Modern Algebra

Chapter I. Groups

I.4. Cosets and Counting—Proofs of Theorems

Table of contents

- Theorem I.4.2
- Corollary I.4.3
- 3 Theorem I.4.5
- 4 Corollary I.4.6, Lagrange's Theorem
- Theorem I.4.7
- Theorem I.4.8
- Proposition I.4.9

Theorem I.4.2. Let H be a subgroup of a group G.

- (i) Right and left congruence modulo H are each equivalence relations on G.
- (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence).
- (iii) |Ha| = |H| = |aH| for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof. We denote $a \equiv_r b \pmod{H}$ simply as $a \equiv b$ and prove the claims for right congruence with left congruence following similarly.

3 / 13

Theorem I.4.2. Let H be a subgroup of a group G.

- (i) Right and left congruence modulo H are each equivalence relations on G.
- (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence).
- (iii) |Ha| = |H| = |aH| for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof. We denote $a \equiv_r b \pmod{H}$ simply as $a \equiv b$ and prove the claims for right congruence with left congruence following similarly.

(i) Let $a,b,c\in G$. Then $a\equiv a$ since $aa^{-1}=e\in H$ (reflexive). For $a\equiv b$ we have $ab^{-1}\in H$ and since H is a group, $(ab^{-1})^{-1}=ba^{-1}\in H$ and so $b\equiv a$ (symmetric). Suppose $a\equiv b$ and $b\equiv c$. Then $ab^{-1},bc^{-1}\in H$ and so $(ab^{-1})(bc^{-1})=ac^{-1}\in H$ and so $a\equiv c$ (transitive). So \equiv is an equivalence relation.

Theorem I.4.2. Let H be a subgroup of a group G.

- (i) Right and left congruence modulo H are each equivalence relations on G.
- (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence).
- (iii) |Ha| = |H| = |aH| for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof. We denote $a \equiv_r b \pmod{H}$ simply as $a \equiv b$ and prove the claims for right congruence with left congruence following similarly.

(i) Let $a, b, c \in G$. Then $a \equiv a$ since $aa^{-1} = e \in H$ (reflexive).

For $a \equiv b$ we have $ab^{-1} \in H$ and since H is a group, $(ab^{-1})^{-1} = ba^{-1} \in H$ and so $b \equiv a$ (symmetric).

Suppose $a \equiv b$ and $b \equiv c$. Then $ab^{-1}, bc^{-1} \in H$ and so

 $(ab^{-1})(bc^{-1}) = ac^{-1} \in H$ and so $a \equiv c$ (transitive). So \equiv is an equivalence relation.

Theorem I.4.2. Let H be a subgroup of a group G.

- (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence).
- (iii) |Ha| = |H| = |aH| for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof (continued). (ii) The equivalence class of $a \in G$ under right congruence is

$$\{x \in G \mid x \equiv a\} = \{x \in G \mid xa^{-1} \in H\} = \{x \in G \mid xa^{-1} = h, h \in H\}$$
$$= \{x \in G \mid x = ha, h \in H\} = \{ha \mid h \in H\} = Ha.$$

(iii) Define $\alpha: Ha \to H$ as $\alpha(ha) = h$. If $\alpha(h_1a) = \alpha(h_2a)$ then $h_1 = h_2$ and α is one to one. If $h \in H$ then $\alpha(ha) = h$ where $ha \in Ha$, so α is onto. Therefore |Ha| = |H|.

4 / 13

Theorem I.4.2. Let H be a subgroup of a group G.

- (ii) The equivalence class of $a \in G$ under right (and left) congruence modulo H is the set $Ha = \{ha \mid h \in H\}$ (and $aH = \{ah \mid h \in H\}$ for left congruence).
- (iii) |Ha| = |H| = |aH| for all $a \in G$.

The set Ha is a right coset of H in G and aH is a left coset of H in G.

