Modern Algebra

Chapter I. Groups

I.5. Normality, Quotient Groups, and Homomorphisms

-Proofs of Theorems

Table of contents

- Theorem I.5.1
- 2 Theorem I.5.3
- 3 Theorem I.5.4
- Theorem 1.5.5
- 5 Theorem I.5.6
- 6 Corollary I.5.8
- Corollary I.5.9, Second Isomorphism Theorem
- 8 Corollary I.5.10, Third Isomorphism Theorem
 - Theorem I.5.11
- 0 Corollary 1.5.12

Theorem I.5.1. If N is a subgroup of group G, then the following conditions are equivalent.

(*i*) Left and right congruence modulo *N* coincide (that is, define the same equivalence relation on *G*);

(iii)
$$aN = Na$$
 for all $a \in G$;

(*iv*) For all
$$a \in G$$
, $aNa^{-1} \subset N$ where $aNa^{-1} = \{ana^{-1} \mid n \in N\}$;
(*v*) For all $a \in G$, $aNa^{-1} = N$.

Proof. $(i) \Rightarrow (ii)$. If left and right congruence mod N coincide then $ab^{-1} \in N$ if and only if $a^{-1}b \in N$ (by Definition I.4.1). Let $x \in aN$. Then $a^{-1}x \in N$ and by the congruence assumption $ax^{-1} \in N$. Therefore $(ax^{-1})^{-1} = xa^{-1} \in N$ and $x \in Na$; hence $aN \subseteq Na$. Similarly $Na \subseteq aN$ and aN = Na. \Box

Theorem I.5.1. If N is a subgroup of group G, then the following conditions are equivalent.

(*i*) Left and right congruence modulo *N* coincide (that is, define the same equivalence relation on *G*);

(iii)
$$aN = Na$$
 for all $a \in G$;
(iv) For all $a \in G$, $aNa^{-1} \subset N$ where $aNa^{-1} = \{ana^{-1} \mid n \in N\}$
(v) For all $a \in G$, $aNa^{-1} = N$.

Proof. (*i*) \Rightarrow (*ii*). If left and right congruence mod *N* coincide then $ab^{-1} \in N$ if and only if $a^{-1}b \in N$ (by Definition I.4.1). Let $x \in aN$. Then $a^{-1}x \in N$ and by the congruence assumption $ax^{-1} \in N$. Therefore $(ax^{-1})^{-1} = xa^{-1} \in N$ and $x \in Na$; hence $aN \subseteq Na$. Similarly $Na \subseteq aN$ and aN = Na. \Box

Theorem I.5.1 (continued 1)

Theorem I.5.1. If N is a subgroup of group G, then the following conditions are equivalent.

- (*i*) Left and right congruence modulo *N* coincide (that is, define the same equivalence relation on *G*);
- (*ii*) Every left coset of N in G is a right coset of N in G;
- (iii) aN = Na for all $a \in G$.

Proof (continued). (*iii*) \Rightarrow (*i*). Suppose aN = Na and let $a \equiv_r b \pmod{N}$; that is, $ab^{-1} \in N$. Then $(ab^{-1})^{-1} = ba^{-1} \in N$ and $b \in Na = aN$. Hence $a^{-1}b \in N$ and $a \equiv_{\ell} b \pmod{N}$. Similarly, $a \equiv_{\ell} b \pmod{N}$ implies that $a \equiv_r b \pmod{N}$ and if aN = Na then left and right congruence coincide. \Box (*ii*) \Rightarrow (*iii*). Let aN be a left coset of N. Then by hypothesis aN = Nb for some $b \in G$. But $e \in N$ so $ae = a \in aN = Nb$ and similarly $a \in Na$. So $a \in Na \cap Nb$ and since the cosets of N partition G, then it must be that Na = Nb and so aN = Nb = Na.

Theorem I.5.1 (continued 1)

Theorem I.5.1. If N is a subgroup of group G, then the following conditions are equivalent.

- (i) Left and right congruence modulo N coincide (that is, define the same equivalence relation on G);
- (*ii*) Every left coset of N in G is a right coset of N in G;
- (iii) aN = Na for all $a \in G$.

Proof (continued). $(iii) \Rightarrow (i)$. Suppose aN = Na and let $a \equiv_r b \pmod{N}$; that is, $ab^{-1} \in N$. Then $(ab^{-1})^{-1} = ba^{-1} \in N$ and $b \in Na = aN$. Hence $a^{-1}b \in N$ and $a \equiv_{\ell} b \pmod{N}$. Similarly, $a \equiv_{\ell} b \pmod{N}$ implies that $a \equiv_r b \pmod{N}$ and if aN = Na then left and right congruence coincide. \Box $(ii) \Rightarrow (iii)$. Let aN be a left coset of N. Then by hypothesis aN = Nb for some $b \in G$. But $e \in N$ so $ae = a \in aN = Nb$ and similarly $a \in Na$. So $a \in Na \cap Nb$ and since the cosets of N partition G, then it must be that Na = Nb and so aN = Nb = Na. \Box

Theorem I.5.1 (continued 2)

Theorem I.5.1. If N is a subgroup of group G, then the following conditions are equivalent.

(*ii*) Every left coset of N in G is a right coset of N in G;
(*iii*) aN = Na for all a ∈ G.
(*iv*) For all a ∈ G, aNa⁻¹ ⊂ N where aNa⁻¹ = {ana⁻¹ | n ∈ N};
(v) For all a ∈ G, aNa⁻¹ = N.

