Modern Algebra

Chapter I. Groups I.4. Cosets and Counting—Proofs of Theorems

Table of contents

- [Theorem I.4.2](#page-2-0)
- 2 [Corollary I.4.3](#page-7-0)
- 3 [Theorem I.4.5](#page-9-0)
- 4 [Corollary I.4.6, Lagrange's Theorem](#page-15-0)
- 5 [Theorem I.4.7](#page-17-0)
- 6 [Theorem I.4.8](#page-21-0)
	- [Proposition I.4.9](#page-28-0)

Theorem 1.4.2. Let H be a subgroup of a group G .

- (i) Right and left congruence modulo H are each equivalence relations on G.
- (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence). (iii) $|Ha| = |H| = |aH|$ for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof. We denote $a \equiv r$ b (mod H) simply as $a \equiv b$ and prove the claims for right congruence with left congruence following similarly.

Theorem 1.4.2. Let H be a subgroup of a group G .

- (i) Right and left congruence modulo H are each equivalence relations on G.
- (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence). (iii) $|Ha| = |H| = |aH|$ for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof. We denote $a \equiv r b \pmod{H}$ simply as $a \equiv b$ and prove the claims for right congruence with left congruence following similarly.

(i) Let a, b, $c \in G$. Then $a \equiv a$ since $aa^{-1} = e \in H$ (reflexive). For $a \equiv b$ we have $ab^{-1} \in H$ and since H is a group, $(ab^{-1})^{-1} = ba^{-1} \in H$ and so $b \equiv a$ (symmetric). Suppose $a \equiv b$ and $b \equiv c$. Then $ab^{-1}, bc^{-1} \in H$ and so $(ab^{-1})(bc^{-1}) = ac^{-1} ∈ H$ and so $a ≡ c$ (transitive). So \equiv is an equivalence relation.

Theorem 1.4.2. Let H be a subgroup of a group G .

- (i) Right and left congruence modulo H are each equivalence relations on G.
- (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence). (iii) $|Ha| = |H| = |aH|$ for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof. We denote $a \equiv r b \pmod{H}$ simply as $a \equiv b$ and prove the claims for right congruence with left congruence following similarly. (i) Let a, b, $c \in G$. Then $a \equiv a$ since $aa^{-1} = e \in H$ (reflexive). For $a \equiv b$ we have $ab^{-1} \in H$ and since H is a group, $(ab^{-1})^{-1} = ba^{-1} \in H$ and so $b \equiv a$ (symmetric). Suppose $a\equiv b$ and $b\equiv c$. Then $ab^{-1}, bc^{-1}\in H$ and so $(ab^{-1})(bc^{-1})=ac^{-1}\in H$ and so $a\equiv c$ (transitive). So \equiv is an equivalence relation.

Theorem 1.4.2. Let H be a subgroup of a group G .

 (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence). (iii) $|Ha| = |H| = |aH|$ for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof (continued). (ii) The equivalence class of $a \in G$ under right congruence is

$$
\{x \in G \mid x \equiv a\} = \{x \in G \mid xa^{-1} \in H\} = \{x \in G \mid xa^{-1} = h, h \in H\}
$$

$$
= \{x \in G \mid x = ha, h \in H\} = \{ha \mid h \in H\} = Ha.
$$

(iii) Define α : Ha \rightarrow H as $\alpha(ha) = h$. If $\alpha(h_1a) = \alpha(h_2a)$ then $h_1 = h_2$ and α is one to one. If $h \in H$ then $\alpha(ha) = h$ where $ha \in Ha$, so α is onto. Therefore $|Ha| = |H|$.

Theorem 1.4.2. Let H be a subgroup of a group G .

 (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence). (iii) $|Ha| = |H| = |aH|$ for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof (continued). (ii) The equivalence class of $a \in G$ under right congruence is

$$
\{x \in G \mid x \equiv a\} = \{x \in G \mid xa^{-1} \in H\} = \{x \in G \mid xa^{-1} = h, h \in H\}
$$

$$
= \{x \in G \mid x = ha, h \in H\} = \{ha \mid h \in H\} = Ha.
$$

(iii) Define α : Ha \rightarrow H as $\alpha(ha) = h$. If $\alpha(h_1a) = \alpha(h_2a)$ then $h_1 = h_2$ and α is one to one. If $h \in H$ then $\alpha(ha) = h$ where $ha \in Ha$, so α is onto. Therefore $|Ha| = |H|$.

