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Theorem I.4.2

Theorem I.4.2

Theorem I.4.2. Let H be a subgroup of a group G .

(i) Right and left congruence modulo H are each equivalence
relations on G .

(ii) The equivalence class of a ∈ G under right (and left)
congruence modulo H is the set Ha = {ha | h ∈ H} (and
aH = {ah | h ∈ H} for left congruence).

(iii) |Ha| = |H| = |aH| for all a ∈ G .

The set Ha is a right coset of H in G and aH is a left coset of H in G .

Proof. We denote a ≡r b (mod H) simply as a ≡ b and prove the claims
for right congruence with left congruence following similarly.

(i) Let a, b, c ∈ G . Then a ≡ a since aa−1 = e ∈ H (reflexive).
For a ≡ b we have ab−1 ∈ H and since H is a group,
(ab−1)−1 = ba−1 ∈ H and so b ≡ a (symmetric).
Suppose a ≡ b and b ≡ c . Then ab−1, bc−1 ∈ H and so
(ab−1)(bc−1) = ac−1 ∈ H and so a ≡ c (transitive). So ≡ is an
equivalence relation.
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Theorem I.4.2. Let H be a subgroup of a group G .

(ii) The equivalence class of a ∈ G under right (and left)
congruence modulo H is the set Ha = {ha | h ∈ H} (and
aH = {ah | h ∈ H} for left congruence).

(iii) |Ha| = |H| = |aH| for all a ∈ G .

The set Ha is a right coset of H in G and aH is a left coset of H in G .

Proof (continued). (ii) The equivalence class of a ∈ G under right
congruence is

{x ∈ G | x ≡ a} = {x ∈ G | xa−1 ∈ H} = {x ∈ G | xa−1 = h, h ∈ H}

= {x ∈ G | x = ha, h ∈ H} = {ha | h ∈ H} = Ha.

(iii) Define α : Ha → H as α(ha) = h. If α(h1a) = α(h2a) then h1 = h2

and α is one to one. If h ∈ H then α(ha) = h where ha ∈ Ha, so α is
onto. Therefore |Ha| = |H|.
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Corollary I.4.3

Corollary I.4.3. Let H be a subgroup of group G .

(i) G is the union of the right (and left) cosets of H in G .

(ii) Two right (or two left) cosets of H in G are either disjoint or
equal.

(iii) For a, b ∈ G , we have that Ha = Hb if and only if ab−1 ∈ H,
and aH = bH if and only if a−1b ∈ H.

(iv) If R is the set of distinct right cosets of H in G and L is the
set of distinct left cosets of H in G , then |R| = |L|.

Proof. (iv) Define α : R→ L as α(Ha) = a−1H. If α(Ha) = α(Hb) then
a−1H = b−1H and (a−1)−1b−1 ∈ H or ab−1 ∈ H and so by (iii) Ha = Hb,
so α is one to one. If aH ∈ L then α(Ha−1) = (a−1)−1H = aH and so α
is onto. Since α is a bijection, then |R| = |L|.
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Theorem I.4.5

Theorem I.4.5

Theorem I.4.5. If K ,H,G are groups with K < H < G , then
[G : K ] = [G : H][H : K ]. If any two of these indices are finite, then so is
the third.

Proof. By Corollary 4.3(i and ii), G = ∪· i∈IHai with ai ∈ G and
{ai | i ∈ I} consists of exactly one element from each right coset of H in
G (the set {ai | i ∈ I} is called a “complete set of right coset
representatives” and |{ai | i ∈ I}| = |I | = [G : H]). Similarly,
H = ∪· j∈JKbj with bj ∈ H and |J| = [H : K ]. By Corollary 4.3(ii) the Hai

are mutually disjoint and the Kbj are mutually disjoint. Therefore

G = ∪· i∈IHai = ∪· i∈I (∪· j∈JKbj) ai = ∪(i ,j)∈I×JKbjai .

