Modern Algebra

Chapter I. Groups I.3. Cyclic Groups—Proofs of Theorems

- 2 Theorem I.3.2
- 3 Theorem I.3.4
- Theorem 1.3.5

Theorem I.3.1. Every subgroup *H* of the additive group \mathbb{Z} is cyclic. Either $H = \langle 0 \rangle$ or $H = \langle m \rangle$ where *m* is the least positive integer in *H*. If $H \neq \langle 0 \rangle$, then *H* is infinite.

Proof. Either $H = \langle 0 \rangle$ or H contains a least positive integer m (this property is part of the formal definition of \mathbb{N} , the Law of Well Ordering on page 10). Since H is closed under the binary operation (addition here) then $\langle m \rangle = \{km \mid k \in \mathbb{Z}\} \subset H$.

()

Theorem I.3.1. Every subgroup *H* of the additive group \mathbb{Z} is cyclic. Either $H = \langle 0 \rangle$ or $H = \langle m \rangle$ where *m* is the least positive integer in *H*. If $H \neq \langle 0 \rangle$, then *H* is infinite.

Proof. Either $H = \langle 0 \rangle$ or H contains a least positive integer m (this property is part of the formal definition of \mathbb{N} , the Law of Well Ordering on page 10). Since H is closed under the binary operation (addition here) then $\langle m \rangle = \{km \mid k \in \mathbb{Z}\} \subset H$. Conversely if $h \in H$, then h = qm + r with $q, r \in \mathbb{Z}$ and $0 \leq r < m$ by the Division Algorithm (Theorem 0.6.3). Since $r = h - qm \in H$ (because $h, qm \in H$), the minimality of positive integer m implies that r = 0 (since $0 \leq r < m$ and $r \in H$) and so h = qm. Hence $H \subset \langle m \rangle$. If $H \neq \langle 0 \rangle$, then for $k_1, k_2 \in \mathbb{Z}$ with $k_1 \neq k_2$, we have $k_1m \neq k_2m$ and hence $\langle m \rangle$ is infinite.

Theorem I.3.1. Every subgroup *H* of the additive group \mathbb{Z} is cyclic. Either $H = \langle 0 \rangle$ or $H = \langle m \rangle$ where *m* is the least positive integer in *H*. If $H \neq \langle 0 \rangle$, then *H* is infinite.

Proof. Either $H = \langle 0 \rangle$ or H contains a least positive integer m (this property is part of the formal definition of \mathbb{N} , the Law of Well Ordering on page 10). Since H is closed under the binary operation (addition here) then $\langle m \rangle = \{km \mid k \in \mathbb{Z}\} \subset H$. Conversely if $h \in H$, then h = qm + r with $q, r \in \mathbb{Z}$ and $0 \leq r < m$ by the Division Algorithm (Theorem 0.6.3). Since $r = h - qm \in H$ (because $h, qm \in H$), the minimality of positive integer m implies that r = 0 (since $0 \leq r < m$ and $r \in H$) and so h = qm. Hence $H \subset \langle m \rangle$. If $H \neq \langle 0 \rangle$, then for $k_1, k_2 \in \mathbb{Z}$ with $k_1 \neq k_2$, we have $k_1m \neq k_2m$ and hence $\langle m \rangle$ is infinite.

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive group \mathbb{Z} and every finite cyclic group of order *m* is isomorphic to the additive group \mathbb{Z}_m .

Proof. For $G = \langle a \rangle$ a cyclic group, define $\alpha : \mathbb{Z} \to G$ as $\alpha(k) = a^k$. By Theorem I.1.9, α is a homomorphism. Since *a* is a generator of *G*, then (by Theorem I.2.8) α is onto and so α is an epimorphism.

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive group \mathbb{Z} and every finite cyclic group of order *m* is isomorphic to the additive group \mathbb{Z}_m .