Corollary I.4.3

Corollary 1.4.3. Let H be a subgroup of group G .

- (i) G is the union of the right (and left) cosets of H in G.
- (ii) Two right (or two left) cosets of H in G are either disjoint or equal.
- (iii) For a, $b \in G$, we have that $Ha = Hb$ if and only if $ab^{-1} \in H$, and $aH=bH$ if and only if $a^{-1}b\in H.$
- (iv) If R is the set of distinct right cosets of H in G and L is the set of distinct left cosets of H in G, then $|\mathcal{R}| = |\mathcal{L}|$.

Proof. (iv) Define $\alpha : \mathcal{R} \to \mathcal{L}$ as $\alpha(Ha) = a^{-1}H$. If $\alpha(Ha) = \alpha(Hb)$ then $a^{-1}H = b^{-1}H$ and $(a^{-1})^{-1}b^{-1} \in H$ or $ab^{-1} \in H$ and so by (iii) $Ha = Hb$, so α is one to one. If aH \in ${\mathcal L}$ then $\alpha(Ha^{-1})=(a^{-1})^{-1}H=aH$ and so α is onto. Since α is a bijection, then $|\mathcal{R}| = |\mathcal{L}|$.

Corollary I.4.3

Corollary 1.4.3. Let H be a subgroup of group G .

- (i) G is the union of the right (and left) cosets of H in G.
- (ii) Two right (or two left) cosets of H in G are either disjoint or equal.
- (iii) For a, $b \in G$, we have that $Ha = Hb$ if and only if $ab^{-1} \in H$, and $aH=bH$ if and only if $a^{-1}b\in H.$
- (iv) If R is the set of distinct right cosets of H in G and L is the set of distinct left cosets of H in G, then $|\mathcal{R}| = |\mathcal{L}|$.

Proof. (iv) Define $\alpha: \mathcal{R} \to \mathcal{L}$ as $\alpha(Ha) = a^{-1}H$. If $\alpha(Ha) = \alpha(Hb)$ then $a^{-1}H = b^{-1}H$ and $(a^{-1})^{-1}b^{-1} \in H$ or $ab^{-1} \in H$ and so by (iii) $Ha = Hb$, so α is one to one. If $aH\in\mathcal{L}$ then $\alpha(Ha^{-1})=(a^{-1})^{-1}H=aH$ and so α is onto. Since α is a bijection, then $|\mathcal{R}| = |\mathcal{L}|$.

Theorem 1.4.5. If K, H, G are groups with $K < H < G$, then $[G : K] = [G : H][H : K]$. If any two of these indices are finite, then so is the third.

Proof. By Corollary 4.3(i and ii), $G = \bigcup_{i \in I} Ha_i$ with $a_i \in G$ and $\{a_i\mid i\in I\}$ consists of exactly one element from each right coset of H in G (the set $\{a_i \mid i \in I\}$ is called a "complete set of right coset representatives" and $|\{a_i \mid i \in I\}| = |I| = [G : H]$). Similarly, $H = \bigcup_{i \in I} K b_i$ with $b_i \in H$ and $|J| = [H : K]$. By Corollary 4.3(ii) the Ha_i are mutually disjoint and the Kb_i are mutually disjoint. Therefore

$$
G=\cup_{i\in I} Ha_i=\cup_{i\in I} (\cup_{j\in J} Kb_j) a_i=\cup_{(i,j)\in I\times J} Kb_j a_i.
$$

Theorem 1.4.5. If K, H, G are groups with $K < H < G$, then $[G : K] = [G : H][H : K]$. If any two of these indices are finite, then so is the third.

Proof. By Corollary 4.3(i and ii), $G = \bigcup_{i \in I} Ha_i$ with $a_i \in G$ and $\{a_i\mid i\in I\}$ consists of exactly one element from each right coset of H in G (the set $\{a_i \mid i \in I\}$ is called a "complete set of right coset representatives" and $|\{a_i \mid i \in I\}| = |I| = [G : H]$). Similarly, $H = \bigcup_{i \in I} K b_i$ with $b_i \in H$ and $|J| = [H : K]$. By Corollary 4.3(ii) the Ha_i are mutually disjoint and the Kb_i are mutually disjoint. Therefore

$$
G=\cup_{i\in I} Ha_i=\cup_{i\in I} (\cup_{j\in J} Kb_j) a_i=\cup_{(i,j)\in I\times J} Kb_j a_i.
$$

ASSUME that the $Kb_i a_i$ are not mutually disjoint.