Proof (continued). (ii) The equivalence class of $a \in G$ under right congruence is

$$\{x \in G \mid x \equiv a\} = \{x \in G \mid xa^{-1} \in H\} = \{x \in G \mid xa^{-1} = h, h \in H\}$$
$$= \{x \in G \mid x = ha, h \in H\} = \{ha \mid h \in H\} = Ha.$$

(iii) Define $\alpha: Ha \to H$ as $\alpha(ha) = h$. If $\alpha(h_1a) = \alpha(h_2a)$ then $h_1 = h_2$ and α is one to one. If $h \in H$ then $\alpha(ha) = h$ where $ha \in Ha$, so α is onto. Therefore |Ha| = |H|.

Corollary I.4.3

Corollary I.4.3. Let H be a subgroup of group G.

- (i) G is the union of the right (and left) cosets of H in G.
- (ii) Two right (or two left) cosets of H in G are either disjoint or equal.
- (iii) For $a, b \in G$, we have that Ha = Hb if and only if $ab^{-1} \in H$, and aH = bH if and only if $a^{-1}b \in H$.
- (iv) If \mathcal{R} is the set of distinct right cosets of H in G and \mathcal{L} is the set of distinct left cosets of H in G, then $|\mathcal{R}| = |\mathcal{L}|$.

Proof. (iv) Define $\alpha: \mathcal{R} \to \mathcal{L}$ as $\alpha(Ha) = a^{-1}H$. If $\alpha(Ha) = \alpha(Hb)$ then $a^{-1}H = b^{-1}H$ and $(a^{-1})^{-1}b^{-1} \in H$ or $ab^{-1} \in H$ and so by (iii) Ha = Hb, so α is one to one. If $aH \in \mathcal{L}$ then $\alpha(Ha^{-1}) = (a^{-1})^{-1}H = aH$ and so α is onto. Since α is a bijection, then $|\mathcal{R}| = |\mathcal{L}|$.

Corollary 1.4.3

Corollary I.4.3. Let H be a subgroup of group G.

- (i) G is the union of the right (and left) cosets of H in G.
- (ii) Two right (or two left) cosets of H in G are either disjoint or equal.
- (iii) For $a, b \in G$, we have that Ha = Hb if and only if $ab^{-1} \in H$. and aH = bH if and only if $a^{-1}b \in H$.
- (iv) If \mathcal{R} is the set of distinct right cosets of H in G and \mathcal{L} is the set of distinct left cosets of H in G, then $|\mathcal{R}| = |\mathcal{L}|$.

Proof. (iv) Define $\alpha: \mathcal{R} \to \mathcal{L}$ as $\alpha(Ha) = a^{-1}H$. If $\alpha(Ha) = \alpha(Hb)$ then $a^{-1}H = b^{-1}H$ and $(a^{-1})^{-1}b^{-1} \in H$ or $ab^{-1} \in H$ and so by (iii) Ha = Hb, so α is one to one. If $aH \in \mathcal{L}$ then $\alpha(Ha^{-1}) = (a^{-1})^{-1}H = aH$ and so α is onto. Since α is a bijection, then $|\mathcal{R}| = |\mathcal{L}|$.

Theorem I.4.5. If K, H, G are groups with K < H < G, then [G : K] = [G : H][H : K]. If any two of these indices are finite, then so is the third.

Proof. By Corollary 4.3(i and ii), $G = \bigcup_{i \in I} Ha_i$ with $a_i \in G$ and $\{a_i \mid i \in I\}$ consists of exactly one element from each right coset of H in G (the set $\{a_i \mid i \in I\}$ is called a "complete set of right coset representatives" and $|\{a_i \mid i \in I\}| = |I| = [G:H]$). Similarly, $H = \bigcup_{j \in J} Kb_j$ with $b_j \in H$ and |J| = [H:K]. By Corollary 4.3(ii) the Ha_i are mutually disjoint and the Kb_j are mutually disjoint. Therefore

$$G = \bigcup_{i \in I} Ha_i = \bigcup_{i \in I} (\bigcup_{j \in J} Kb_j) a_i = \bigcup_{(i,j) \in I \times J} Kb_j a_i.$$

Theorem I.4.5. If K, H, G are groups with K < H < G, then [G : K] = [G : H][H : K]. If any two of these indices are finite, then so is the third.