Proof. For $G = \langle a \rangle$ a cyclic group, define $\alpha : \mathbb{Z} \to G$ as $\alpha(k) = a^k$. By Theorem I.1.9, α is a homomorphism. Since *a* is a generator of *G*, then (by Theorem I.2.8) α is onto and so α is an epimorphism. If $\text{Ker}(\alpha) = \{0\}$ then α is one to one by Theorem I.2.3(i), α is an isomorphism, and hence $\mathbb{Z} \cong G$. Otherwise if $\text{Ker}(\alpha) \neq \{0\}$ and $\text{Ker}(\alpha)$ is a nontrivial subgroup of \mathbb{Z} (by Exercise I.2.9 $\text{Ker}(\alpha)$ is a subgroup of \mathbb{Z}) then $\text{Ker}(\alpha) = \langle m \rangle$ for some least positive *m* in $\text{Ker}(\alpha)$ by Theorem I.3.1. **Theorem 1.3.2.** Every infinite cyclic group is isomorphic to the additive group \mathbb{Z} and every finite cyclic group of order *m* is isomorphic to the additive group \mathbb{Z}_m .

Proof. For $G = \langle a \rangle$ a cyclic group, define $\alpha : \mathbb{Z} \to G$ as $\alpha(k) = a^k$. By Theorem I.1.9, α is a homomorphism. Since *a* is a generator of *G*, then (by Theorem I.2.8) α is onto and so α is an epimorphism. If $\text{Ker}(\alpha) = \{0\}$ then α is one to one by Theorem I.2.3(i), α is an isomorphism, and hence $\mathbb{Z} \cong G$. Otherwise if $\text{Ker}(\alpha) \neq \{0\}$ and $\text{Ker}(\alpha)$ is a nontrivial subgroup of \mathbb{Z} (by Exercise I.2.9 $\text{Ker}(\alpha)$ is a subgroup of \mathbb{Z}) then $\text{Ker}(\alpha) = \langle m \rangle$ for some least positive *m* in $\text{Ker}(\alpha)$ by Theorem I.3.1.

Theorem I.3.2 (continued)

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive group \mathbb{Z} and every finite cyclic group of order *m* is isomorphic to the additive group \mathbb{Z}_m .

Proof (continued). Now to show that $\mathbb{Z}_m \cong G$. For $r, s \in \mathbb{Z}$, then $a^r = a^s$ if and only if $a^{r-s} = e$ if and only if $r - s \in \text{Ker}(\alpha) = \langle m \rangle$ if and only if $m \mid (r - s)$ if and only if $\overline{r} = \overline{s}$ in \mathbb{Z}_m (where \overline{k} is the congruence class of \mathbb{Z}_m containing $k \in \mathbb{Z}$). So the map $\beta : \mathbb{Z}_m \to G$ given by $\overline{k} \mapsto a^k$ is well defined. Also, β is a homomorphism because

$$\beta(\overline{r}+\overline{s}) = a^{r+s} = a^r a^s = \beta(\overline{r})\beta(\overline{s})$$

and so is onto since a is a generator of G. That is, β is an epimorphism.

Theorem I.3.2 (continued)

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive group \mathbb{Z} and every finite cyclic group of order *m* is isomorphic to the additive group \mathbb{Z}_m .

Proof (continued). Now to show that $\mathbb{Z}_m \cong G$. For $r, s \in \mathbb{Z}$, then $a^r = a^s$ if and only if $a^{r-s} = e$ if and only if $r - s \in \text{Ker}(\alpha) = \langle m \rangle$ if and only if $m \mid (r - s)$ if and only if $\overline{r} = \overline{s}$ in \mathbb{Z}_m (where \overline{k} is the congruence class of \mathbb{Z}_m containing $k \in \mathbb{Z}$). So the map $\beta : \mathbb{Z}_m \to G$ given by $\overline{k} \mapsto a^k$ is well defined. Also, β is a homomorphism because

$$\beta(\overline{r}+\overline{s})=a^{r+s}=a^ra^s=\beta(\overline{r})\beta(\overline{s})$$

and so is onto since *a* is a generator of *G*. That is, β is an epimorphism. Since $\beta(\overline{k}) = e$ if and only if $a^k = e = a^0$ if and only if $\overline{k} = \overline{0} \in \mathbb{Z}_m$, then $\operatorname{Ker}(\beta) = \{\overline{0}\}$ and by Theorem I.2.3(i) β is one to one and is hence a monomorphism. So β is one to one and onto (i.e., is an isomorphism) and $\mathbb{Z}_m \cong G$.

Theorem I.3.2 (continued)

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive group \mathbb{Z} and every finite cyclic group of order *m* is isomorphic to the additive group \mathbb{Z}_m .