Theorem 1.4.5. If K, H, G are groups with $K < H < G$, then $[G : K] = [G : H][H : K]$. If any two of these indices are finite, then so is the third.

Proof. By Corollary 4.3(i and ii), $G = \bigcup_{i \in I} Ha_i$ with $a_i \in G$ and $\{a_i\mid i\in I\}$ consists of exactly one element from each right coset of H in G (the set $\{a_i \mid i \in I\}$ is called a "complete set of right coset representatives" and $|\{a_i \mid i \in I\}| = |I| = [G : H]$). Similarly, $H = \bigcup_{i \in I} K b_i$ with $b_i \in H$ and $|J| = [H : K]$. By Corollary 4.3(ii) the Ha_i are mutually disjoint and the Kb_i are mutually disjoint. Therefore

$$
G=\cup_{i\in I} Ha_i=\cup_{i\in I} (\cup_{j\in J} Kb_j) a_i=\cup_{(i,j)\in I\times J} Kb_j a_i.
$$

ASSUME that the $Kb_i a_i$ are not mutually disjoint.

Theorem I.4.5 (continued)

Theorem 1.4.5. If K, H, G are groups with $K < H < G$, then $[G : K] = [G : H][H : K]$. If any two of these indices are finite, then so is the third.

Proof (continued). They are still cosets of K in G and so if they are not disjoint then they must be equal by Corollary 4.3(ii). Then our assumption **implies** $Kb_i a_i = Kb_i a_t$ **for either** $j \neq r$ **or** $i \neq t$ **.** But then $b_i a_i = k b_i a_t$ for some $k \in K$ (choosing $e \in K$ on the left-hand side). Since $b_j, b_r, k \in H$ then H a $_{i}=H$ b $_{j}$ a $_{i}=H(b_{j}$ a $_{i})=H(kb_{r}$ a $_{t})=Hk$ b $_{r}$ a $_{t}=H$ a $_{t}.$ So $i=t$ and $b_j a_i = k b_r a_t$ implies that $b_j = k b_r$. Thus $K b_j = K k b_r = K b_r$ and $j = r$.

Theorem I.4.5 (continued)

Theorem 1.4.5. If K, H, G are groups with $K < H < G$, then $[G : K] = [G : H][H : K]$. If any two of these indices are finite, then so is the third.

Proof (continued). They are still cosets of K in G and so if they are not disjoint then they must be equal by Corollary 4.3(ii). Then our assumption implies $Kb_i a_i = Kb_r a_t$ for either $j \neq r$ or $i \neq t$. But then $b_i a_i = k b_r a_t$ for some $k \in \mathcal{K}$ (choosing $e \in \mathcal{K}$ on the left-hand side). Since $b_j, b_r, k \in \mathcal{H}$ then H a $_{i}=H$ b $_{j}$ a $_{i}=H(b_{j}$ a $_{i})=H(kb_{r}$ a $_{t})=Hk$ b $_{r}$ a $_{t}=H$ a $_{t}.$ So $i=t$ and $b_j a_i = k b_r a_t$ implies that $b_j = k b_r$. Thus $K b_j = K k b_r = K b_r$ and $j = r$. Then $Kb_i a_i = Kb_i a_t$ only if $i = t$ and $j = r$, a CONTRADICTION to our assumption of not mutually disjoint. Therefore the cosets $Kb_i a_i$ are mutually disjoint and the cardinality of such cosets is $|I \times J| = |I||J|$ by the product of Cardinal numbers (see Definition 0.8.3 of [Section 0.8. Cardinal](https://faculty.etsu.edu/gardnerr/5410/notes/0-8.pdf) [Numbers](https://faculty.etsu.edu/gardnerr/5410/notes/0-8.pdf)). Whence(!) $[G : K] = |I \times J| = |I||J| = [G : H][H : K]$. "The last statement of the theorem is obvious."

Theorem I.4.5 (continued)

Theorem 1.4.5. If K, H, G are groups with $K < H < G$, then $[G : K] = [G : H][H : K]$. If any two of these indices are finite, then so is the third.

