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Theorem I.2.3

Theorem I.2.3

Theorem I.2.3. Let f : G → H be a homomorphism of groups. Then:

(i) f is a monomorphism if and only if Ker(f ) = {eG};
(ii) f is an isomorphism if and only if there is a homomorphism

f −1 : H → G such that ff −1 = 1H and f −1f = 1G .

Proof. (i) If f is a monomorphism then f is one to one (by definition)
and if a ∈ Ker(f ) then f (a) = eH . But f (eG ) = eH by Exercise I.2.1 (since
f is a homomorphism), and so f (a) = eH = f (eG ) and the one to one-ness
of f implies that a = eG . That is, Ker(f ) = {eG}.

Next, if Ker(f ) = {eG}
and f (a) = f (b), then

eH = f (a)f (b)−1

= f (a)f (b−1) by Exercise I.2.1

= f (ab−1) since f is a homomorphism

and so ab−1 ∈ Ker(f ). But then ab−1 = eG and (ab−1)b = eGb or a = b.
That is, f is one to one.
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Theorem I.2.3

Theorem I.2.3 (continued)

Theorem I.2.3. Let f : G → H be a homomorphism of groups. Then:

(ii) f is an isomorphism if and only if there is a homomorphism
f −1 : H → G such that ff −1 = 1H and f −1f = 1G .

Proof (continued) (ii) First, suppose that f : G → H is an isomorphism.
Then f −1 : H → G defined as f −1(h) = g if and only if f (g) = h is an
isomorphism of H with G (see Note 1 parts (a) and (b); also Fraleigh’s
Exercise 3.26). Then, of course, f −1 is a homomorphism. Also, ff −1 = 1H

and f −1f = 1G .
Second, suppose that there is a homomorphism f −1 : H → G such that
ff −1 = 1H and f −1f = 1G . Then by Note 1 part (c), f −1 and f are one to
one; by Note 1 part (d), f −1 and f are onto. So f −1 is a one to one and
onto homomorphism, and so is f . That is, f is an isomorphism.
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Theorem I.2.5

Theorem I.2.5

Theorem I.2.5. Let H be a nonempty subset of a group G . Then H is a
subgroup of G if and only if ab−1 ∈ H for all a, b ∈ H.

Proof. Suppose that ab−1 ∈ H for all a, b ∈ H. Since H 6= ∅ then there
is a ∈ H and so aa−1 = e ∈ H (the identity in G is also the identity in H).
So for b ∈ H, we have eb−1 = b−1 ∈ H. So if a, b ∈ H we have b−1 ∈ H
and hence a(b−1)−1 = ab ∈ H and H is closed under the binary operation.
Associativity in H is “inherited” from G . So H has an associative binary
operation (H is a semigroup), H has an identity (H is a monoid) and each
element of H has an inverse in H (H is a group). Therefore H is a
subgroup of G .

If H is a subgroup of G , then for all a, b ∈ H we must have b−1 ∈ H and
so ab−1 ∈ H.
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Theorem I.2.8

Theorem I.2.8

Theorem I.2.8. If G is a group and X is a nonempty subset of G , then
the subgroup 〈X 〉 generated by X consists of all finite products
an1
1 an2

2 · · · ant
t (where ai ∈ X and ni ∈ Z for i = 1, 2, . . . , t). In particular,

for every a ∈ G , 〈a〉 = {an | n ∈ Z}.

Proof. Let H = {an1
1 an2

2 · · · ant
t | t ∈ N, ai ∈ X , ni ∈ Z}. Let x ∈ X . With

t = 1, a1 = x , and n1 = 1 we see that x ∈ H, so X ⊆ H. Now H ⊆ G and
H is “clearly” closed under the binary operation, so H is a semigroup
(associativity in H is inherited from G ).

For any x ∈ X , with t = 1,
a1 = x , and n1 = 0, we have that x0 = e ∈ H, so H is a monoid. For any
an1
1 an2

2 · · · ant
t ∈ H, we also have a−nt

t a
−nt−1

t−1 · · · a−n1
1 ∈ H and

(an1
1 an2

2 · · · ant
t )(a−nt

t a
−nt−1

t−1 · · · a−n1
1 ) = e. Hence, H is a subgroup of G

that contains X . That is, 〈X 〉 < H.
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Theorem I.2.8

Theorem I.2.8 (continued)

Theorem I.2.8. If G is a group and X is a nonempty subset of G , then
the subgroup 〈X 〉 generated by X consists of all finite products
an1
1 an2

2 · · · ant
t (where ai ∈ X and ni ∈ Z for i = 1, 2, . . . , t). In particular,

for every a ∈ G , 〈a〉 = {an | n ∈ Z}.

Proof (continued). Let Hi be a subgroup of G containing X . Then for
an1
1 an2

2 · · · ant
t ∈ H we have a1, a2, . . . , at ∈ X ⊆ Hi . Since Hi is a group

then (see Definition I.1.8) an1
1 , an2

2 , . . . , ant
t ∈ Hi . Since Hi is a group, it is

closed under the binary operation and so an1
1 an2

2 · · · ant
t ∈ Hi . So H < Hi

for all such Hi . Therefore H < ∩i∈IHi = 〈X 〉. Hence H < 〈X 〉 < H and it
must be that H = 〈X 〉 and the result follows.
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