ASSUME that the Kbjai are not mutually disjoint.
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Theorem I.4.5

Theorem I.4.5 (continued)

Theorem I.4.5. If K ,H,G are groups with K < H < G , then
[G : K ] = [G : H][H : K ]. If any two of these indices are finite, then so is
the third.

Proof (continued). They are still cosets of K in G and so if they are not
disjoint then they must be equal by Corollary 4.3(ii). Then our assumption
implies Kbjai = Kbrat for either j 6= r or i 6= t. But then bjai = kbrat for
some k ∈ K (choosing e ∈ K on the left-hand side). Since bj , br , k ∈ H
then Hai = Hbjai = H(bjai ) = H(kbrat) = Hkbrat = Hat . So i = t and
bjai = kbrat implies that bj = kbr . Thus Kbj = Kkbr = Kbr and j = r .

Then Kbjai = Kbrat only if i = t and j = r , a CONTRADICTION to our
assumption of not mutually disjoint. Therefore the cosets Kbjai are
mutually disjoint and the cardinality of such cosets is |I × J| = |I ||J| by the
product of Cardinal numbers (see Definition 0.8.3 of Section 0.8. Cardinal
Numbers ). Whence(!) [G : K ] = |I × J| = |I ||J| = [G : H][H : K ]. “The
last statement of the theorem is obvious.”
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Corollary I.4.6, Lagrange’s Theorem

Corollary I.4.6, Lagrange’s Theorem

Corollary I.4.6. Lagrange’s Theorem.
If H is a subgroup of a group G , then |G | = [G : H]|H|. In particular, if G
is finite then the order |a| of a ∈ G divides |G | and |H| divides |G |.

Proof. With K = 〈e〉 we have [G : K ] = [G : 〈e〉] = |G | and
[H : K ] = [H : 〈e〉] = |H|. We then have by Theorem I.4.5 that
[G : K ] = [G : H][H : K ] or |G | = [G : H]|H|. In the event that H = 〈a〉,
|a| = |H| and the second claim follows.
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Theorem I.4.7

Theorem I.4.7

Theorem I.4.7. Let H and K be finite subgroups of a group G . Then
|HK | = |H||K |/|H ∩ K |.
Proof. Let C = H ∩ K . Then C is a finite subgroup of G by Corollary
I.2.6. C is also a subgroup of H and of K . By Lagrange’s Theorem
(Corollary I.4.6), [K : C ] = |K |/|C | = |K |/|H ∩ K | = n. So K is the
disjoint union of n cosets of C : K = Ck1 ∪· Ck2 ∪· · · · ∪· Ckn for some
ki ∈ K .

Next, we consider the sets HCki . ASSUME HCki ∩ HCkj 6= ∅ for some
i 6= j . Then h1c1ki = h2c2kj for some h1, h2 ∈ H and c1, c2 ∈ C . Then
c1kik

−1
j = h−1

1 h2c2 ∈ H since h−1
1 , h2 ∈ H and c1, c2 ∈ C = H ∩ K ⊂ H.

Also, c−1
1 ∈ C ⊂ H and so c−1

1 (c1kik
−1
j ) = kik

−1
j ∈ H. But kik

−1
j ∈ K

and so kik
−1
j ∈ C . By Corollary I.4.3(iii), this implies that Cki = Ckj ,

CONTRADICTING the disjointness of the cosets Cki and Ckj . So the
assumption that HCki ∩ HCkj 6= ∅ is false and hence HCki and HCkj are
disjoint for all distinct i and j .
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Theorem I.4.7

Theorem I.4.7 (continued)

Theorem I.4.7. Let H and K be finite subgroups of a group G . Then
|HK | = |H||K |/|H ∩ K |.

Proof (continued). Since HC = H (because C < H), we have

HK = H(Ck1 ∪· Ck2 ∪· · · · ∪· Ckn)

= HCk1 ∪· HCk2 ∪· · · · ∪· HCkn

= Hk1 ∪· Hk2 ∪· · · · ∪· Hkn.