Proof. By Corollary 4.3(i and ii), $G = \bigcup_{i \in I} Ha_i$ with $a_i \in G$ and $\{a_i \mid i \in I\}$ consists of exactly one element from each right coset of H in G (the set $\{a_i \mid i \in I\}$ is called a "complete set of right coset representatives" and $|\{a_i \mid i \in I\}| = |I| = [G:H]$). Similarly, $H = \bigcup_{j \in J} Kb_j$ with $b_j \in H$ and |J| = [H:K]. By Corollary 4.3(ii) the Ha_i are mutually disjoint and the Kb_i are mutually disjoint. Therefore

$$G = \bigcup_{i \in I} Ha_i = \bigcup_{i \in I} (\bigcup_{j \in J} Kb_j) a_i = \bigcup_{(i,j) \in I \times J} Kb_j a_i.$$

ASSUME that the Kb_ia_i are not mutually disjoint.

Theorem I.4.5. If K, H, G are groups with K < H < G, then [G : K] = [G : H][H : K]. If any two of these indices are finite, then so is the third.

Proof. By Corollary 4.3(i and ii), $G = \bigcup_{i \in I} Ha_i$ with $a_i \in G$ and $\{a_i \mid i \in I\}$ consists of exactly one element from each right coset of H in G (the set $\{a_i \mid i \in I\}$ is called a "complete set of right coset representatives" and $|\{a_i \mid i \in I\}| = |I| = [G:H]$). Similarly, $H = \bigcup_{j \in J} Kb_j$ with $b_j \in H$ and |J| = [H:K]. By Corollary 4.3(ii) the Ha_i are mutually disjoint and the Kb_j are mutually disjoint. Therefore

$$G = \bigcup_{i \in I} Ha_i = \bigcup_{i \in I} (\bigcup_{j \in J} Kb_j) a_i = \bigcup_{(i,j) \in I \times J} Kb_j a_i.$$

ASSUME that the Kb_ia_i are not mutually disjoint.

Theorem I.4.5 (continued)

Theorem I.4.5. If K, H, G are groups with K < H < G, then [G : K] = [G : H][H : K]. If any two of these indices are finite, then so is the third.

Proof (continued). They are still cosets of K in G and so if they are not disjoint then they must be equal by Corollary 4.3(ii). Then our assumption implies $Kb_ja_i = Kb_ra_t$ for either $j \neq r$ or $i \neq t$. But then $b_ja_i = kb_ra_t$ for some $k \in K$ (choosing $e \in K$ on the left-hand side). Since $b_j, b_r, k \in H$ then $Ha_i = Hb_ja_i = H(b_ja_i) = H(kb_ra_t) = Hkb_ra_t = Ha_t$. So i = t and $b_ja_i = kb_ra_t$ implies that $b_j = kb_r$. Thus $Kb_j = Kkb_r = Kb_r$ and j = r.

Theorem I.4.5 (continued)

Theorem I.4.5. If K, H, G are groups with K < H < G, then [G : K] = [G : H][H : K]. If any two of these indices are finite, then so is the third.

Proof (continued). They are still cosets of K in G and so if they are not disjoint then they must be equal by Corollary 4.3(ii). Then our assumption implies $Kb_ia_i = Kb_ra_t$ for either $i \neq r$ or $i \neq t$. But then $b_ia_i = kb_ra_t$ for some $k \in K$ (choosing $e \in K$ on the left-hand side). Since $b_i, b_r, k \in H$ then $Ha_i = Hb_ia_i = H(b_ia_i) = H(kb_ra_t) = Hkb_ra_t = Ha_t$. So i = t and $b_i a_i = k b_r a_t$ implies that $b_i = k b_r$. Thus $K b_i = K k b_r = K b_r$ and j = r. Then $Kb_ia_i = Kb_ra_t$ only if i = t and j = r, a CONTRADICTION to our assumption of not mutually disjoint. Therefore the cosets Kb_ia_i are mutually disjoint and the cardinality of such cosets is $|I \times J| = |I||J|$ by the product of Cardinal numbers (see Definition 0.8.3 of Section 0.8. Cardinal Numbers). Whence(!) $[G : K] = |I \times J| = |I||J| = [G : H][H : K]$. "The last statement of the theorem is obvious."

