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Theorem 1.4.2

Theorem 1.4.2. Let H be a subgroup of a group G.

(i) The equivalence class of a € G under right (and left)
congruence modulo H is the set Ha = {ha | h € H} (and
aH = {ah | h € H} for left congruence).

(iii) |Ha| = |H| = |aH]| for all a € G.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof (continued). (ii) The equivalence class of a € G under right
congruence is

{(xeG|x=al={xeG|xa'lcH={xcG|xat=hhecH}

L]
(i) Define « : Ha — H as a(ha) = h. If a(h1a) = a(h2a) then hy = hy
and « is one to one. If h € H then a(ha) = h where ha € Ha, so « is
onto. Therefore |Ha| = |H|. O
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Theorem 1.4.2

Theorem 1.4.2. Let H be a subgroup of a group G.

(/) Right and left congruence modulo H are each equivalence
relations on G.

(/i) The equivalence class of a € G under right (and left)
congruence modulo H is the set Ha = {ha | h € H} (and
aH = {ah | h € H} for left congruence).

(i) |Ha| = |H| = |aH]| for all a € G.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof. We denote a =, b (mod H) simply as a = b and prove the claims
for right congruence with left congruence following similarly.

(i) Let a,b,c € G. Then a = a since aa ! = e € H (reflexive).

For a = b we have ab~! € H and since H is a group,

(ab™1)71 = ba=! € H and so b = a (symmetric).

Suppose a= b and b= c. Then ab~ !, bc™! € H and so

(ab™1)(bc™!) = ac™! € H and so a = c (transitive). So = is an
equivalence relation. O

Corollary 1.4.3

Corollary 1.4.3. Let H be a subgroup of group G.
(/) G is the union of the right (and left) cosets of H in G.

(if) Two right (or two left) cosets of H in G are either disjoint or
equal.

(iii) For a,b € G, we have that Ha = Hb if and only if ab=! € H,
and aH = bH if and only if a=1b € H.

(iv) If R is the set of distinct right cosets of H in G and L is the
set of distinct left cosets of H in G, then |R| = |L].

Proof. (iv) Define o : R — L as a(Ha) = a *H. If a(Ha) = a(Hb) then
a'H=b"1Hand (a71)"1b~! € H or ab™! € H and so by (iii) Ha = Hb,
so a is one to one. If aH € L then a(Ha 1) = (a 1) 'H = aH and so «

is onto. Since « is a bijection, then |R| = |L|. O
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Theorem 1.4.5

Theorem 1.4.5. If K, H, G are groups with K < H < G, then
[G: K] =[G : H][H: K]. If any two of these indices are finite, then so is
the third.

Proof. By Corollary 4.3(i and ii), G = U;¢;Ha; with a; € G and

{a; | i € I} consists of exactly one element from each right coset of H in
G (the set {a; | i € I} is called a “complete set of right coset
representatives’ and [{a; | i € I}| = |/| =[G : H]). Similarly,

H = Ujec Kb; with b; € H and |J| = [H : K]. By Corollary 4.3(ii) the Ha;
are mutually disjoint and the Kb; are mutually disjoint. Therefore

G = Uie/Ha; = Uiy (YjesKbj) ai = Ui j)eix s Kbjai.

ASSUME that the Kbja; are not mutually disjoint.
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Corollary 1.4.6, Lagrange’s Theorem

Corollary 1.4.6. Lagrange’s Theorem.
If H is a subgroup of a group G, then |G| =[G : H]|H|. In particular, if G
is finite then the order |a| of a € G divides |G| and |H| divides |G]|.

Proof. With K = (e) we have [G : K] =[G : (e)] = |G]| and

[H: K] =[H: (e)] = |H|. We then have by Theorem 1.4.5 that

[G: K] =[G : H|[H:K]or|G|=][G:H]|H|. In the event that H = (a),
|a| = |H| and the second claim follows. O
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Theorem 1.4.5

Theorem 1.4.5 (continued)

Theorem 1.4.5. If K, H, G are groups with K < H < G, then
[G: K] =[G : H]|[H : K]. If any two of these indices are finite, then so is
the third.

Proof (continued). They are still cosets of K in G and so if they are not
disjoint then they must be equal by Corollary 4.3(ii). Then our assumption
implies Kbja; = Kb,a; for either j # r or i # t. But then bja; = kb,a; for
some k € K (choosing e € K on the left-hand side). Since b;, b;, k € H
then Ha; = Hbja; = H(bja;) = H(kbya;) = Hkb;a; = Ha;. So i =t and
bjaj = kbra; implies that b; = kb,. Thus Kb; = Kkb, = Kb, and j = r.
Then Kb;ja; = Kba; only if i =t and j = r, a CONTRADICTION to our
assumption of not mutually disjoint. Therefore the cosets Kb;a; are
mutually disjoint and the cardinality of such cosets is |/ x J| = |/||J| by the
product of Cardinal numbers (see Definition 0.8.3 of Section 0.8. Cardinal
Numbers ). Whence(!) [G: K] = |/ x J| = |l||J| =[G : H][H : K]. “The
last statement of the theorem is obvious.” 1
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Theorem 1.4.7

Theorem 1.4.7

Theorem 1.4.7. Let H and K be finite subgroups of a group G. Then
|HK| = [H||K|/IH N K].

