^{-1}f = 1_G$.

Proof. (i) If f is a monomorphism then f is one to one (by definition) and if $a \in \text{Ker}(f)$ then $f(a) = e_H$. But $f(e_G) = e_H$ by Exercise I.2.1 (since f is a homomorphism), and so $f(a) = e_H = f(e_G)$ and the one to one-ness of f implies that $a = e_G$. That is, $Ker(f) = \{e_G\}$.

Theorem I.2.3. Let $f : G \rightarrow H$ be a homomorphism of groups. Then:

(i) f is a monomorphism if and only if $Ker(f) = \{e_G\}$;

 (ii) f is an isomorphism if and only if there is a homomorphism

 $f^{-1}: H \to G$ such that $ff^{-1} = 1_H$ and $f^{-1}f = 1_G$.

Proof. (i) If f is a monomorphism then f is one to one (by definition) and if $a \in \text{Ker}(f)$ then $f(a) = e_H$. But $f(e_G) = e_H$ by Exercise I.2.1 (since f is a homomorphism), and so $f(a) = e_H = f(e_G)$ and the one to one-ness of f implies that $a = e_G$. That is, $Ker(f) = \{e_G\}$. Next, if $Ker(f) = \{e_G\}$ and $f(a) = f(b)$, then

> $e_H = f(a)f(b)^{-1}$ $=$ $f(a)f(b^{-1})$ by Exercise I.2.1 $= f(ab^{-1})$ since f is a homomorphism

and so $ab^{-1}\in{\sf Ker}(f).$ But then $ab^{-1}=e_G$ and $(ab^{-1})b=e_Gb$ or $a=b.$ That is, f is one to one.

Theorem I.2.3. Let $f : G \rightarrow H$ be a homomorphism of groups. Then:

(i) f is a monomorphism if and only if $Ker(f) = \{e_G\}$;

 (ii) f is an isomorphism if and only if there is a homomorphism

 $f^{-1}: H \to G$ such that $ff^{-1} = 1_H$ and $f^{-1}f = 1_G$.

Proof. (i) If f is a monomorphism then f is one to one (by definition) and if $a \in \text{Ker}(f)$ then $f(a) = e_H$. But $f(e_G) = e_H$ by Exercise I.2.1 (since f is a homomorphism), and so $f(a) = e_H = f(e_G)$ and the one to one-ness of f implies that $a = e_G$. That is, $Ker(f) = \{e_G\}$. Next, if $Ker(f) = \{e_G\}$ and $f(a) = f(b)$, then

$$
e_H = f(a)f(b)^{-1}
$$

= $f(a)f(b^{-1})$ by Exercise 1.2.1
= $f(ab^{-1})$ since f is a homomorphism

and so $ab^{-1}\in{\sf Ker}(f).$ But then $ab^{-1}=e_G$ and $(ab^{-1})b=e_Gb$ or $a=b.$ That is, f is one to one.

Theorem I.2.3 (continued)

Theorem I.2.3. Let $f : G \to H$ be a homomorphism of groups. Then: (ii) f is an isomorphism if and only if there is a homomorphism $f^{-1}: H \to G$ such that $ff^{-1} = 1_H$ and $f^{-1}f = 1_G$.

Proof (continued) (ii) First, suppose that $f : G \rightarrow H$ is an isomorphism. Then $f^{-1}:H\to G$ defined as $f^{-1}(h)=g$ if and only if $f(g)=h$ is an isomorphism of H with G (see Note 1 parts (a) and (b); also Fraleigh's Exercise 3.26). Then, of course, f^{-1} is a homomorphism. Also, $f\!f^{-1} = 1_H$ and $f^{-1}f=1_G$.

Second, suppose that there is a homomorphism $f^{-1}:H\to G$ such that $\mathit{ff}^{-1} = 1_H$ and $\mathit{f}^{-1} \mathit{f} = 1_G.$ Then by Note 1 part (c), f^{-1} and f are one to one; by Note 1 part (d), f^{-1} and f are onto. So f^{-1} is a one to one and onto homomorphism, and so is f . That is, f is an isomorphism.

Theorem I.2.3 (continued)

Theorem I.2.3. Let $f : G \to H$ be a homomorphism of groups. Then: (ii) f is an isomorphism if and only if there is a homomorphism $f^{-1}: H \to G$ such that $ff^{-1} = 1_H$ and $f^{-1}f = 1_G$.