Proof (continued). Now to show that $\mathbb{Z}_m \cong G$. For $r, s \in \mathbb{Z}$, then $a^r = a^s$ if and only if $a^{r-s} = e$ if and only if $r - s \in \text{Ker}(\alpha) = \langle m \rangle$ if and only if $m \mid (r - s)$ if and only if $\overline{r} = \overline{s}$ in \mathbb{Z}_m (where \overline{k} is the congruence class of \mathbb{Z}_m containing $k \in \mathbb{Z}$). So the map $\beta : \mathbb{Z}_m \to G$ given by $\overline{k} \mapsto a^k$ is well defined. Also, β is a homomorphism because

$$\beta(\overline{r}+\overline{s})=a^{r+s}=a^ra^s=\beta(\overline{r})\beta(\overline{s})$$

and so is onto since *a* is a generator of *G*. That is, β is an epimorphism. Since $\beta(\overline{k}) = e$ if and only if $a^k = e = a^0$ if and only if $\overline{k} = \overline{0} \in \mathbb{Z}_m$, then Ker $(\beta) = \{\overline{0}\}$ and by Theorem I.2.3(i) β is one to one and is hence a monomorphism. So β is one to one and onto (i.e., is an isomorphism) and $\mathbb{Z}_m \cong G$.

- Theorem 1.3.4. Let G be a group and a ∈ G. If a has infinite order then
 (i) a^k = e if and only if k = 0;
 (ii) the elements a^k are all distinct as the values of k range over Z.
- If a has finite order m > 0 then

(iii) m is the least positive integer such that a^m = e;
(iv) a^k = e if and only if m | k;
(v) a^r = a^s if and only if r ≡ s (mod m);
(vi) ⟨a⟩ consists of the distinct elements a, a²,..., a^{m-1}, a^m = e.
(vii) for each k such that k | m, |a^k| = m/k.

Proof. (vii) We have $(a^k)^{m/k} = a^m = e$ by Theorem I.1.9(ii) and (iii). ASSUME $(a^k)^r = e$ for some 0 < r < m/k. Then $a^{kr} = e$ (Theorem I.1.9(ii)) where kr < k(m/k) = m, CONTRADICTING (iii). So the order of a^k is $|a^k| = m/k$ by (iii).

- **Theorem 1.3.4.** Let G be a group and $a \in G$. If a has infinite order then (i) $a^k = e$ if and only if k = 0; (ii) the elements a^k are all distinct as the values of k range over \mathbb{Z} .
- If a has finite order m > 0 then

(iii) m is the least positive integer such that a^m = e;
(iv) a^k = e if and only if m | k;
(v) a^r = a^s if and only if r ≡ s (mod m);
(vi) ⟨a⟩ consists of the distinct elements a, a²,..., a^{m-1}, a^m = e.
(vii) for each k such that k | m, |a^k| = m/k.

Proof. (vii) We have $(a^k)^{m/k} = a^m = e$ by Theorem I.1.9(ii) and (iii). ASSUME $(a^k)^r = e$ for some 0 < r < m/k. Then $a^{kr} = e$ (Theorem I.1.9(ii)) where kr < k(m/k) = m, CONTRADICTING (iii). So the order of a^k is $|a^k| = m/k$ by (iii).

Theorem 1.3.5. Every homomorphic image and every subgroup of a cyclic group G is cyclic. In particular, if H is a nontrivial subgroup of $G = \langle a \rangle$ and m is the least positive integer such that $a^m \in H$, then $H = \langle a^m \rangle$.

Proof. Let $f : G \to K$ be a group homomorphism. Then for any $a^k \in G$ we have $f(a^k) = (f(a))^k$, so the image of f is $\text{Im}(f) = \langle f(a) \rangle$. Now suppose H is a subgroup of G. Let m be the least positive integer such that $a^m \in H$. Then $\langle a^m \rangle \subset H$.

Modern Algebra

Theorem 1.3.5. Every homomorphic image and every subgroup of a cyclic group G is cyclic. In particular, if H is a nontrivial subgroup of $G = \langle a \rangle$ and m is the least positive integer such that $a^m \in H$, then $H = \langle a^m \rangle$.