Proof (continued). (*iii*) \Rightarrow (*iv*). If aN = Na for all $a \in G$, then for each $n \in N$ we have $an \in Na$ and so $ana^{-1} \in N$. Therefore $aNa^{-1} \subseteq N$. \Box (*iv*) \Rightarrow (*v*). Suppose $aNa^{-1} \subseteq N$ for all $a \in G$. Then replace a with a^{-1} we get $a^{-1}Na \subseteq N$. So for any $n \in N$ we have $n = (aa^{-1})n(aa^{-1})$ $= a(a^{-1}na)a^{-1} \in aNa^{-1}$ and so $N \subseteq aNa^{-1}$. Combining this with the hypothesis of (*iv*) gives $aNa^{-1} = N$ for all $a \in G$. \Box

Theorem I.5.1 (continued 2)

Theorem I.5.1. If N is a subgroup of group G, then the following conditions are equivalent.

(ii) Every left coset of N in G is a right coset of N in G;
(iii) aN = Na for all a ∈ G.
(iv) For all a ∈ G, aNa⁻¹ ⊂ N where aNa⁻¹ = {ana⁻¹ | n ∈ N};
(v) For all a ∈ G, aNa⁻¹ = N.

Proof (continued). (*iii*) \Rightarrow (*iv*). If aN = Na for all $a \in G$, then for each $n \in N$ we have $an \in Na$ and so $ana^{-1} \in N$. Therefore $aNa^{-1} \subseteq N$. \Box (*iv*) \Rightarrow (*v*). Suppose $aNa^{-1} \subseteq N$ for all $a \in G$. Then replace a with a^{-1} we get $a^{-1}Na \subseteq N$. So for any $n \in N$ we have $n = (aa^{-1})n(aa^{-1})$ $= a(a^{-1}na)a^{-1} \in aNa^{-1}$ and so $N \subseteq aNa^{-1}$. Combining this with the hypothesis of (*iv*) gives $aNa^{-1} = N$ for all $a \in G$. \Box (*v*) \Rightarrow (*ii*). If $aNa^{-1} = N$ for all $a \in G$, then aN = Na for all $a \in G$ and left and right cosets coincide.

Theorem I.5.1 (continued 2)

Theorem I.5.1. If N is a subgroup of group G, then the following conditions are equivalent.

(*ii*) Every left coset of N in G is a right coset of N in G;
(*iii*) aN = Na for all a ∈ G.
(*iv*) For all a ∈ G, aNa⁻¹ ⊂ N where aNa⁻¹ = {ana⁻¹ | n ∈ N};
(v) For all a ∈ G, aNa⁻¹ = N.

Proof (continued). (*iii*) \Rightarrow (*iv*). If aN = Na for all $a \in G$, then for each $n \in N$ we have $an \in Na$ and so $ana^{-1} \in N$. Therefore $aNa^{-1} \subseteq N$. \Box (*iv*) \Rightarrow (*v*). Suppose $aNa^{-1} \subseteq N$ for all $a \in G$. Then replace a with a^{-1} we get $a^{-1}Na \subseteq N$. So for any $n \in N$ we have $n = (aa^{-1})n(aa^{-1})$ $= a(a^{-1}na)a^{-1} \in aNa^{-1}$ and so $N \subseteq aNa^{-1}$. Combining this with the hypothesis of (*iv*) gives $aNa^{-1} = N$ for all $a \in G$. \Box (*v*) \Rightarrow (*ii*). If $aNa^{-1} = N$ for all $a \in G$, then aN = Na for all $a \in G$ and left and right cosets coincide.

Theorem 1.5.3. Let K and N be subgroups of a group G with N normal in G. Then

(i)
$$N \cap K \triangleleft K$$
;
(ii) $N \triangleleft N \lor K$;
(iii) $NK = N \lor K = KN$;
(iv) If $K \triangleleft G$ and $K \cap N = \{e\}$, then $nk = kn$ for all $k \in K$ and $n \in N$.

Proof. Recall that the join of subgroups H and K is the subgroup of G generated by $H \cup K$.

Modern Algebra

Theorem 1.5.3. Let K and N be subgroups of a group G with N normal in G. Then

(i)
$$N \cap K \triangleleft K$$
;
(ii) $N \triangleleft N \lor K$;
(iii) $NK = N \lor K = KN$;
(iv) If $K \triangleleft G$ and $K \cap N = \{e\}$, then $nk = kn$ for all $k \in K$ and $n \in N$.

Proof. Recall that the join of subgroups H and K is the subgroup of G generated by $H \cup K$.

(*i*) Let $n \in N \cap K$ and $a \in K$. Then $ana^{-1} \in N$ since $N \triangleleft G$ and $a \in G$. Also, $ana^{-1} \in K$ since K < G and we have assumed that $a, n \in K$. So such a and n satisfy $ana^{-1} \in N \cap K$ and $a(N \cap K)a^{-1} \subseteq N \cap K$, so $N \cap K \triangleleft K$ by Theorem I.5.1(iv). \Box

Theorem 1.5.3. Let K and N be subgroups of a group G with N normal in G. Then

(i)
$$N \cap K \triangleleft K$$
;
(ii) $N \triangleleft N \lor K$;
(iii) $NK = N \lor K = KN$;
(iv) If $K \triangleleft G$ and $K \cap N = \{e\}$, then $nk = kn$ for all $k \in K$ and $n \in N$.

