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Theorem 1.3.1

Theorem 1.3.1. Every subgroup H of the additive group Z is cyclic.
Either H = (0) or H = (m) where m is the least positive integer in H. If
H # (0), then H is infinite.

Modern Algebra September 27,2023 3 /9



Theorem 1.3.1

Theorem 1.3.1. Every subgroup H of the additive group Z is cyclic.
Either H = (0) or H = (m) where m is the least positive integer in H. If
H # (0), then H is infinite.

Proof. Either H = (0) or H contains a least positive integer m (this
property is part of the formal definition of N, the Law of Well Ordering on
page 10). Since H is closed under the binary operation (addition here)
then (m) = {km | k € Z} C H.
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Theorem 1.3.1

Theorem 1.3.1. Every subgroup H of the additive group Z is cyclic.
Either H = (0) or H = (m) where m is the least positive integer in H. If
H # (0), then H is infinite.

Proof. Either H = (0) or H contains a least positive integer m (this
property is part of the formal definition of N, the Law of Well Ordering on
page 10). Since H is closed under the binary operation (addition here)
then (m) = {km | k € Z} C H. Conversely if h € H, then h=qm+r
with g,r € Z and 0 < r < m by the Division Algorithm (Theorem 0.6.3).
Since r = h— gm € H (because h,gm € H), the minimality of positive
integer m implies that r =0 (since 0 < r < mand r € H) and so h = gm.
Hence H C (m). If H # (0), then for ki, ko € Z with ki # ko, we have
kim # kom and hence (m) is infinite. O
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Theorem 1.3.2

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive
group Z and every finite cyclic group of order m is isomorphic to the
additive group Z,.
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Theorem 1.3.2

Theorem 1.3.2

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive

group Z and every finite cyclic group of order m is isomorphic to the
additive group Z,.

Proof. For G = (a) a cyclic group, define o : Z — G as a(k) = a*. By
Theorem 1.1.9, « is a homomorphism. Since a is a generator of G, then
(by Theorem 1.2.8) « is onto and so « is an epimorphism.
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Theorem 1.3.2

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive
group Z and every finite cyclic group of order m is isomorphic to the
additive group Z,.

Proof. For G = (a) a cyclic group, define o : Z — G as a(k) = a*. By
Theorem 1.1.9, « is a homomorphism. Since a is a generator of G, then
(by Theorem 1.2.8) « is onto and so « is an epimorphism. If Ker(«) = {0}
then « is one to one by Theorem 1.2.3(i), a is an isomorphism, and hence
Z = G. Otherwise if Ker(a) # {0} and Ker(a) is a nontrivial subgroup of
Z (by Exercise 1.2.9 Ker(«) is a subgroup of Z) then Ker(«) = (m) for
some least positive m in Ker(a) by Theorem 1.3.1.

Modern Algebra September 27,2023 4 /9



Theorem 1.3.2 (continued)

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive
group Z and every finite cyclic group of order m is isomorphic to the
additive group Z,.

Proof (continued). Now to show that Z,, = G. For r,s € Z, then
a"=a°if and only if a"7° = e if and only if r — s € Ker(a) = (m) if and
only if m| (r —s) if and only if =5 in Z, (where k is the congruence
class of Z, containing k € Z). So the map 3 : Z,, — G given by k — a*
is well defined.
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Theorem 1.3.2 (continued)

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive
group Z and every finite cyclic group of order m is isomorphic to the
additive group Z,.

Proof (continued). Now to show that Z,, = G. For r,s € Z, then
a"=a°if and only if a"7° = e if and only if r — s € Ker(a) = (m) if and
only if m| (r —s) if and only if =5 in Z, (where k is the congruence
class of Z, containing k € Z). So the map 3 : Z,, — G given by k — a*
is well defined. Also, 3 is a homomorphism because

B(F+3)=a"" = a"a® = B(r)B(3)

and so is onto since a is a generator of G. That is, 3 is an epimorphism.
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Theorem 1.3.2 (continued)

Theorem 1.3.2. Every infinite cyclic group is isomorphic to the additive
group Z and every finite cyclic group of order m is isomorphic to the
additive group Z,.