Proof (continued) (ii) First, suppose that $f : G \rightarrow H$ is an isomorphism. Then $f^{-1}:H\to G$ defined as $f^{-1}(h)=g$ if and only if $f(g)=h$ is an isomorphism of H with G (see Note 1 parts (a) and (b); also Fraleigh's Exercise 3.26). Then, of course, f^{-1} is a homomorphism. Also, $f\!f^{-1} = 1_H$ and $f^{-1}f=1_G$.

Second, suppose that there is a homomorphism $f^{-1}: H \to G$ such that $\mathit{ff}^{-1} = 1_H$ and $\mathit{f}^{-1} \mathit{f} = 1_G.$ Then by Note 1 part (c), f^{-1} and f are one to one; by Note 1 part (d), f^{-1} and f are onto. So f^{-1} is a one to one and onto homomorphism, and so is f . That is, f is an isomorphism.

Theorem I.2.5. Let H be a nonempty subset of a group G. Then H is a subgroup of G if and only if $ab^{-1} \in H$ for all $a, b \in H$.

Proof. Suppose that $ab^{-1} \in H$ for all $a, b \in H$. Since $H \neq \emptyset$ then there is $a \in H$ and so $aa^{-1} = e \in H$ (the identity in G is also the identity in H). So for $b\in H$, we have $eb^{-1}=b^{-1}\in H$. So if $a,b\in H$ we have $b^{-1}\in H$ and hence $a(b^{-1})^{-1} = ab \in H$ and H is closed under the binary operation. Associativity in H is "inherited" from G . So H has an associative binary operation (H is a semigroup), H has an identity (H is a monoid) and each element of H has an inverse in H (H is a group). Therefore H is a subgroup of G.

Theorem I.2.5. Let H be a nonempty subset of a group G. Then H is a subgroup of G if and only if $ab^{-1} \in H$ for all $a, b \in H$.

Proof. Suppose that $ab^{-1} \in H$ for all $a, b \in H$. Since $H \neq \emptyset$ then there is $a \in H$ and so $aa^{-1} = e \in H$ (the identity in G is also the identity in H). So for $b\in H$, we have $eb^{-1}=b^{-1}\in H.$ So if $a,b\in H$ we have $b^{-1}\in H$ and hence $a(b^{-1})^{-1} = ab \in H$ and H is closed under the binary operation. Associativity in H is "inherited" from G . So H has an associative binary operation (H is a semigroup), H has an identity (H is a monoid) and each element of H has an inverse in H (H is a group). Therefore H is a subgroup of G.

If H is a subgroup of G , then for all $a,b\in H$ we must have $b^{-1}\in H$ and so $ab^{-1} \in H$.

Theorem I.2.5. Let H be a nonempty subset of a group G. Then H is a subgroup of G if and only if $ab^{-1} \in H$ for all $a, b \in H$.

Proof. Suppose that $ab^{-1} \in H$ for all $a, b \in H$. Since $H \neq \emptyset$ then there is $a \in H$ and so $aa^{-1} = e \in H$ (the identity in G is also the identity in H). So for $b\in H$, we have $eb^{-1}=b^{-1}\in H.$ So if $a,b\in H$ we have $b^{-1}\in H$ and hence $a(b^{-1})^{-1} = ab \in H$ and H is closed under the binary operation. Associativity in H is "inherited" from G . So H has an associative binary operation (H is a semigroup), H has an identity (H is a monoid) and each element of H has an inverse in H (H is a group). Therefore H is a subgroup of G.

If H is a subgroup of G , then for all $a,b\in H$ we must have $b^{-1}\in H$ and so $ab^{-1} \in H$.

Theorem 1.2.8. If G is a group and X is a nonempty subset of G, then the subgroup $\langle X \rangle$ generated by X consists of all finite products $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t}$ (where $a_i \in X$ and $n_i \in \mathbb{Z}$ for $i = 1, 2, \ldots, t$). In particular, for every $a \in G$, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Proof. Let $H = \{a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t} \mid t \in \mathbb{N}, a_i \in X, n_i \in \mathbb{Z}\}$. Let $x \in X$. With $t = 1$, $a_1 = x$, and $n_1 = 1$ we see that $x \in H$, so $X \subseteq H$. Now $H \subseteq G$ and H is "clearly" closed under the binary operation, so H is a semigroup (associativity in H is inherited from G).