Proof. Recall that the join of subgroups H and K is the subgroup of G generated by $H \cup K$.

(*i*) Let $n \in N \cap K$ and $a \in K$. Then $ana^{-1} \in N$ since $N \triangleleft G$ and $a \in G$. Also, $ana^{-1} \in K$ since K < G and we have assumed that $a, n \in K$. So such a and n satisfy $ana^{-1} \in N \cap K$ and $a(N \cap K)a^{-1} \subseteq N \cap K$, so $N \cap K \triangleleft K$ by Theorem I.5.1(iv). \Box

(*ii*) Since N and K are subgroups of G then $N \lor K < G$ ($N \lor K$ is the smallest group containing $N \cup K$ and G is a group containing $N \cup K$). Since $N \triangleleft G$ and $N < N \lor K$, then $N \triangleleft N \lor K$. \Box

Theorem 1.5.3. Let K and N be subgroups of a group G with N normal in G. Then

(i)
$$N \cap K \triangleleft K$$
;
(ii) $N \triangleleft N \lor K$;
(iii) $NK = N \lor K = KN$;
(iv) If $K \triangleleft G$ and $K \cap N = \{e\}$, then $nk = kn$ for all $k \in K$ and $n \in N$.

Proof. Recall that the join of subgroups H and K is the subgroup of G generated by $H \cup K$.

(*i*) Let $n \in N \cap K$ and $a \in K$. Then $ana^{-1} \in N$ since $N \triangleleft G$ and $a \in G$. Also, $ana^{-1} \in K$ since K < G and we have assumed that $a, n \in K$. So such a and n satisfy $ana^{-1} \in N \cap K$ and $a(N \cap K)a^{-1} \subseteq N \cap K$, so $N \cap K \triangleleft K$ by Theorem I.5.1(iv). \Box

(*ii*) Since N and K are subgroups of G then $N \lor K < G$ ($N \lor K$ is the smallest group containing $N \cup K$ and G is <u>a</u> group containing $N \cup K$). Since $N \triangleleft G$ and $N < N \lor K$, then $N \triangleleft N \lor K$. \Box

Theorem I.5.3 (continued 1)

Theorem 1.5.3. Let K and N be subgroups of a group G with N normal in G. Then

(iii) $NK = N \lor K = KN$.

Proof (continued). (*iii*) Now $NK = \{nk \mid n \in N, k \in K\}$ and $N \lor K$ is the smallest group containing $N \cup K$, so certainly $NK \subset N \lor K$. An element $x \in N \lor K$ is a product of the form $n_1k_1n_2k_2\cdots n_rk_r$ where $n_i \in N$, $k_i \in K$ by Theorem I.2.8. Since $N \triangleleft G$ then $n_ik_i = k_in'_i$ for some $n'_i \in N$ (by Theorem I.5.1(iii) where we consider the coset $Nk_i = k_iN$) and therefore x can be written in the form $n(k_1k_2\cdots k_r)$ where $n \in N$ (we move the k_i s "to the right" one at a time and then use the normality of N to shift all the n'_i s "to the left"). Thus any $n_1k_1n_2k_2\cdots n_rk_r \in N \lor K$ is of the form $n(k_1k_2\cdots k_r) \in NK$ and so $N \lor K \subseteq NK$. Therefore $NK = N \lor K$.

Theorem I.5.3 (continued 1)

Theorem 1.5.3. Let K and N be subgroups of a group G with N normal in G. Then

(iii) $NK = N \lor K = KN$.

Proof (continued). (iii) Now $NK = \{nk \mid n \in N, k \in K\}$ and $N \lor K$ is the smallest group containing $N \cup K$, so certainly $NK \subset N \lor K$. An element $x \in N \vee K$ is a product of the form $n_1k_1n_2k_2\cdots n_rk_r$ where $n_i \in N$, $k_i \in K$ by Theorem I.2.8. Since $N \triangleleft G$ then $n_i k_i = k_i n'_i$ for some $n'_i \in N$ (by Theorem I.5.1(iii) where we consider the coset $Nk_i = k_i N$) and therefore x can be written in the form $n(k_1k_2\cdots k_r)$ where $n \in N$ (we move the k_i s "to the right" one at a time and then use the normality of N to shift all the n'_{is} "to the left"). Thus any $n_1k_1n_2k_2\cdots n_rk_r \in N \vee K$ is of the form $n(k_1k_2\cdots k_r) \in NK$ and so $N \vee K \subseteq NK$. Therefore $NK = N \lor K$. Similarly (still using the normality of N) we can shift the n_i s "to the right" and show that $KN = N \vee K$. \Box

Theorem I.5.3 (continued 1)

Theorem 1.5.3. Let K and N be subgroups of a group G with N normal in G. Then

(iii) $NK = N \lor K = KN$.