So HK consists of n = |K |/|H ∩ K | disjoint cosets of H in G and
|HK | = |H|n = |H|(|K |/|H ∩ K |).
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Theorem I.4.8

Theorem I.4.8

Proposition I.4.8. If H and K are subgroups of a group G , then
[H : H ∩ K ] ≤ [G : K ]. If [G : K ] is finite, then [H : H ∩ K ] = [G : K ] if
and only if G = KH.

Proof. Let A be the set of all right cosets of H ∩ K in H (of which there
are [H : H ∩ K ]) and let B be the set of all right cosets of K in G (of
which there are [G : K ]). Define ϕ : A → B as ϕ((H ∩ K )h) = Kh. Since
ϕ is defined in terms of representatives (the h’s in H) then we must
confirm that ϕ is well-defined.

Suppose (H ∩ K )h′ = (H ∩ K )h. Then
h′h−1 ∈ H ∩ K (by Corollary I.4.3(iii)). So h′h−1 ∈ K and Kh′ = Kh (by
Corollary I.4.3(iii)), or ϕ((H ∩ K )h′) = ϕ((H ∩ K )h) and ϕ is well-defined.
Next, if ϕ((H ∩ K )h′) = Kh′ = Kh = ϕ((H ∩ K )h), then h′h−1 ∈ K (by
Corollary I.4.3(iii)), h′h−1 ∈ H ∩ K , and (H ∩ K )h′ = (H ∩ K )h (again, by
Corollary I.4.3(iii)). So ϕ is one to one. Then the domain of ϕ is at most
as large as the range of ϕ, or [H : H ∩ K ] = |A| ≤ |B| = [G : K ].
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as large as the range of ϕ, or [H : H ∩ K ] = |A| ≤ |B| = [G : K ].
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Theorem I.4.8 (continued)

Proof (continued). Suppose [G : K ] is finite. Then
[H : H ∩ K ] = |A| = |B| = [G : K ] if and only if ϕ is onto (since we
already know that ϕ is one to one by the above argument). So the second
claim holds if and only if ϕ is onto (the finiteness of [G : K ] is used here).
(1) Let g ∈ G . If ϕ is onto then for Kg a right coset of K in G we have
ϕ((H ∩ K )h) = Kg for some (H ∩ K )h a right coset of H ∩ K in H. Then
ϕ((H ∩ K )h) = Kh = Kg and so gh−1 ∈ K (by Corollary I.4.3(iii)). Hence
(gh−1)h ∈ KH, or g ∈ KH. So G ⊆ KH. Of course, since H and K are
subgroups of G then G ⊇ HK . So if ϕ is onto then G = KH.

(2) Suppose
G = KH. Let Kg be a right coset of K in G . Since G = KH, then g = kh
for some k ∈ K and h ∈ H. Hence Kg = K (kh) = Kh since k ∈ K and so
ϕ((H ∩ K )h) = Kh = Kg and ϕ is onto. That is, ϕ is onto if and only if
G = KH. So for finite [G : K ] we have [H : H ∩K ] = [G : K ] if and only if
G = KH.
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Proposition I.4.9

Proposition I.4.9

Proposition I.4.9. Let H and K be subgroups of finite index of group G .
Then [G : H ∩ K ] is finite and [G : H ∩ K ] ≤ [G : H][G : K ]. Furthermore,
[G : H ∩ K ] = [G : H][G : K ] if and only if G = HK .

Proof. We have K ∩ H < H < G and so by Theorem I.4.5
[G : H ∩ K ] = [G : H][H : H ∩ K ]. By Proposition I.4.8
[H : H ∩ K ] ≤ [G : K ] and so we have [G : H ∩ K ] ≤ [G : H][G : K ] as
claimed and the hypotheses imply [G : H ∩ K ] is finite. Also, by
Proposition I.4.8, [H : H ∩ K ] = [G : K ] if and only if G = KH, so
[G : H ∩ K ] = [G : H][G : K ] if and only if G = KH.
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