Theorem I.4.5 (continued)

Theorem I.4.5. If K, H, G are groups with K < H < G, then [G : K] = [G : H][H : K]. If any two of these indices are finite, then so is the third.

Proof (continued). They are still cosets of K in G and so if they are not disjoint then they must be equal by Corollary 4.3(ii). Then our assumption implies $Kb_ia_i = Kb_ra_t$ for either $i \neq r$ or $i \neq t$. But then $b_ia_i = kb_ra_t$ for some $k \in K$ (choosing $e \in K$ on the left-hand side). Since $b_i, b_r, k \in H$ then $Ha_i = Hb_ia_i = H(b_ia_i) = H(kb_ra_t) = Hkb_ra_t = Ha_t$. So i = t and $b_i a_i = k b_r a_t$ implies that $b_i = k b_r$. Thus $K b_i = K k b_r = K b_r$ and j = r. Then $Kb_ia_i = Kb_ra_t$ only if i = t and j = r, a CONTRADICTION to our assumption of not mutually disjoint. Therefore the cosets Kb_ia_i are mutually disjoint and the cardinality of such cosets is $|I \times J| = |I||J|$ by the product of Cardinal numbers (see Definition 0.8.3 of Section 0.8. Cardinal Numbers). Whence(!) $[G : K] = |I \times J| = |I||J| = [G : H][H : K]$. "The last statement of the theorem is obvious."

Corollary 1.4.6, Lagrange's Theorem

Corollary I.4.6. Lagrange's Theorem.

If H is a subgroup of a group G, then |G| = [G : H]|H|. In particular, if G is finite then the order |a| of $a \in G$ divides |G| and |H| divides |G|.

```
Proof. With K = \langle e \rangle we have [G : K] = [G : \langle e \rangle] = |G| and
[H:K]=[H:\langle e\rangle]=|H|. We then have by Theorem I.4.5 that
[G:K] = [G:H][H:K] \text{ or } |G| = [G:H][H]. In the event that H = \langle a \rangle,
|a| = |H| and the second claim follows.
```

Corollary I.4.6, Lagrange's Theorem

Corollary I.4.6. Lagrange's Theorem.

If H is a subgroup of a group G, then |G| = [G : H]|H|. In particular, if G is finite then the order |a| of $a \in G$ divides |G| and |H| divides |G|.

```
Proof. With K = \langle e \rangle we have [G : K] = [G : \langle e \rangle] = |G| and [H : K] = [H : \langle e \rangle] = |H|. We then have by Theorem I.4.5 that [G : K] = [G : H][H : K] or |G| = [G : H]|H|. In the event that H = \langle a \rangle, |a| = |H| and the second claim follows.
```

Theorem I.4.7. Let H and K be finite subgroups of a group G. Then $|HK| = |H||K|/|H \cap K|$.

Proof. Let $C = H \cap K$. Then C is a finite subgroup of G by Corollary I.2.6. C is also a subgroup of H and of K. By Lagrange's Theorem (Corollary I.4.6), $[K:C] = |K|/|C| = |K|/|H \cap K| = n$. So K is the disjoint union of n cosets of C: $K = Ck_1 \cup Ck_2 \cup \cdots \cup Ck_n$ for some $k_i \in K$.

Theorem I.4.7. Let H and K be finite subgroups of a group G. Then $|HK| = |H||K|/|H \cap K|$.

Proof. Let $C = H \cap K$. Then C is a finite subgroup of G by Corollary I.2.6. C is also a subgroup of H and of K. By Lagrange's Theorem (Corollary I.4.6), $[K:C] = |K|/|C| = |K|/|H \cap K| = n$. So K is the disjoint union of n cosets of C: $K = Ck_1 \cup Ck_2 \cup \cdots \cup Ck_n$ for some $k_i \in K$.