Proof (continued). They are still cosets of K in G and so if they are not disjoint then they must be equal by Corollary 4.3(ii). Then our assumption implies $Kb_i a_i = Kb_r a_t$ for either $j \neq r$ or $i \neq t$. But then $b_i a_i = k b_r a_t$ for some $k \in \mathcal{K}$ (choosing $e \in \mathcal{K}$ on the left-hand side). Since $b_j, b_r, k \in \mathcal{H}$ then H a $_{i}=H$ b $_{j}$ a $_{i}=H(b_{j}$ a $_{i})=H(kb_{r}$ a $_{t})=Hk$ b $_{r}$ a $_{t}=H$ a $_{t}.$ So $i=t$ and $b_j a_i = k b_r a_t$ implies that $b_j = k b_r$. Thus $K b_j = K k b_r = K b_r$ and $j = r$. Then $Kb_i a_i = Kb_i a_t$ only if $i = t$ and $j = r$, a CONTRADICTION to our assumption of not mutually disjoint. Therefore the cosets $Kb_i a_i$ are mutually disjoint and the cardinality of such cosets is $|I \times J| = |I||J|$ by the product of Cardinal numbers (see Definition 0.8.3 of [Section 0.8. Cardinal](https://faculty.etsu.edu/gardnerr/5410/notes/0-8.pdf) [Numbers](https://faculty.etsu.edu/gardnerr/5410/notes/0-8.pdf)). Whence(!) $[G : K] = |I \times J| = |I||J| = [G : H][H : K]$. "The last statement of the theorem is obvious."

Corollary I.4.6, Lagrange's Theorem

Corollary I.4.6. Lagrange's Theorem.

If H is a subgroup of a group G, then $|G| = |G : H||H|$. In particular, if G is finite then the order |a| of $a \in G$ divides $|G|$ and $|H|$ divides $|G|$.

Proof. With $K = \langle e \rangle$ we have $[G : K] = [G : \langle e \rangle] = |G|$ and $[H : K] = [H : \langle e \rangle] = |H|$. We then have by Theorem I.4.5 that $[G : K] = [G : H][H : K]$ or $|G| = [G : H][H]$. In the event that $H = \langle a \rangle$, $|a| = |H|$ and the second claim follows.

Corollary I.4.6, Lagrange's Theorem

Corollary I.4.6. Lagrange's Theorem.

If H is a subgroup of a group G, then $|G| = |G : H||H|$. In particular, if G is finite then the order |a| of $a \in G$ divides $|G|$ and $|H|$ divides $|G|$.

Proof. With $K = \langle e \rangle$ we have $[G : K] = [G : \langle e \rangle] = |G|$ and $[H : K] = [H : \langle e \rangle] = |H|$. We then have by Theorem I.4.5 that $[G : K] = [G : H][H : K]$ or $|G| = [G : H][H]$. In the event that $H = \langle a \rangle$, $|a| = |H|$ and the second claim follows.

Theorem 1.4.7. Let H and K be finite subgroups of a group G. Then $|HK| = |H||K|/|H \cap K|$.

Proof. Let $C = H \cap K$. Then C is a finite subgroup of G by Corollary 1.2.6. C is also a subgroup of H and of K. By Lagrange's Theorem (Corollary I.4.6), $[K : C] = |K|/|C| = |K|/|H \cap K| = n$. So K is the disjoint union of n cosets of C: $K = C_{k1} \cup C_{k2} \cup \cdots \cup C_{kn}$ for some $k_i \in K$.

Theorem I.4.7

Theorem 1.4.7. Let H and K be finite subgroups of a group G. Then $|HK| = |H||K|/|H \cap K|$.

Proof. Let $C = H \cap K$. Then C is a finite subgroup of G by Corollary 1.2.6. C is also a subgroup of H and of K. By Lagrange's Theorem (Corollary I.4.6), $[K : C] = |K|/|C| = |K|/|H \cap K| = n$. So K is the disjoint union of n cosets of C: $K = Ck_1 \cup Ck_2 \cup \cdots \cup Ck_n$ for some $k_i \in K$.