Proof (continued). (iii) Now $NK = \{nk \mid n \in N, k \in K\}$ and $N \lor K$ is the smallest group containing $N \cup K$, so certainly $NK \subset N \lor K$. An element $x \in N \vee K$ is a product of the form $n_1k_1n_2k_2\cdots n_rk_r$ where $n_i \in N$, $k_i \in K$ by Theorem I.2.8. Since $N \triangleleft G$ then $n_i k_i = k_i n'_i$ for some $n'_i \in N$ (by Theorem I.5.1(iii) where we consider the coset $Nk_i = k_i N$) and therefore x can be written in the form $n(k_1k_2\cdots k_r)$ where $n \in N$ (we move the k_i s "to the right" one at a time and then use the normality of N to shift all the n'_{is} "to the left"). Thus any $n_1k_1n_2k_2\cdots n_rk_r \in N \vee K$ is of the form $n(k_1k_2\cdots k_r) \in NK$ and so $N \vee K \subseteq NK$. Therefore $NK = N \vee K$. Similarly (still using the normality of N) we can shift the n_i s "to the right" and show that $KN = N \vee K$. \Box

Theorem I.5.3 (continued 2)

Theorem I.5.3. Let K and N be subgroups of a group G with N normal in G. Then

Proof (continued). (*iv*) Let $k \in K$ and $n \in N$. Then $nkn^{-1} \in K$ since we now hypothesize $K \triangleleft G$. Also $kn^{-1}k^{-1} \in N$ since $N \triangleleft G$. Hence $(nkn^{-1})k^{-1} \in K$ (since $nkn^{-1}, k^{-1} \in K$) and $(nkn^{-1})k^{-1} = n(kn^{-1}k^{-1}) \in N$ (since $n, kn^{-1}k^{-1} \in N$). So $nkn^{-1}k^{-1} \in N \cap K = \{e\}$ and nk = kn.

Theorem 1.5.4. If N is a normal subgroup of a group G and G/N is the set of all (left) cosets of N in G, then G/N is a group of order [G : N] under the binary operation given by (aN)(bN) = (ab)N.

Proof. Much of the work is already done in Theorem 1.1.5. For $g \in G$, the coset gN is the equivalence class of $g \in G$ under the equivalence relation of congruence modulo N by Theorem 1.4.2(ii). To use Theorem 1.1.5, we need to confirm that $a_1 \sim a_2$ and $b_1 \sim b_2$ imply that $a_1b_1 \sim a_2b_2$. So suppose that $a_1 \equiv a_2 \pmod{N}$ and $b_1 \equiv b_2 \pmod{N}$; that is, $a_1a_2^{-1} = n_a \in N$ and $b_1b_2^{-1} = n_b \in N$. Then $(a_1b_1)(a_2b_2)^{-1} = a_1b_1b_2^{-1}a_2^{-1} = a_1n_ba_2^{-1}$.

Modern Algebra

Theorem 1.5.4. If N is a normal subgroup of a group G and G/N is the set of all (left) cosets of N in G, then G/N is a group of order [G:N]under the binary operation given by (aN)(bN) = (ab)N. **Proof.** Much of the work is already done in Theorem I.1.5. For $g \in G$, the coset gN is the equivalence class of $g \in G$ under the equivalence relation of congruence modulo N by Theorem I.4.2(ii). To use Theorem 1.1.5, we need to confirm that $a_1 \sim a_2$ and $b_1 \sim b_2$ imply that $a_1b_1 \sim a_2b_2$. So suppose that $a_1 \equiv a_2 \pmod{N}$ and $b_1 \equiv b_2 \pmod{N}$; that is, $a_1a_2^{-1} = n_a \in N$ and $b_1b_2^{-1} = n_b \in N$. Then $(a_1b_1)(a_2b_2)^{-1} = a_1b_1b_2^{-1}a_2^{-1} = a_1n_ba_2^{-1}$. Since N is normal, $a_1N = Na_1$ by Theorem I.5.1(iii) which implies that $a_1n_b = na_1$ for some $n \in N$. So $(a_1b_1)(a_2b_2)^{-1} = a_1n_ba_2^{-1} = na_1a_2^{-1} = n(a_1a_2^{-1}) = nn_a \in N$. Therefore, $a_1b_1 \equiv a_2b_2 \pmod{N}$.

Theorem 1.5.4. If N is a normal subgroup of a group G and G/N is the set of all (left) cosets of N in G, then G/N is a group of order [G:N]under the binary operation given by (aN)(bN) = (ab)N. **Proof.** Much of the work is already done in Theorem I.1.5. For $g \in G$, the coset gN is the equivalence class of $g \in G$ under the equivalence relation of congruence modulo N by Theorem I.4.2(ii). To use Theorem 1.1.5, we need to confirm that $a_1 \sim a_2$ and $b_1 \sim b_2$ imply that $a_1b_1 \sim a_2b_2$. So suppose that $a_1 \equiv a_2 \pmod{N}$ and $b_1 \equiv b_2 \pmod{N}$; that is, $a_1a_2^{-1} = n_a \in N$ and $b_1b_2^{-1} = n_b \in N$. Then $(a_1b_1)(a_2b_2)^{-1} = a_1b_1b_2^{-1}a_2^{-1} = a_1n_ba_2^{-1}$. Since N is normal, $a_1N = Na_1$ by Theorem I.5.1(iii) which implies that $a_1n_b = na_1$ for some $n \in N$. So $(a_1b_1)(a_2b_2)^{-1} = a_1n_ba_2^{-1} = na_1a_2^{-1} = n(a_1a_2^{-1}) = nn_a \in N$. Therefore, $a_1b_1 \equiv a_2b_2 \pmod{N}$. Theorem 1.1.5 now implies that the equivalence classes (i.e., the cosets of N) form a monoid. Since G contains an identity and inverses then, based on how coset multiplication is defined, the cosets of N form a group as claimed.