Proof (continued). Now to show that Z,, = G. For r,s € Z, then
a"=a°if and only if a"7° = e if and only if r — s € Ker(a) = (m) if and
only if m| (r —s) if and only if =5 in Z, (where k is the congruence
class of Z, containing k € Z). So the map 3 : Z,, — G given by k — a*
is well defined. Also, 3 is a homomorphism because

B(F+3)=a"" = a"a® = B(r)B(3)

and so is onto since a is a generator of G. That is, 3 is an epimorphism.
Since B(k) = e if and only if a¥ = e = a° if and only if k = 0 € Z,, then
Ker(3) = {0} and by Theorem 1.2.3(i) 3 is one to one and is hence a
monomorphism. So 3 is one to one and onto (i.e., is an isomorphism) and
Zm=G. O
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Theorem 1.3.4

Theorem 1.3.4. Let G be a group and a € G. If a has infinite order then
(i) a¥ = e if and only if k = 0;
(ii) the elements a¥ are all distinct as the values of k range over
Z.
If a has finite order m > 0 then
(7if) m is the least positive integer such that a™ = e;

(iv) a* = e if and only if m | k;

(v) a"=a° if and only if r =s (mod m);

(vi) (a) consists of the distinct elements a,a°,...,a™1,a" = e.
(vii) for each k such that k | m
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Theorem 1.3.4

Theorem 1.3.4. Let G be a group and a € G. If a has infinite order then
(i) a¥ = e if and only if k = 0;
(ii) the elements a¥ are all distinct as the values of k range over
Z.
If a has finite order m > 0 then
(7if) m is the least positive integer such that a™ = e;
(iv) a* = e if and only if m | k;
(v) a"=a° if and only if r = s (mod m);
(vi) (a) consists of the distinct elements a,a°,...,a™1,a" = e.
(vii) for each k such that k | m, |ak| = m/k.

Proof. (vii) We have (a¥)™'k = a™ = e by Theorem 1.1.9(ii) and (iii).
ASSUME (a¥)" = e for some 0 < r < m/k. Then a¥" = e (Theorem
1.1.9(ii)) where kr < k(m/k) = m, CONTRADICTING (iii). So the order
of akis [a¥| = m/k by (iii). O
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Theorem 1.3.5

Theorem 1.3.5. Every homomorphic image and every subgroup of a cyclic
group G is cyclic. In particular, if H is a nontrivial subgroup of G = (a)
and m is the least positive integer such that a™ € H, then H = (a").

Modern Algebra September 27,2023 7/ 9



Theorem 1.3.5

Theorem 1.3.5. Every homomorphic image and every subgroup of a cyclic
group G is cyclic. In particular, if H is a nontrivial subgroup of G = (a)
and m is the least positive integer such that a™ € H, then H = (a").

Proof. Let f : G — K be a group homomorphism. Then for any a¥ € G
we have f(a¥) = (f(a))*, so the image of f is Im(f) = (f(a)). Now
suppose H is a subgroup of G. Let m be the least positive integer such
that a” € H. Then (a™) C H.

Modern Algebra S — )



Theorem 1.3.5

Theorem 1.3.5. Every homomorphic image and every subgroup of a cyclic
group G is cyclic. In particular, if H is a nontrivial subgroup of G = (a)
and m is the least positive integer such that a™ € H, then H = (a").

Proof. Let f : G — K be a group homomorphism. Then for any a¥ € G
we have f(a¥) = (f(a))*, so the image of f is Im(f) = (f(a)). Now
suppose H is a subgroup of G. Let m be the least positive integer such
that a™ € H. Then (a™) C H. Now for h € H C G we have h = a9™*" for
some q,r € Z and 0 < r < m by the Division Algorithm (Theorem 0.6.3).
But a™ € H, so (a™)9 = a9 € H and (a9™)~! = a=9" € H. Therefore
a~9mMph = a=9Ma9MTr — ' ¢ H. But since m is the least positive integer
for which a™ € H and 0 < r < m, then it must be that r = 0. That is, if
h = a9t € H (as above) then r = 0 and so h = a9 where g € Z. That
is, h € (a™). So H C (a™) and hence H = (a™). O