Next, we consider the sets $H C k_i$. ASSUME $H C k_i \cap H C k_j \neq \emptyset$ for some $i\neq j.$ Then $h_1c_1k_i=h_2c_2k_j$ for some $h_1,h_2\in H$ and $c_1,c_2\in\mathcal{C}.$ Then $c_1 k_i k_j^{-1} = h_1^{-1} h_2 c_2 \in H$ since $h_1^{-1}, h_2 \in H$ and $c_1, c_2 \in C = H \cap K \subset H$. Also, $\,c_1^{-1} \in \mathit{C} \subset \mathit{H}$ and so $\,c_1^{-1}(\mathit{c}_1 \mathit{k}_i \mathit{k}_j^{-1})$ $j^{(-1)}=k_ik_j^{-1}\in H.$ But $k_ik_j^{-1}\in K$ and so $k_{i}k_{j}^{-1}\in\mathcal{C}.$ By Corollary I.4.3(iii), this implies that $Ck_{i}=Ck_{j},$ CONTRADICTING the disjointness of the cosets Ck_i and Ck_j . So the assumption that $HCK_i \cap HCK_i \neq \emptyset$ is false and hence HCK_i and HCK_i are disjoint for all distinct i and j .

Theorem I.4.7

Theorem 1.4.7. Let H and K be finite subgroups of a group G. Then $|HK| = |H||K|/|H \cap K|$.

Proof. Let $C = H \cap K$. Then C is a finite subgroup of G by Corollary 1.2.6. C is also a subgroup of H and of K. By Lagrange's Theorem (Corollary I.4.6), $[K : C] = |K|/|C| = |K|/|H \cap K| = n$. So K is the disjoint union of n cosets of C: $K = Ck_1 \cup Ck_2 \cup \cdots \cup Ck_n$ for some $k_i \in K$.

Next, we consider the sets $H C k_i$. ASSUME $H C k_i \cap H C k_j \neq \varnothing$ for some $i\neq j$. Then $h_1c_1k_i=h_2c_2k_j$ for some $h_1,h_2\in H$ and $c_1,c_2\in\mathcal{C}$. Then $c_1k_ik_j^{-1} = h_1^{-1}h_2c_2 \in H$ since $h_1^{-1}, h_2 \in H$ and $c_1, c_2 \in C = H \cap K \subset H$. Also, $\,c_1^{-1} \in \mathit{C} \subset \mathit{H}$ and so $\,c_1^{-1} (c_1 k_i k_j^{-1})$ $j_j^{j-1})=k_ik_j^{-1}\in H.$ But $k_ik_j^{-1}\in K$ and so $k_i k_j^{-1} \in \mathcal{C}$. By Corollary I.4.3(iii), this implies that $Ck_i = Ck_j,$ <code>CONTRADICTING</code> the disjointness of the cosets Ck_i and Ck_j . So the assumption that $HCK_i \cap HCK_j \neq \emptyset$ is false and hence HCK_i and HCK_i are disjoint for all distinct i and j .

Theorem I.4.7 (continued)

Theorem I.4.7. Let H and K be finite subgroups of a group G . Then $|HK| = |H||K|/|H \cap K|$.

Proof (continued). Since $HC = H$ (because $C < H$), we have

$$
HK = H(Ck_1 \cup Ck_2 \cup \cdots \cup Ck_n)
$$

=
$$
H Ck_1 \cup H Ck_2 \cup \cdots \cup H Ck_n
$$

=
$$
Hk_1 \cup Hk_2 \cup \cdots \cup Hk_n.
$$

So HK consists of $n = |K|/|H \cap K|$ disjoint cosets of H in G and $|HK| = |H|n = |H|(|K|/|H \cap K|).$

Proposition 1.4.8. If H and K are subgroups of a group G , then $[H : H \cap K] \leq [G : K]$. If $[G : K]$ is finite, then $[H : H \cap K] = [G : K]$ if and only if $G = KH$.

Proof. Let A be the set of all right cosets of $H \cap K$ in H (of which there are $[H : H \cap K]$ and let B be the set of all right cosets of K in G (of which there are $[G : K]$). Define $\varphi : A \to B$ as $\varphi((H \cap K)h) = Kh$. Since φ is defined in terms of representatives (the h's in H) then we must confirm that φ is well-defined.

Proposition 1.4.8. If H and K are subgroups of a group G , then $[H : H \cap K] \leq [G : K]$. If $[G : K]$ is finite, then $[H : H \cap K] = [G : K]$ if and only if $G = KH$.