Theorem 1.5.4. If N is a normal subgroup of a group G and G/N is the set of all (left) cosets of N in G, then G/N is a group of order [G:N]under the binary operation given by (aN)(bN) = (ab)N. **Proof.** Much of the work is already done in Theorem I.1.5. For $g \in G$, the coset gN is the equivalence class of $g \in G$ under the equivalence relation of congruence modulo N by Theorem I.4.2(ii). To use Theorem 1.1.5, we need to confirm that $a_1 \sim a_2$ and $b_1 \sim b_2$ imply that $a_1b_1 \sim a_2b_2$. So suppose that $a_1 \equiv a_2 \pmod{N}$ and $b_1 \equiv b_2 \pmod{N}$; that is, $a_1a_2^{-1} = n_a \in N$ and $b_1b_2^{-1} = n_b \in N$. Then $(a_1b_1)(a_2b_2)^{-1} = a_1b_1b_2^{-1}a_2^{-1} = a_1n_ba_2^{-1}$. Since N is normal, $a_1N = Na_1$ by Theorem I.5.1(iii) which implies that $a_1n_b = na_1$ for some $n \in N$. So $(a_1b_1)(a_2b_2)^{-1} = a_1n_ba_2^{-1} = na_1a_2^{-1} = n(a_1a_2^{-1}) = nn_a \in N$. Therefore, $a_1b_1 \equiv a_2b_2 \pmod{N}$. Theorem I.1.5 now implies that the equivalence classes (i.e., the cosets of N) form a monoid. Since G contains an identity and inverses then, based on how coset multiplication is defined, the cosets of N form a group as claimed.

(

Theorem 1.5.5. If $f : G \to H$ is a homomorphism of groups, then the kernel of f is a normal subgroup of G. Conversely, if N is a normal subgroup of G, then the map $\pi : G \to G/N$ given by $\pi(a) = aN$ is an epimorphism (that is, an onto homomorphism) with kernel N.

Proof. If $x \in \text{Ker}(f)$ and $a \in G$ then $f(axa^{-1}) = f(a)f(x)f(a^{-1}) = f(a)e_Hf(a^{-1}) = f(a)f(a^{-1}) = f(aa^{-1}) = f(e_G) = e_H$ and so $axa^{-1} \in \text{Ker}(f)$. Hence, since we have taken $x \in \text{Ker}(f)$ then $a(\text{Ker}(f))a^{-1} \subset \text{Ker}(f)$ for all $a \in G$, and so by Theorem I.5.1(iv), $\text{Ker}(f) \triangleleft G$.

Theorem 1.5.5. If $f : G \to H$ is a homomorphism of groups, then the kernel of f is a normal subgroup of G. Conversely, if N is a normal subgroup of G, then the map $\pi : G \to G/N$ given by $\pi(a) = aN$ is an epimorphism (that is, an onto homomorphism) with kernel N.

Proof. If $x \in \text{Ker}(f)$ and $a \in G$ then $f(axa^{-1}) = f(a)f(x)f(a^{-1}) = f(a)e_Hf(a^{-1}) = f(a)f(a^{-1}) = f(aa^{-1}) = f(e_G) = e_H$ and so $axa^{-1} \in \text{Ker}(f)$. Hence, since we have taken $x \in \text{Ker}(f)$ then $a(\text{Ker}(f))a^{-1} \subset \text{Ker}(f)$ for all $a \in G$, and so by Theorem I.5.1(iv), $\text{Ker}(f) \triangleleft G$.

Next, suppose *N* is a normal subgroup. Then $\pi : G \to G/N$ given by $\pi(a) = aN$ is "clearly" onto (such *a* ranges over all elements of *G* and hence π produces all cosets of *N*). Now $\pi(ab) = (ab)N = (aN)(bN) = \pi(a)\pi(b)$ (by the definition of coset multiplication). So π is a homomorphism and hence an epimorphism. Finally, $\text{Ker}(\pi) = \{a \in G \mid \pi(a) = e_G N = N\} = \{a \in G \mid aN = N\} = \{a \in G \mid a \in N\} = N$.

Theorem 1.5.5. If $f: G \to H$ is a homomorphism of groups, then the kernel of f is a normal subgroup of G. Conversely, if N is a normal subgroup of G, then the map $\pi: G \to G/N$ given by $\pi(a) = aN$ is an epimorphism (that is, an onto homomorphism) with kernel N.

Proof. If $x \in \text{Ker}(f)$ and $a \in G$ then $f(axa^{-1}) = f(a)f(x)f(a^{-1}) = f(a)e_Hf(a^{-1}) = f(a)f(a^{-1}) = f(aa^{-1}) = f(e_G) = e_H$ and so $axa^{-1} \in \text{Ker}(f)$. Hence, since we have taken $x \in \text{Ker}(f)$ then $a(\text{Ker}(f))a^{-1} \subset \text{Ker}(f)$ for all $a \in G$, and so by Theorem I.5.1(iv), $\text{Ker}(f) \triangleleft G$.

Next, suppose *N* is a normal subgroup. Then $\pi : G \to G/N$ given by $\pi(a) = aN$ is "clearly" onto (such *a* ranges over all elements of *G* and hence π produces all cosets of *N*). Now $\pi(ab) = (ab)N = (aN)(bN) = \pi(a)\pi(b)$ (by the definition of coset multiplication). So π is a homomorphism and hence an epimorphism. Finally, $\text{Ker}(\pi) = \{a \in G \mid \pi(a) = e_G N = N\} = \{a \in G \mid aN = N\} = \{a \in G \mid a \in N\} = N$.