Proof. Let $f: G \to K$ be a group homomorphism. Then for any $a^k \in G$ we have $f(a^k) = (f(a))^k$, so the image of f is $\text{Im}(f) = \langle f(a) \rangle$. Now suppose H is a subgroup of G. Let m be the least positive integer such that $a^m \in H$. Then $\langle a^m \rangle \subset H$. Now for $h \in H \subset G$ we have $h = a^{qm+r}$ for some $q, r \in \mathbb{Z}$ and $0 \leq r < m$ by the Division Algorithm (Theorem 0.6.3). But $a^m \in H$, so $(a^m)^q = a^{qm} \in H$ and $(a^{qm})^{-1} = a^{-qm} \in H$. Therefore $a^{-qm}h = a^{-qm}a^{qm+r} = a^r \in H$. But since m is the least positive integer for which $a^m \in H$ and $0 \leq r < m$, then it must be that r = 0. That is, if $h = a^{qm+r} \in H$ (as above) then r = 0 and so $h = a^{qm}$ where $q \in \mathbb{Z}$. That is, $h \in \langle a^m \rangle$. So $H \subset \langle a^m \rangle$ and hence $H = \langle a^m \rangle$.

Theorem 1.3.5. Every homomorphic image and every subgroup of a cyclic group G is cyclic. In particular, if H is a nontrivial subgroup of $G = \langle a \rangle$ and m is the least positive integer such that $a^m \in H$, then $H = \langle a^m \rangle$.

Proof. Let $f: G \to K$ be a group homomorphism. Then for any $a^k \in G$ we have $f(a^k) = (f(a))^k$, so the image of f is $\text{Im}(f) = \langle f(a) \rangle$. Now suppose H is a subgroup of G. Let m be the least positive integer such that $a^m \in H$. Then $\langle a^m \rangle \subset H$. Now for $h \in H \subset G$ we have $h = a^{qm+r}$ for some $q, r \in \mathbb{Z}$ and $0 \leq r < m$ by the Division Algorithm (Theorem 0.6.3). But $a^m \in H$, so $(a^m)^q = a^{qm} \in H$ and $(a^{qm})^{-1} = a^{-qm} \in H$. Therefore $a^{-qm}h = a^{-qm}a^{qm+r} = a^r \in H$. But since m is the least positive integer for which $a^m \in H$ and $0 \leq r < m$, then it must be that r = 0. That is, if $h = a^{qm+r} \in H$ (as above) then r = 0 and so $h = a^{qm}$ where $q \in \mathbb{Z}$. That is, $h \in \langle a^m \rangle$. So $H \subset \langle a^m \rangle$ and hence $H = \langle a^m \rangle$.

Theorem 1.3.6. Let $G = \langle a \rangle$ be a cyclic group. If G is infinite, then a and a^{-1} are the only generators of G. If G is finite of order m, then a^k is a generator of G if and only if (k, m) = 1 (i.e., the greatest common divisor of k and m is 1; k and m are relatively prime).

Proof. Let *G* be infinite. By Theorem I.3.2, $G \cong \mathbb{Z}$. "Clearly" $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$. Let $m \in \mathbb{Z}$, $m \notin \{-1, 0, 1\}$, and consider $\langle m \rangle$. Now $\langle m \rangle = \langle -m \rangle$ and |m| is the smallest positive integer in $\langle m \rangle = \langle -m \rangle$ (see Theorem I.3.1). So $1 \notin \langle m \rangle$ and $\langle m \rangle$ is a proper subgroup of \mathbb{Z} .

Theorem 1.3.6. Let $G = \langle a \rangle$ be a cyclic group. If G is infinite, then a and a^{-1} are the only generators of G. If G is finite of order m, then a^k is a generator of G if and only if (k, m) = 1 (i.e., the greatest common divisor of k and m is 1; k and m are relatively prime).

Proof. Let *G* be infinite. By Theorem I.3.2, $G \cong \mathbb{Z}$. "Clearly" $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$. Let $m \in \mathbb{Z}$, $m \notin \{-1, 0, 1\}$, and consider $\langle m \rangle$. Now $\langle m \rangle = \langle -m \rangle$ and |m| is the smallest positive integer in $\langle m \rangle = \langle -m \rangle$ (see Theorem I.3.1). So $1 \notin \langle m \rangle$ and $\langle m \rangle$ is a proper subgroup of \mathbb{Z} . Hence *m* does not generate \mathbb{Z} and the only generators of \mathbb{Z} are -1 and 1. Equivalently, the only generators of *G* are a^{-1} and *a*.