Proof. Let C = HN K. Then C is a finite subgroup of G by Corollary
1.2.6. C is also a subgroup of H and of K. By Lagrange’s Theorem
(Corollary 1.4.6), [K : C] = |K]|/|C| = |K|/|[HN K| = n. So K is the
disjoint union of n cosets of C: K = Cky U Cko U - - - U Ck, for some

ki € K.

Next, we consider the sets HCk;. ASSUME HCk; N HCk; # @ for some
i #j. Then hicik; = hacok; for some hy, hp € H and ¢, € C. Then
clk,-kj_l = hthycy € Hsince hy',hy € Hand ¢, € C=HNK C H.
Also, ¢t € C C H and so ¢ *(crkiki ') = kik* € H. But kiki " € K
and so k,-kj_1 € C. By Corollary 1.4.3(iii), this implies that Ck; = Ck;,
CONTRADICTING the disjointness of the cosets Ck; and Ck;. So the
assumption that HCk; N HCk; # @ is false and hence HCk; and HCk; are
disjoint for all distinct i and j.
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Theorem 1.4.7

Theorem 1.4.7 (continued)

Theorem 1.4.7. Let H and K be finite subgroups of a group G. Then
|HK| = |H|IK|/IH N K].

Proof (continued). Since HC = H (because C < H), we have
HK = H(Cky Y CkyJ---1J Ckp)

= HCki UHCky U --- U HCk,
= Hki UHky U --- Hkp,.

So HK consists of n = |K|/|H N K| disjoint cosets of H in G and
|HK| = |H|n = |H|(IK|/|H N K]). O
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Theorem 1.4.8

Theorem 1.4.8 (continued)

Proof (continued). Suppose [G : K] is finite. Then

[H: HN K] =|A] = |B| =[G : K] if and only if ¢ is onto (since we
already know that ¢ is one to one by the above argument). So the second
claim holds if and only if ¢ is onto (the finiteness of [G : K] is used here).
(1) Let g € G. If ¢ is onto then for Kg a right coset of K in G we have
©((HN K)h) = Kg for some (HN K)h a right coset of HN K in H. Then
©((HN K)h) = Kh = Kg and so gh~! € K (by Corollary I.4.3(iii)). Hence
(gh™1)h € KH, or g € KH. So G C KH. Of course, since H and K are
subgroups of G then G O HK. So if ¢ is onto then G = KH. (2) Suppose
G = KH. Let Kg be a right coset of K in G. Since G = KH, then g = kh
for some k € K and h € H. Hence Kg = K(kh) = Kh since k € K and so
©((HN K)h) = Kh = Kg and ¢ is onto. That is, ¢ is onto if and only if
G = KH. So for finite [G : K] we have [H: HN K] = [G : K] if and only if
G =KH. O
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Theorem 1.4.8

Theorem 1.4.8

Proposition 1.4.8. If H and K are subgroups of a group G, then
[H: HNK] <[G:K]. If [G:K]is finite, then [H: HN K] =[G : K] if
and only if G = KH.

Proof. Let A be the set of all right cosets of HN K in H (of which there
are [H: HN K]) and let B be the set of all right cosets of K in G (of
which there are [G : K]). Define ¢ : A— B as ¢((H N K)h) = Kh. Since
¢ is defined in terms of representatives (the h's in H) then we must
confirm that ¢ is well-defined. Suppose (HN K)h' = (HN K)h. Then
hWh=t € HN K (by Corollary 1.4.3(iii)). So "h~! € K and Kh' = Kh (by
Corollary 1.4.3(iii)), or o((HN K)h') = o((H N K)h) and ¢ is well-defined.
Next, if o((HN K)A') = Kh' = Kh = o((H N K)h), then h~1 € K (by
Corollary 1.4.3(iii)), Yh™t € HN K, and (HN K)h' = (HN K)h (again, by
Corollary 1.4.3(iii)). So ¢ is one to one. Then the domain of ¢ is at most
as large as the range of ¢, or [H: HN K] = |A| < |B| =[G : K].
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Proposition 1.4.9

Proposition 1.4.9

Proposition 1.4.9. Let H and K be subgroups of finite index of group G.
Then [G : HN K] is finite and [G : HN K] < [G : H][G : K]. Furthermore,
[G: HNK]=[G: H][G: K] if and only if G = HK.

Proof. We have KN H < H < G and so by Theorem 1.4.5

[G: HNK] =[G : H][H: HNK]. By Proposition 1.4.8

[H: HN K] <[G: K] and sowe have [G: HN K] < [G : H]|[G : K] as
claimed and the hypotheses imply [G : H N K] is finite. Also, by
Proposition 1.4.8, [H: HN K] =[G : K] if and only if G = KH, so

[G: HNK]=[G: H][G:K]ifand only if G = KH. O
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