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Theorem I.3.1

Theorem I.3.1

Theorem I.3.1. Every subgroup H of the additive group Z is cyclic.
Either H = 〈0〉 or H = 〈m〉 where m is the least positive integer in H. If
H 6= 〈0〉, then H is infinite.

Proof. Either H = 〈0〉 or H contains a least positive integer m (this
property is part of the formal definition of N, the Law of Well Ordering on
page 10). Since H is closed under the binary operation (addition here)
then 〈m〉 = {km | k ∈ Z} ⊂ H.

Conversely if h ∈ H, then h = qm + r
with q, r ∈ Z and 0 ≤ r < m by the Division Algorithm (Theorem 0.6.3).
Since r = h − qm ∈ H (because h, qm ∈ H), the minimality of positive
integer m implies that r = 0 (since 0 ≤ r < m and r ∈ H) and so h = qm.
Hence H ⊂ 〈m〉. If H 6= 〈0〉, then for k1, k2 ∈ Z with k1 6= k2, we have
k1m 6= k2m and hence 〈m〉 is infinite.
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Theorem I.3.2

Theorem I.3.2

Theorem I.3.2. Every infinite cyclic group is isomorphic to the additive
group Z and every finite cyclic group of order m is isomorphic to the
additive group Zm.

Proof. For G = 〈a〉 a cyclic group, define α : Z → G as α(k) = ak . By
Theorem I.1.9, α is a homomorphism. Since a is a generator of G , then
(by Theorem I.2.8) α is onto and so α is an epimorphism.

If Ker(α) = {0}
then α is one to one by Theorem I.2.3(i), α is an isomorphism, and hence
Z ∼= G . Otherwise if Ker(α) 6= {0} and Ker(α) is a nontrivial subgroup of
Z (by Exercise I.2.9 Ker(α) is a subgroup of Z) then Ker(α) = 〈m〉 for
some least positive m in Ker(α) by Theorem I.3.1.
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Theorem I.3.2

Theorem I.3.2 (continued)

Theorem I.3.2. Every infinite cyclic group is isomorphic to the additive
group Z and every finite cyclic group of order m is isomorphic to the
additive group Zm.

Proof (continued). Now to show that Zm
∼= G . For r , s ∈ Z, then

ar = as if and only if ar−s = e if and only if r − s ∈ Ker(α) = 〈m〉 if and
only if m | (r − s) if and only if r = s in Zm (where k is the congruence
class of Zm containing k ∈ Z). So the map β : Zm → G given by k 7→ ak

is well defined. Also, β is a homomorphism because

β(r + s) = ar+s = aras = β(r)β(s)

and so is onto since a is a generator of G . That is, β is an epimorphism.

Since β(k) = e if and only if ak = e = a0 if and only if k = 0 ∈ Zm, then
Ker(β) = {0} and by Theorem I.2.3(i) β is one to one and is hence a
monomorphism. So β is one to one and onto (i.e., is an isomorphism) and
Zm

∼= G .
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Theorem I.3.4

Theorem I.3.4

Theorem I.3.4. Let G be a group and a ∈ G . If a has infinite order then

(i) ak = e if and only if k = 0;

(ii) the elements ak are all distinct as the values of k range over
Z.

If a has finite order m > 0 then

(iii) m is the least positive integer such that am = e;

(iv) ak = e if and only if m | k;

(v) ar = as if and only if r ≡ s (mod m);

(vi) 〈a〉 consists of the distinct elements a, a2, . . . , am−1, am = e.

(vii) for each k such that k | m, |ak | = m/k.

Proof. (vii) We have (ak)m/k = am = e by Theorem I.1.9(ii) and (iii).
ASSUME (ak)r = e for some 0 < r < m/k. Then akr = e (Theorem
I.1.9(ii)) where kr < k(m/k) = m, CONTRADICTING (iii). So the order
of ak is |ak | = m/k by (iii).
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Theorem I.3.5

Theorem I.3.5

Theorem I.3.5. Every homomorphic image and every subgroup of a cyclic
group G is cyclic. In particular, if H is a nontrivial subgroup of G = 〈a〉
and m is the least positive integer such that am ∈ H, then H = 〈am〉.

Proof. Let f : G → K be a group homomorphism. Then for any ak ∈ G
we have f (ak) = (f (a))k , so the image of f is Im(f ) = 〈f (a)〉. Now
suppose H is a subgroup of G . Let m be the least positive integer such
that am ∈ H. Then 〈am〉 ⊂ H.

Now for h ∈ H ⊂ G we have h = aqm+r for
some q, r ∈ Z and 0 ≤ r < m by the Division Algorithm (Theorem 0.6.3).
But am ∈ H, so (am)q = aqm ∈ H and (aqm)−1 = a−qm ∈ H. Therefore
a−qmh = a−qmaqm+r = ar ∈ H. But since m is the least positive integer
for which am ∈ H and 0 ≤ r < m, then it must be that r = 0. That is, if
h = aqm+r ∈ H (as above) then r = 0 and so h = aqm where q ∈ Z. That
is, h ∈ 〈am〉. So H ⊂ 〈am〉 and hence H = 〈am〉.
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Theorem I.3.6

Theorem I.3.6

Theorem I.3.6. Let G = 〈a〉 be a cyclic group. If G is infinite, then a and
a−1 are the only generators of G . If G is finite of order m, then ak is a
generator of G if and only if (k,m) = 1 (i.e., the greatest common divisor
of k and m is 1; k and m are relatively prime).

Proof. Let G be infinite. By Theorem I.3.2, G ∼= Z. “Clearly”
Z = 〈1〉 = 〈−1〉. Let m ∈ Z, m 6∈ {−1, 0, 1}, and consider 〈m〉. Now
〈m〉 = 〈−m〉 and |m| is the smallest positive integer in 〈m〉 = 〈−m〉 (see
Theorem I.3.1). So 1 6∈ 〈m〉 and 〈m〉 is a proper subgroup of Z.

Hence m
does not generate Z and the only generators of Z are −1 and 1.
Equivalently, the only generators of G are a−1 and a.
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Theorem I.3.6

Theorem I.3.6 (continued)

Proof (continued). Let G be finite. By Theorem I.3.2, G ∼= Zm where m
is the order of G . If (k,m) = 1 then there are c , d ∈ Z such that
ck + dm = 1 (by Theorem 0.6.5 in Section I.3. Cyclic Groups). Then
k + k + · · ·+ k︸ ︷︷ ︸

c times

= 1. So for any n ∈ Zm, we have k + k + · · ·+ k︸ ︷︷ ︸
nc times

= n and

hence k generates Zm. Next, if (k,m) = r > 1 then consider
n = m/r < m. We then have
k + k + · · ·+ k︸ ︷︷ ︸

n times

= nk = km/r = (k/r)m = (k/r)m = 0 and so k does not

generate Zm (it generates a subgroup of order at most n = m/r).

So k is
a generator of Zm if and only if (k,m) = 1. Equivalently, ak is a generator
of finite order cyclic group G = 〈a〉 if and only if (k,m) = 1.
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