Modern Algebra September 27,2023 7/ 9



Theorem 1.3.6

Theorem 1.3.6. Let G = (a) be a cyclic group. If G is infinite, then a and
a1 are the only generators of G. If G is finite of order m, then a* is a
generator of G if and only if (k,m) =1 (i.e., the greatest common divisor

of k and mis 1; k and m are relatively prime).
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Theorem 1.3.6

Theorem 1.3.6. Let G = (a) be a cyclic group. If G is infinite, then a and
a1 are the only generators of G. If G is finite of order m, then a* is a
generator of G if and only if (k,m) =1 (i.e., the greatest common divisor

of k and mis 1; k and m are relatively prime).

Proof. Let G be infinite. By Theorem 1.3.2, G =2 Z. “Clearly”
Z=(1)y=(-1). Let me Z, m¢ {—1,0,1}, and consider (m). Now
(m) = (—m) and |m| is the smallest positive integer in (m) = (—m) (see
Theorem 1.3.1). So 1 & (m) and (m) is a proper subgroup of Z.
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Theorem 1.3.6

Theorem 1.3.6. Let G = (a) be a cyclic group. If G is infinite, then a and
a1 are the only generators of G. If G is finite of order m, then a* is a
generator of G if and only if (k,m) =1 (i.e., the greatest common divisor
of k and mis 1; k and m are relatively prime).

Proof. Let G be infinite. By Theorem 1.3.2, G =2 Z. “Clearly”
Z=(1)y=(-1). Let me Z, m¢ {—1,0,1}, and consider (m). Now

(m) = (—m) and |m| is the smallest positive integer in (m) = (—m) (see
Theorem 1.3.1). So 1 & (m) and (m) is a proper subgroup of Z. Hence m
does not generate Z and the only generators of Z are —1 and 1.
Equivalently, the only generators of G are a—! and a.
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Theorem 1.3.6 (continued)

Proof (continued). Let G be finite. By Theorem 1.3.2, G = Z,, where m
is the order of G. If (k, m) =1 then there are ¢, d € Z such that
ck +dm =1 (by Theorem 0.6.5 in Section I.3. Cyclic Groups). Then

k+k+---+k=1. Soforany n € Zp,, we have k + k+--- + k =1 and
—— ——

c times nc times
hence k generates Z,,.
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Theorem 1.3.6 (continued)

Proof (continued). Let G be finite. By Theorem 1.3.2, G = Z,, where m

is the order of G. If (k, m) =1 then there are ¢, d € Z such that

ck +dm =1 (by Theorem 0.6.5 in Section I.3. Cyclic Groups). Then

k+k+---+k=1. Soforany n € Zp,, we have k + k+--- + k =1 and
c times nc times

hence k generates Z,. Next, if (k,m) = r > 1 then consider

n=m/r < m. We then have

k+k+---+k=nk=km/r=(k/r)ym= (k/r)m =0 and so k does not
%,_/
n times

generate Z, (it generates a subgroup of order at most n = m/r).
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Theorem 1.3.6 (continued)

Proof (continued). Let G be finite. By Theorem 1.3.2, G = Z,, where m

is the order of G. If (k, m) =1 then there are ¢, d € Z such that

ck +dm =1 (by Theorem 0.6.5 in Section I.3. Cyclic Groups). Then

k+k+---+k=1. Soforany n € Zp,, we have k + k+--- + k =1 and
c times nc times

hence k generates Z,. Next, if (k,m) = r > 1 then consider

n=m/r < m. We then have

k+k+---+k=nk=km/r=(k/r)ym= (k/r)m =0 and so k does not
%,_/
n times

generate Z, (it generates a subgroup of order at most n = m/r). So k is
a generator of Z, if and only if (k, m) = 1. Equivalently, a is a generator
of finite order cyclic group G = (a) if and only if (k,m) = 1. O
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