Theorem 1.5.6. If $f : G \to H$ is a homomorphism and N is a normal subgroup of G contained in the kernel of f, then there is a unique homomorphism $\overline{f} : G/N \to H$ such that $\overline{f}(aN) = f(a)$ for all $a \in G$. Also, $\operatorname{Im}(f) = \operatorname{Im}(\overline{f})$ and $\operatorname{Ker}(\overline{f}) = \operatorname{Ker}(f)/N$. \overline{f} is an isomorphism if and only if f is an epimorphism and $N = \operatorname{Ker}(f)$.

Proof. First, we introduce \overline{f} . If $b \in aN$ then b = an for some $n \in N$. So, since f is a homomorphism then $f(b) = f(an) = f(a)f(n) = f(a)e_H = f(a)$ (since $n \in N \subseteq \text{Ker}(f)$). Since b is any representative of coset aN, then defining $\overline{f} : G/N \to H$ as $\overline{f}(aN) = f(a)$ produces a well defined function. Since $\overline{f}((aN)(bN)) = \overline{f}((ab)N) = f(ab) = f(a)f(b) = \overline{f}(aN)\overline{f}(bN)$ then \overline{f} is a homomorphism.

Theorem 1.5.6. If $f : G \to H$ is a homomorphism and N is a normal subgroup of G contained in the kernel of f, then there is a unique homomorphism $\overline{f} : G/N \to H$ such that $\overline{f}(aN) = f(a)$ for all $a \in G$. Also, $\operatorname{Im}(f) = \operatorname{Im}(\overline{f})$ and $\operatorname{Ker}(\overline{f}) = \operatorname{Ker}(f)/N$. \overline{f} is an isomorphism if and only if f is an epimorphism and $N = \operatorname{Ker}(f)$.

Proof. First, we introduce \overline{f} . If $b \in aN$ then b = an for some $n \in N$. So, since f is a homomorphism then $f(b) = f(an) = f(a)f(n) = f(a)e_H = f(a)$ (since $n \in N \subseteq \text{Ker}(f)$). Since b is any representative of coset aN, then defining $\overline{f} : G/N \to H$ as $\overline{f}(aN) = f(a)$ produces a well defined function. Since $\overline{f}((aN)(bN)) = \overline{f}((ab)N) = f(ab) = f(a)f(b) = \overline{f}(aN)\overline{f}(bN)$ then \overline{f} is a homomorphism.

Theorem I.5.6 (continued 1)

Theorem 1.5.6. If $f : G \to H$ is a homomorphism and N is a normal subgroup of G contained in the kernel of f, then there is a unique homomorphism $\overline{f} : G/N \to H$ such that $\overline{f}(aN) = f(a)$ for all $a \in G$. Also, $\operatorname{Im}(f) = \operatorname{Im}(\overline{f})$ and $\operatorname{Ker}(\overline{f}) = \operatorname{Ker}(f)/N$. \overline{f} is an isomorphism if and only if f is an epimorphism and $N = \operatorname{Ker}(f)$.

Proof (continued). Next, $\operatorname{Im}(\overline{f}) = \operatorname{Im}(f)$ from the definition of \overline{f} as $\overline{f}(aN) = f(a)$ (recall that "Im(f)" is the range of function f; see page 4). Also, $aN \in \operatorname{Ker}(\overline{f})$ if and only if $\overline{f}(aN) = e$ if and only if f(a) = e if and only if $a \in \operatorname{Ker}(f)$. So $\operatorname{Ker}(\overline{f}) = \{aN \mid a \in \operatorname{Ker}(f)\} = \operatorname{Ker}(f)/N$ (notice that the elements of $\operatorname{Ker}(f)/N$ are the cosets of N by elements of $\operatorname{Ker}(f)$). This establishes the "also" part of the claim.

Since \overline{f} is defined entirely in terms of f, the uniqueness claim follows.

Theorem I.5.6 (continued 2)

Theorem 1.5.6. If $f : G \to H$ is a homomorphism and N is a normal subgroup of G contained in the kernel of f, then there is a unique homomorphism $\overline{f} : G/N \to H$ such that $\overline{f}(aN) = f(a)$ for all $a \in G$. Also, $\operatorname{Im}(f) = \operatorname{Im}(\overline{f})$ and $\operatorname{Ker}(\overline{f}) = \operatorname{Ker}(f)/N$. \overline{f} is an isomorphism if and only if f is an epimorphism and $N = \operatorname{Ker}(f)$.

Proof (continued). Finally, for the isomorphism claim, notice that \overline{f} is an epimorphism (an onto homomorphism) if and only if f is an epimorphism. By Theorem I.2.3, \overline{f} is a monomorphism (a one to one homomorphism) if and only if $\text{Ker}(\overline{f}) = \text{Ker}(f)/N$ is the trivial subgroup of G/N. This is the case if and only if Ker(f)/N = N which in turn is the case if and only if Ker(f) = N.

Corollary 1.5.8

Corollary 1.5.8. If $f : G \to H$ is a homomorphism of groups, $N \triangleleft G$, $M \triangleleft H$, and f(N) < M, then f induces a homomorphism $\overline{f} : G/N \to H/M$, given by $aN \mapsto f(a)M$. f is an isomorphism if and only if $\text{Im}(f) \lor M = H$ and $f^{-1}(M) \subset N$. In particular if f is an epimorphism such that f(N) = M and $\text{Ker}(f) \subset N$, then \overline{f} is an isomorphism.