Next, we consider the sets HCk_i . ASSUME $HCk_i \cap HCk_j \neq \emptyset$ for some $i \neq j$. Then $h_1c_1k_i = h_2c_2k_j$ for some $h_1,h_2 \in H$ and $c_1,c_2 \in C$. Then $c_1k_ik_j^{-1} = h_1^{-1}h_2c_2 \in H$ since $h_1^{-1},h_2 \in H$ and $c_1,c_2 \in C = H \cap K \subset H$. Also, $c_1^{-1} \in C \subset H$ and so $c_1^{-1}(c_1k_ik_j^{-1}) = k_ik_j^{-1} \in H$. But $k_ik_j^{-1} \in K$ and so $k_ik_j^{-1} \in C$. By Corollary I.4.3(iii), this implies that $Ck_i = Ck_j$, CONTRADICTING the disjointness of the cosets Ck_i and Ck_j . So the assumption that $Ck_i \cap Ck_j \neq \emptyset$ is false and hence $Ck_i \cap Ck_j \cap C$

Theorem I.4.7. Let H and K be finite subgroups of a group G. Then $|HK| = |H||K|/|H \cap K|$.

Proof. Let $C = H \cap K$. Then C is a finite subgroup of G by Corollary I.2.6. C is also a subgroup of H and of K. By Lagrange's Theorem (Corollary I.4.6), $[K:C] = |K|/|C| = |K|/|H \cap K| = n$. So K is the disjoint union of n cosets of C: $K = Ck_1 \cup Ck_2 \cup \cdots \cup Ck_n$ for some $k_i \in K$.

Next, we consider the sets HCk_i . ASSUME $HCk_i \cap HCk_j \neq \emptyset$ for some $i \neq j$. Then $h_1c_1k_i = h_2c_2k_j$ for some $h_1, h_2 \in H$ and $c_1, c_2 \in C$. Then $c_1k_ik_j^{-1} = h_1^{-1}h_2c_2 \in H$ since $h_1^{-1}, h_2 \in H$ and $c_1, c_2 \in C = H \cap K \subset H$. Also, $c_1^{-1} \in C \subset H$ and so $c_1^{-1}(c_1k_ik_j^{-1}) = k_ik_j^{-1} \in H$. But $k_ik_j^{-1} \in K$ and so $k_ik_j^{-1} \in C$. By Corollary I.4.3(iii), this implies that $Ck_i = Ck_j$, CONTRADICTING the disjointness of the cosets Ck_i and Ck_j . So the assumption that $Ck_i \cap Ck_j \neq \emptyset$ is false and hence $Ck_i \cap Ck_j \cap Ck_j$

Theorem I.4.7 (continued)

Theorem I.4.7. Let H and K be finite subgroups of a group G. Then $|HK| = |H||K|/|H \cap K|$.

Proof (continued). Since HC = H (because C < H), we have

$$HK = H(Ck_1 \cup Ck_2 \cup \cdots \cup Ck_n)$$

$$= HCk_1 \cup HCk_2 \cup \cdots \cup HCk_n$$

$$= Hk_1 \cup Hk_2 \cup \cdots \cup Hk_n.$$

So HK consists of $n = |K|/|H \cap K|$ disjoint cosets of H in G and $|HK| = |H|n = |H|(|K|/|H \cap K|)$.

Proposition 1.4.8. If H and K are subgroups of a group G, then $[H:H\cap K] \leq [G:K]$. If [G:K] is finite, then $[H:H\cap K] = [G:K]$ if and only if G=KH.

Proof. Let A be the set of all right cosets of $H \cap K$ in H (of which there are $[H:H\cap K]$) and let B be the set of all right cosets of K in G (of which there are [G:K]). Define $\varphi:A\to B$ as $\varphi((H\cap K)h)=Kh$. Since φ is defined in terms of representatives (the h's in H) then we must confirm that φ is well-defined.

11 / 13

Proposition 1.4.8. If H and K are subgroups of a group G, then $[H:H\cap K] \leq [G:K]$. If [G:K] is finite, then $[H:H\cap K] = [G:K]$ if and only if G=KH.