Theorem I.2.8. If G is a group and X is a nonempty subset of G, then the subgroup $\langle X \rangle$ generated by X consists of all finite products $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t}$ (where $a_i \in X$ and $n_i \in \mathbb{Z}$ for $i = 1, 2, \ldots, t$). In particular, for every $a \in G$, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Proof. Let $H = \{a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t} \mid t \in \mathbb{N}, a_i \in X, n_i \in \mathbb{Z}\}$. Let $x \in X$. With $t = 1$, $a_1 = x$, and $n_1 = 1$ we see that $x \in H$, so $X \subseteq H$. Now $H \subseteq G$ and H is "clearly" closed under the binary operation, so H is a semigroup (associativity in H is inherited from G). For any $x \in X$, with $t = 1$, $a_1 = x$, and $n_1 = 0$, we have that $x^0 = e \in H$, so H is a monoid. For any $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t} \in H$, we also have $a_t^{-n_t} a_{t-1}^{-n_{t-1}}$ $t^{-n_{t-1}}_{t-1}\cdots a_1^{-n_1}\in H$ and $(a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t})(a_t^{-n_t}a_{t-1}^{-n_{t-1}})$ $\binom{-n_{t-1}}{t-1}\cdots a_1^{-n_1}$) = e. Hence, H is a subgroup of G that contains X. That is, $\langle X \rangle$ < H.

Theorem 1.2.8. If G is a group and X is a nonempty subset of G, then the subgroup $\langle X \rangle$ generated by X consists of all finite products $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t}$ (where $a_i \in X$ and $n_i \in \mathbb{Z}$ for $i = 1, 2, \ldots, t$). In particular, for every $a \in G$, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Proof. Let $H = \{a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t} \mid t \in \mathbb{N}, a_i \in X, n_i \in \mathbb{Z}\}$. Let $x \in X$. With $t = 1$, $a_1 = x$, and $n_1 = 1$ we see that $x \in H$, so $X \subseteq H$. Now $H \subseteq G$ and H is "clearly" closed under the binary operation, so H is a semigroup (associativity in H is inherited from G). For any $x \in X$, with $t = 1$, $a_1 = x$, and $n_1 = 0$, we have that $x^0 = e \in H$, so H is a monoid. For any $a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t}\in H$, we also have $a_t^{-n_t}a_{t-1}^{-n_{t-1}}$ $t_{t-1}^{-n_{t-1}}\cdots a_1^{-n_1}\in H$ and $(a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t})(a_t^{-n_t}a_{t-1}^{-n_{t-1}})$ $\binom{-n_{t-1}}{t-1}\cdots a_1^{-n_1}$) = e. Hence, H is a subgroup of G that contains X. That is, $\langle X \rangle$ < H.

Theorem I.2.8 (continued)

Theorem 1.2.8. If G is a group and X is a nonempty subset of G, then the subgroup $\langle X \rangle$ generated by X consists of all finite products $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t}$ (where $a_i \in X$ and $n_i \in \mathbb{Z}$ for $i = 1, 2, \ldots, t$). In particular, for every $a \in G$, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Proof (continued). Let H_i be a subgroup of G containing X. Then for $a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t}\in H$ we have $a_1,a_2,\ldots,a_t\in X\subseteq H_i$. Since H_i is a group then (see Definition 1.1.8) $a_1^{n_1}, a_2^{n_2}, \ldots, a_t^{n_t} \in H_i$. Since H_i is a group, it is closed under the binary operation and so $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t} \in H_i$. So $H < H_i$ $\,$ for all such $H_i.$ Therefore $H<\cap_{i\in I}H_i=\langle X\rangle$. Hence $H<\langle X\rangle< H$ and it must be that $H = \langle X \rangle$ and the result follows.

Theorem I.2.8 (continued)

Theorem 1.2.8. If G is a group and X is a nonempty subset of G, then the subgroup $\langle X \rangle$ generated by X consists of all finite products $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t}$ (where $a_i \in X$ and $n_i \in \mathbb{Z}$ for $i = 1, 2, \ldots, t$). In particular, for every $a \in G$, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Proof (continued). Let H_i be a subgroup of G containing X. Then for $a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t}\in H$ we have $a_1,a_2,\ldots,a_t\in X\subseteq H_i$. Since H_i is a group then (see Definition 1.1.8) $a_1^{n_1}, a_2^{n_2}, \ldots, a_t^{n_t} \in H_i$. Since H_i is a group, it is closed under the binary operation and so $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t} \in H_i$. So $H < H_i$ for all such $H_i.$ Therefore $H<\cap_{i\in I}H_i=\langle X\rangle.$ Hence $H<\langle X\rangle < H$ and it must be that $H = \langle X \rangle$ and the result follows.