Proof. Let A be the set of all right cosets of $H \cap K$ in H (of which there are $[H : H \cap K]$ and let B be the set of all right cosets of K in G (of which there are $[G : K]$). Define $\varphi : A \to B$ as $\varphi((H \cap K)h) = Kh$. Since φ is defined in terms of representatives (the h's in H) then we must confirm that φ is well-defined. Suppose $(H \cap K)h' = (H \cap K)h$. Then $h'h^{-1} ∈ H ∩ K$ (by Corollary I.4.3(iii)). So $h'h^{-1} ∈ K$ and $Kh' = Kh$ (by Corollary 1.4.3(iii)), or $\varphi((H \cap K)h') = \varphi((H \cap K)h)$ and φ is well-defined.

Theorem I.4.8

Proposition 1.4.8. If H and K are subgroups of a group G , then $[H : H \cap K]$ < $[G : K]$. If $[G : K]$ is finite, then $[H : H \cap K] = [G : K]$ if and only if $G = KH$.

Proof. Let A be the set of all right cosets of $H \cap K$ in H (of which there are $[H : H \cap K]$ and let B be the set of all right cosets of K in G (of which there are $[G : K]$). Define $\varphi : A \to B$ as $\varphi((H \cap K)h) = Kh$. Since φ is defined in terms of representatives (the h's in H) then we must confirm that φ is well-defined. Suppose $(H \cap K)$ h' $=(H \cap K)$ h. Then $h'h^{-1} ∈ H ∩ K$ (by Corollary I.4.3(iii)). So $h'h^{-1} ∈ K$ and $Kh' = Kh$ (by Corollary 1.4.3(iii)), or $\varphi((H \cap K)h') = \varphi((H \cap K)h)$ and φ is well-defined. Next, if $\varphi((H \cap K)h') = Kh' = Kh = \varphi((H \cap K)h)$, then $h'h^{-1} \in K$ (by Corollary 1.4.3(iii)), $h'h^{-1} \in H \cap K$, and $(H \cap K)h' = (H \cap K)h$ (again, by Corollary I.4.3(iii)). So φ is one to one. Then the domain of φ is at most as large as the range of φ , or $[H : H \cap K] = |A| \le |B| = [G : K]$.

Theorem I.4.8

Proposition 1.4.8. If H and K are subgroups of a group G , then $[H : H \cap K]$ < $[G : K]$. If $[G : K]$ is finite, then $[H : H \cap K] = [G : K]$ if and only if $G = KH$.

Proof. Let A be the set of all right cosets of $H \cap K$ in H (of which there are $[H : H \cap K]$ and let B be the set of all right cosets of K in G (of which there are $[G : K]$). Define $\varphi : A \to B$ as $\varphi((H \cap K)h) = Kh$. Since φ is defined in terms of representatives (the h's in H) then we must confirm that φ is well-defined. Suppose $(H \cap K)$ h' $=(H \cap K)$ h. Then $h'h^{-1} ∈ H ∩ K$ (by Corollary I.4.3(iii)). So $h'h^{-1} ∈ K$ and $Kh' = Kh$ (by Corollary 1.4.3(iii)), or $\varphi((H \cap K)h') = \varphi((H \cap K)h)$ and φ is well-defined. Next, if $\varphi((H \cap K)h') = Kh' = Kh = \varphi((H \cap K)h)$, then $h'h^{-1} \in K$ (by Corollary 1.4.3(iii)), $h'h^{-1} \in H \cap K$, and $(H \cap K)h' = (H \cap K)h$ (again, by Corollary I.4.3(iii)). So φ is one to one. Then the domain of φ is at most as large as the range of φ , or $[H : H \cap K] = |A| \leq |B| = [G : K]$.

Theorem I.4.8 (continued)

Proof (continued). Suppose $[G : K]$ is finite. Then $[H : H \cap K] = |A| = |B| = [G : K]$ if and only if φ is onto (since we already know that φ is one to one by the above argument). So the second claim holds if and only if φ is onto (the finiteness of $[G:K]$ is used here). (1) Let $g \in G$. If φ is onto then for Kg a right coset of K in G we have $\varphi((H \cap K)h) = Kg$ for some $(H \cap K)h$ a right coset of $H \cap K$ in H. Then $\varphi((H \cap K)h) = Kh = Kg$ and so $gh^{-1} \in K$ (by Corollary I.4.3(iii)). Hence $(gh^{-1})h ∈ KH$, or $g ∈ KH$. So $G ⊆ KH$. Of course, since H and K are subgroups of G then $G \supset HK$. So if φ is onto then $G = KH$.