Proof. Let A be the set of all right cosets of $H \cap K$ in H (of which there are $[H:H\cap K]$) and let B be the set of all right cosets of K in G (of which there are [G:K]). Define $\varphi:A\to B$ as $\varphi((H\cap K)h)=Kh$. Since φ is defined in terms of representatives (the h's in H) then we must confirm that φ is well-defined. Suppose $(H\cap K)h'=(H\cap K)h$. Then $h'h^{-1}\in H\cap K$ (by Corollary I.4.3(iii)). So $h'h^{-1}\in K$ and Kh'=Kh (by Corollary I.4.3(iii)), or $\varphi((H\cap K)h')=\varphi((H\cap K)h)$ and φ is well-defined.

October 17, 2023

11 / 13

Proposition 1.4.8. If H and K are subgroups of a group G, then $[H:H\cap K] \leq [G:K]$. If [G:K] is finite, then $[H:H\cap K] = [G:K]$ if and only if G=KH.

Proof. Let A be the set of all right cosets of $H \cap K$ in H (of which there are $[H:H\cap K]$) and let B be the set of all right cosets of K in G (of which there are [G:K]). Define $\varphi:A\to B$ as $\varphi((H\cap K)h)=Kh$. Since φ is defined in terms of representatives (the h's in H) then we must confirm that φ is well-defined. Suppose $(H \cap K)h' = (H \cap K)h$. Then $h'h^{-1} \in H \cap K$ (by Corollary I.4.3(iii)). So $h'h^{-1} \in K$ and Kh' = Kh (by Corollary I.4.3(iii)), or $\varphi((H \cap K)h') = \varphi((H \cap K)h)$ and φ is well-defined. Next, if $\varphi((H \cap K)h') = Kh' = Kh = \varphi((H \cap K)h)$, then $h'h^{-1} \in K$ (by Corollary I.4.3(iii)), $h'h^{-1} \in H \cap K$, and $(H \cap K)h' = (H \cap K)h$ (again, by Corollary I.4.3(iii)). So φ is one to one. Then the domain of φ is at most as large as the range of φ , or $[H:H\cap K]=|A|\leq |B|=[G:K]$.

Proposition 1.4.8. If H and K are subgroups of a group G, then $[H:H\cap K] \leq [G:K]$. If [G:K] is finite, then $[H:H\cap K] = [G:K]$ if and only if G=KH.

Proof. Let A be the set of all right cosets of $H \cap K$ in H (of which there are $[H:H\cap K]$) and let B be the set of all right cosets of K in G (of which there are [G:K]). Define $\varphi:A\to B$ as $\varphi((H\cap K)h)=Kh$. Since φ is defined in terms of representatives (the h's in H) then we must confirm that φ is well-defined. Suppose $(H \cap K)h' = (H \cap K)h$. Then $h'h^{-1} \in H \cap K$ (by Corollary I.4.3(iii)). So $h'h^{-1} \in K$ and Kh' = Kh (by Corollary I.4.3(iii)), or $\varphi((H \cap K)h') = \varphi((H \cap K)h)$ and φ is well-defined. Next, if $\varphi((H \cap K)h') = Kh' = Kh = \varphi((H \cap K)h)$, then $h'h^{-1} \in K$ (by Corollary I.4.3(iii)), $h'h^{-1} \in H \cap K$, and $(H \cap K)h' = (H \cap K)h$ (again, by Corollary I.4.3(iii)). So φ is one to one. Then the domain of φ is at most as large as the range of φ , or $[H:H\cap K]=|A|\leq |B|=[G:K]$.

Theorem I.4.8 (continued)

Proof (continued). Suppose [G:K] is finite. Then $[H:H\cap K]=|A|=|B|=[G:K]$ if and only if φ is onto (since we already know that φ is one to one by the above argument). So the second claim holds if and only if φ is onto (the finiteness of [G:K] is used here). (1) Let $g\in G$. If φ is onto then for Kg a right coset of K in G we have $\varphi((H\cap K)h)=Kg$ for some $(H\cap K)h$ a right coset of $H\cap K$ in H. Then $\varphi((H\cap K)h)=Kh=Kg$ and so $gh^{-1}\in K$ (by Corollary I.4.3(iii)). Hence $(gh^{-1})h\in KH$, or $g\in KH$. So $G\subseteq KH$. Of course, since H and K are subgroups of G then $G\supset HK$. So if φ is onto then G=KH.