Theorem 1.3.6. Let $G = \langle a \rangle$ be a cyclic group. If G is infinite, then a and a^{-1} are the only generators of G. If G is finite of order m, then a^k is a generator of G if and only if (k, m) = 1 (i.e., the greatest common divisor of k and m is 1; k and m are relatively prime).

Proof. Let *G* be infinite. By Theorem I.3.2, $G \cong \mathbb{Z}$. "Clearly" $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$. Let $m \in \mathbb{Z}$, $m \notin \{-1, 0, 1\}$, and consider $\langle m \rangle$. Now $\langle m \rangle = \langle -m \rangle$ and |m| is the smallest positive integer in $\langle m \rangle = \langle -m \rangle$ (see Theorem I.3.1). So $1 \notin \langle m \rangle$ and $\langle m \rangle$ is a proper subgroup of \mathbb{Z} . Hence *m* does not generate \mathbb{Z} and the only generators of \mathbb{Z} are -1 and 1. Equivalently, the only generators of *G* are a^{-1} and *a*.

Theorem I.3.6 (continued)

Proof (continued). Let *G* be finite. By Theorem I.3.2, $G \cong \mathbb{Z}_m$ where *m* is the order of *G*. If (k, m) = 1 then there are $c, d \in \mathbb{Z}$ such that ck + dm = 1 (by Theorem 0.6.5 in Section I.3. Cyclic Groups). Then $\overline{k + k + \dots + k} = \overline{1}$. So for any $\overline{n} \in \mathbb{Z}_m$, we have $\overline{k + k + \dots + k} = \overline{n}$ and c times hence \overline{k} generates \mathbb{Z}_m . Next, if (k, m) = r > 1 then consider n = m/r < m. We then have $\overline{k + k + \dots + k} = \overline{nk} = \overline{nk} = \overline{km/r} = (k/r)\overline{m} = \overline{0}$ and so \overline{k} does not n times

generate \mathbb{Z}_m (it generates a subgroup of order at most n = m/r).

Theorem I.3.6 (continued)

Proof (continued). Let G be finite. By Theorem I.3.2, $G \cong \mathbb{Z}_m$ where m is the order of G. If (k, m) = 1 then there are $c, d \in \mathbb{Z}$ such that ck + dm = 1 (by Theorem 0.6.5 in Section I.3. Cyclic Groups). Then $\overline{k} + \overline{k} + \cdots + \overline{k} = \overline{1}$. So for any $\overline{n} \in \mathbb{Z}_m$, we have $\overline{k} + \overline{k} + \cdots + \overline{k} = \overline{n}$ and c times nc times hence \overline{k} generates \mathbb{Z}_m . Next, if (k, m) = r > 1 then consider n = m/r < m. We then have $\overline{k} + \overline{k} + \cdots + \overline{k} = \overline{nk} = \overline{km/r} = \overline{(k/r)m} = (k/r)\overline{m} = \overline{0}$ and so \overline{k} does not n times generate \mathbb{Z}_m (it generates a subgroup of order at most n = m/r). So \overline{k} is a generator of \mathbb{Z}_m if and only if (k, m) = 1. Equivalently, a^k is a generator of finite order cyclic group $G = \langle a \rangle$ if and only if (k, m) = 1.

Theorem I.3.6 (continued)

Proof (continued). Let G be finite. By Theorem I.3.2, $G \cong \mathbb{Z}_m$ where m is the order of G. If (k, m) = 1 then there are $c, d \in \mathbb{Z}$ such that ck + dm = 1 (by Theorem 0.6.5 in Section I.3. Cyclic Groups). Then $\overline{k} + \overline{k} + \cdots + \overline{k} = \overline{1}$. So for any $\overline{n} \in \mathbb{Z}_m$, we have $\overline{k} + \overline{k} + \cdots + \overline{k} = \overline{n}$ and c times nc times hence \overline{k} generates \mathbb{Z}_m . Next, if (k, m) = r > 1 then consider n = m/r < m. We then have $\overline{k} + \overline{k} + \cdots + \overline{k} = \overline{nk} = \overline{km/r} = \overline{(k/r)m} = (k/r)\overline{m} = \overline{0}$ and so \overline{k} does not n times generate \mathbb{Z}_m (it generates a subgroup of order at most n = m/r). So \overline{k} is a generator of \mathbb{Z}_m if and only if (k, m) = 1. Equivalently, a^k is a generator of finite order cyclic group $G = \langle a \rangle$ if and only if (k, m) = 1.