Theorem I.4.8 (continued)

Proof (continued). Suppose $[G : K]$ is finite. Then $[H : H \cap K] = |A| = |B| = [G : K]$ if and only if φ is onto (since we already know that φ is one to one by the above argument). So the second claim holds if and only if φ is onto (the finiteness of $[G:K]$ is used here). (1) Let $g \in G$. If φ is onto then for Kg a right coset of K in G we have $\varphi((H \cap K)h) = Kg$ for some $(H \cap K)h$ a right coset of $H \cap K$ in H. Then $\varphi((H \cap K)h) = Kh = Kg$ and so $gh^{-1} \in K$ (by Corollary I.4.3(iii)). Hence $(\textit{gh}^{-1}) h \in \textit{KH}$, or $\textit{g} \in \textit{KH}$. So $\textit{G} \subseteq \textit{KH}$. Of course, since H and K are subgroups of G then $G \supset HK$. So if φ is onto then $G = KH$. (2) Suppose $G = KH$. Let Kg be a right coset of K in G. Since $G = KH$, then $g = kh$ for some $k \in K$ and $h \in H$. Hence $Kg = K(kh) = Kh$ since $k \in K$ and so $\varphi((H \cap K)h) = Kh = Kg$ and φ is onto. That is, φ is onto if and only if $G = KH$. So for finite $[G : K]$ we have $[H : H \cap K] = [G : K]$ if and only if $G = KH$

Theorem I.4.8 (continued)

Proof (continued). Suppose $[G : K]$ is finite. Then $[H : H \cap K] = |A| = |B| = [G : K]$ if and only if φ is onto (since we already know that φ is one to one by the above argument). So the second claim holds if and only if φ is onto (the finiteness of $[G:K]$ is used here). (1) Let $g \in G$. If φ is onto then for Kg a right coset of K in G we have $\varphi((H \cap K)h) = Kg$ for some $(H \cap K)h$ a right coset of $H \cap K$ in H. Then $\varphi((H \cap K)h) = Kh = Kg$ and so $gh^{-1} \in K$ (by Corollary I.4.3(iii)). Hence $(\textit{gh}^{-1}) h \in \textit{KH}$, or $\textit{g} \in \textit{KH}$. So $\textit{G} \subseteq \textit{KH}$. Of course, since H and K are subgroups of G then $G \supset HK$. So if φ is onto then $G = KH$. (2) Suppose $G = KH$. Let Kg be a right coset of K in G. Since $G = KH$, then $g = kh$ for some $k \in K$ and $h \in H$. Hence $Kg = K(kh) = Kh$ since $k \in K$ and so $\varphi((H \cap K)h) = Kh = Kg$ and φ is onto. That is, φ is onto if and only if $G = KH$. So for finite $[G : K]$ we have $[H : H \cap K] = [G : K]$ if and only if $G = KH$

Proposition 1.4.9. Let H and K be subgroups of finite index of group G . Then $[G : H \cap K]$ is finite and $[G : H \cap K] \leq [G : H][G : K]$. Furthermore, $[G : H \cap K] = [G : H][G : K]$ if and only if $G = HK$.

Proof. We have $K \cap H < H < G$ and so by Theorem 1.4.5 $[G : H \cap K] = [G : H][H : H \cap K]$. By Proposition 1.4.8 $[H : H \cap K] \leq [G : K]$ and so we have $[G : H \cap K] \leq [G : H][G : K]$ as claimed and the hypotheses imply $[G : H \cap K]$ is finite. Also, by Proposition I.4.8, $[H : H \cap K] = [G : K]$ if and only if $G = KH$, so $[G : H \cap K] = [G : H][G : K]$ if and only if $G = KH$.

Proposition 1.4.9. Let H and K be subgroups of finite index of group G. Then $[G : H \cap K]$ is finite and $[G : H \cap K] \leq [G : H][G : K]$. Furthermore, $[G : H \cap K] = [G : H][G : K]$ if and only if $G = HK$.

Proof. We have $K \cap H < H < G$ and so by Theorem 1.4.5 $[G : H \cap K] = [G : H][H : H \cap K]$. By Proposition 1.4.8 $[H : H \cap K] \leq [G : K]$ and so we have $[G : H \cap K] < [G : H][G : K]$ as claimed and the hypotheses imply $[G : H \cap K]$ is finite. Also, by Proposition I.4.8, $[H : H \cap K] = [G : K]$ if and only if $G = KH$, so $[G : H \cap K] = [G : H][G : K]$ if and only if $G = KH$.