Proof. We break this into three stages (one of which we leave as a homework problem).

Corollary 1.5.8

Corollary 1.5.8. If $f : G \to H$ is a homomorphism of groups, $N \triangleleft G$, $M \triangleleft H$, and f(N) < M, then f induces a homomorphism $\overline{f} : G/N \to H/M$, given by $aN \mapsto f(a)M$. f is an isomorphism if and only if $\text{Im}(f) \lor M = H$ and $f^{-1}(M) \subset N$. In particular if f is an epimorphism such that f(N) = M and $\text{Ker}(f) \subset N$, then \overline{f} is an isomorphism.

Proof. We break this into three stages (one of which we leave as a homework problem).

(A) Let $\pi : H \to H/M$ be the canonical epimorphism, $\pi(h) = hM$. Consider the composition $\pi \circ f : G \to H/M$. Since f(N) < M then $N \subseteq f^{-1}(M)$. Now Ker (πf) consists of the elements of G mapped to Munder $\pi \circ f$; this is the elements of G mapped to M by f (since $\pi(h) = hM = M$ if and only if $h \in M$) and hence is $f^{-1}(M)$. So $N \subseteq f^{-1}(M) = \text{Ker}(\pi f)$. Hence N is a normal subgroup of G contained in the kernel of πf .

Corollary 1.5.8

Corollary 1.5.8. If $f : G \to H$ is a homomorphism of groups, $N \triangleleft G$, $M \triangleleft H$, and f(N) < M, then f induces a homomorphism $\overline{f} : G/N \to H/M$, given by $aN \mapsto f(a)M$. f is an isomorphism if and only if $\text{Im}(f) \lor M = H$ and $f^{-1}(M) \subset N$. In particular if f is an epimorphism such that f(N) = M and $\text{Ker}(f) \subset N$, then \overline{f} is an isomorphism.

Proof. We break this into three stages (one of which we leave as a homework problem).

(A) Let $\pi : H \to H/M$ be the canonical epimorphism, $\pi(h) = hM$. Consider the composition $\pi \circ f : G \to H/M$. Since f(N) < M then $N \subseteq f^{-1}(M)$. Now Ker (πf) consists of the elements of G mapped to Munder $\pi \circ f$; this is the elements of G mapped to M by f (since $\pi(h) = hM = M$ if and only if $h \in M$) and hence is $f^{-1}(M)$. So $N \subseteq f^{-1}(M) = \text{Ker}(\pi f)$. Hence N is a normal subgroup of G contained in the kernel of πf .

Corollary I.5.8 (continued 1)

Corollary 1.5.8. If $f : G \to H$ is a homomorphism of groups, $N \triangleleft G$, $M \triangleleft H$, and f(N) < M, then f induces a homomorphism $\overline{f} : G/N \to H/M$, given by $aN \mapsto f(a)M$. f is an isomorphism if and only if $\text{Im}(f) \lor M = H$ and $f^{-1}(M) \subset N$. In particular if f is an epimorphism such that f(N) = M and $\text{Ker}(f) \subset N$, then \overline{f} is an isomorphism.

Proof (continued). So by Theorem 1.5.6 (applied to πf) the map (in the notation of Theorem 1.5.6 this map would be denoted $\overline{\pi f}$) $\overline{f}: G/N \to H/M$ given by $aN \mapsto (\pi f)(a) = f(a)M$ (that is, $\overline{\pi f}(aN) = (\pi f)(a) = \pi(f(a)) = f(a)M$) is a (unique) homomorphism that is an isomorphism if and only if πf is an epimorphism and $N = \text{Ker}(\pi f)$.

(B) This last condition is equivalent to $Im(f) \lor M = H$ and $f^{-1}(M) \subseteq N$. We leave this as a homework problem.

Corollary I.5.8 (continued 1)

Corollary 1.5.8. If $f : G \to H$ is a homomorphism of groups, $N \triangleleft G$, $M \triangleleft H$, and f(N) < M, then f induces a homomorphism $\overline{f} : G/N \to H/M$, given by $aN \mapsto f(a)M$. f is an isomorphism if and only if $\text{Im}(f) \lor M = H$ and $f^{-1}(M) \subset N$. In particular if f is an epimorphism such that f(N) = M and $\text{Ker}(f) \subset N$, then \overline{f} is an isomorphism.

Proof (continued). So by Theorem 1.5.6 (applied to πf) the map (in the notation of Theorem 1.5.6 this map would be denoted $\overline{\pi f}$) $\overline{f}: G/N \to H/M$ given by $aN \mapsto (\pi f)(a) = f(a)M$ (that is, $\overline{\pi f}(aN) = (\pi f)(a) = \pi(f(a)) = f(a)M$) is a (unique) homomorphism that is an isomorphism if and only if πf is an epimorphism and $N = \text{Ker}(\pi f)$.

(B) This last condition is equivalent to $Im(f) \lor M = H$ and $f^{-1}(M) \subseteq N$. We leave this as a homework problem.

Corollary I.5.8 (continued 2)

Corollary 1.5.8. If $f : G \to H$ is a homomorphism of groups, $N \triangleleft G$, $M \triangleleft H$, and f(N) < M, then f induces a homomorphism $\overline{f} : G/N \to H/M$, given by $aN \mapsto f(a)M$. f is an isomorphism if and only if $\text{Im}(f) \lor M = H$ and $f^{-1}(M) \subset N$. In particular if f is an epimorphism such that f(N) = M and $\text{Ker}(f) \subset N$, then \overline{f} is an isomorphism.