Theorem I.4.8 (continued)

Proof (continued). Suppose [G:K] is finite. Then $[H:H\cap K]=|A|=|B|=[G:K]$ if and only if φ is onto (since we already know that φ is one to one by the above argument). So the second claim holds if and only if φ is onto (the finiteness of [G:K] is used here). (1) Let $g \in G$. If φ is onto then for Kg a right coset of K in G we have $\varphi((H \cap K)h) = Kg$ for some $(H \cap K)h$ a right coset of $H \cap K$ in H. Then $\varphi((H \cap K)h) = Kh = Kg$ and so $gh^{-1} \in K$ (by Corollary I.4.3(iii)). Hence $(gh^{-1})h \in KH$, or $g \in KH$. So $G \subseteq KH$. Of course, since H and K are subgroups of G then $G \supseteq HK$. So if φ is onto then G = KH. (2) Suppose G = KH. Let Kg be a right coset of K in G. Since G = KH, then g = khfor some $k \in K$ and $h \in H$. Hence Kg = K(kh) = Kh since $k \in K$ and so $\varphi((H \cap K)h) = Kh = Kg$ and φ is onto. That is, φ is onto if and only if G = KH. So for finite [G : K] we have $[H : H \cap K] = [G : K]$ if and only if G = KH

Theorem I.4.8 (continued)

Proof (continued). Suppose [G:K] is finite. Then $[H:H\cap K]=|A|=|B|=[G:K]$ if and only if φ is onto (since we already know that φ is one to one by the above argument). So the second claim holds if and only if φ is onto (the finiteness of [G:K] is used here). (1) Let $g \in G$. If φ is onto then for Kg a right coset of K in G we have $\varphi((H \cap K)h) = Kg$ for some $(H \cap K)h$ a right coset of $H \cap K$ in H. Then $\varphi((H \cap K)h) = Kh = Kg$ and so $gh^{-1} \in K$ (by Corollary I.4.3(iii)). Hence $(gh^{-1})h \in KH$, or $g \in KH$. So $G \subseteq KH$. Of course, since H and K are subgroups of G then $G \supset HK$. So if φ is onto then G = KH. (2) Suppose G = KH. Let Kg be a right coset of K in G. Since G = KH, then g = khfor some $k \in K$ and $h \in H$. Hence Kg = K(kh) = Kh since $k \in K$ and so $\varphi((H \cap K)h) = Kh = Kg$ and φ is onto. That is, φ is onto if and only if G = KH. So for finite [G : K] we have $[H : H \cap K] = [G : K]$ if and only if G = KH.

12 / 13

Proposition I.4.9

Proposition 1.4.9. Let H and K be subgroups of finite index of group G. Then $[G:H\cap K]$ is finite and $[G:H\cap K]\leq [G:H][G:K]$. Furthermore, $[G:H\cap K]=[G:H][G:K]$ if and only if G=HK.

```
Proof. We have K \cap H < H < G and so by Theorem I.4.5 [G:H\cap K]=[G:H][H:H\cap K]. By Proposition I.4.8 [H:H\cap K]\leq [G:K] and so we have [G:H\cap K]\leq [G:H][G:K] as claimed and the hypotheses imply [G:H\cap K] is finite. Also, by Proposition I.4.8, [H:H\cap K]=[G:K] if and only if G=KH, so [G:H\cap K]=[G:H][G:K] if and only if G=KH.
```

Proposition I.4.9

Proposition I.4.9. Let H and K be subgroups of finite index of group G. Then $[G:H\cap K]$ is finite and $[G:H\cap K]\leq [G:H][G:K]$. Furthermore, $[G:H\cap K]=[G:H][G:K]$ if and only if G=HK.

```
Proof. We have K \cap H < H < G and so by Theorem I.4.5 [G:H\cap K]=[G:H][H:H\cap K]. By Proposition I.4.8 [H:H\cap K] \leq [G:K] and so we have [G:H\cap K] \leq [G:H][G:K] as claimed and the hypotheses imply [G:H\cap K] is finite. Also, by Proposition I.4.8, [H:H\cap K]=[G:K] if and only if G=KH, so [G:H\cap K]=[G:H][G:K] if and only if G=KH.
```