Proof (continued).

(C) (The "in particular" part.) If f is an epimorphism (and hence onto) then $H = \text{Im}(f) = \text{Im}(f) \lor M$. Hypothesizing f(N) = M and $\text{Ker}(f) \subseteq N$ gives $f^{-1}(M) \subseteq N$ as follows. Suppose not; ASSUME $f(g) \in M$ for some $g \in G \setminus N$. Since f(N) = M then for some $n \in N$ we have f(n) = f(g). Then $f(gn^{-1}) = f(g)f(n^{-1}) = f(g)(f(n))^{-1} = f(g)(f(g))^{-1} = e$ and $gn^{-1} \in \text{Ker}(f) \subseteq N$. But $n \in N$ also, so $(gn^{-1})n = g \in N$, a CONTRADICTION. So the assumption that such g exists is false and $f^{-1}(M) \subseteq N$. So the conditions of (B) are satisfied and \overline{f} is an isomorphism.

C

Corollary 1.5.9. Second Isomorphism Theorem. If *K* and *N* are subgroups of a group *G*, with *N* normal in *G*, then $K/(N \cap K) \cong NK/N$.

Proof. We have $N \triangleleft NK$ by Theorem 1.5.3(ii) and $NK = N \lor K$ by Theorem 1.5.3(iii). With 1_G as the identity, we have the composition $K \xrightarrow{1_G} NK \xrightarrow{\pi} NK/N$ (where π is the canonical epimorphism) is a homomorphism, say $f = \pi \circ 1_G$. The kernel of f is the elements of Kmapped to N (the identity element of NK/N), so $\text{Ker}(f) = N \cap K$. So, by the First Isomorphism Theorem (Corollary 1.5.7) f induces an isomorphism $\overline{f} : K/(K \cap N) \to \text{Im}(f)$ and so: $K/(K \cap N) \cong \text{Im}(f)$. (*)

Corollary 1.5.9. Second Isomorphism Theorem. If *K* and *N* are subgroups of a group *G*, with *N* normal in *G*, then $K/(N \cap K) \cong NK/N$.

Proof. We have $N \triangleleft NK$ by Theorem I.5.3(ii) and $NK = N \lor K$ by Theorem I.5.3(iii). With 1_G as the identity, we have the composition $K \xrightarrow{1_G} NK \xrightarrow{\pi} NK/N$ (where π is the canonical epimorphism) is a homomorphism, say $f = \pi \circ 1_G$. The kernel of f is the elements of K mapped to N (the identity element of NK/N), so Ker $(f) = N \cap K$. So, by the First Isomorphism Theorem (Corollary I.5.7) f induces an isomorphism $\overline{f}: K/(K \cap N) \to \operatorname{Im}(f)$ and so: $K/(K \cap N) \cong \operatorname{Im}(f).$ (*) Every element in NK/N is of the form (nk)N (for $n \in N, k \in K$). Since $N \triangleleft G$ then $nk = kn_1$ for some $n_1 \in N$, "whence" $(nk)N = (kn_1)N$ k = kN = f(k). So every element of NK/N is in Im(f) and f is onto NK/N. So f is an epimorphism and Im(f) = NK/N. So by (*), we see that $K/K \cap N \cong NK/N$, under isomorphism \overline{f} .

Corollary 1.5.9. Second Isomorphism Theorem. If *K* and *N* are subgroups of a group *G*, with *N* normal in *G*, then $K/(N \cap K) \cong NK/N$.

Proof. We have $N \triangleleft NK$ by Theorem I.5.3(ii) and $NK = N \lor K$ by Theorem I.5.3(iii). With 1_G as the identity, we have the composition $K \xrightarrow{1_G} NK \xrightarrow{\pi} NK/N$ (where π is the canonical epimorphism) is a homomorphism, say $f = \pi \circ 1_G$. The kernel of f is the elements of K mapped to N (the identity element of NK/N), so Ker $(f) = N \cap K$. So, by the First Isomorphism Theorem (Corollary I.5.7) f induces an isomorphism $\overline{f}: K/(K \cap N) \to \operatorname{Im}(f)$ and so: $K/(K \cap N) \cong \operatorname{Im}(f).$ (*) Every element in NK/N is of the form (nk)N (for $n \in N, k \in K$). Since $N \triangleleft G$ then $nk = kn_1$ for some $n_1 \in N$, "whence" $(nk)N = (kn_1)N$ k = kN = f(k). So every element of NK/N is in Im(f) and f is onto NK/N. So f is an epimorphism and Im(f) = NK/N. So by (*), we see that $K/K \cap N \cong NK/N$, under isomorphism \overline{f} .

Corollary I.5.10. Third Isomorphism Theorem.

If H and K are normal subgroups of a group G such that K < H, then H/K is a normal subgroup of G/K and $(G/K)/(H/K) \cong G/H$.

Proof. The identity map $1_G : G \to G$ satisfies $1_G(K) = K < H$. Define $I : G/K \to G/H$ as I(aK) = aH. Then I is a homomorphism (since the coset multiplication is done using representatives) and is onto since each coset of H is in Im(I) (notice K < H so K has "more" cosets in G than H). That is, I is an epimorphism.

Corollary I.5.10. Third Isomorphism Theorem.

If H and K are normal subgroups of a group G such that K < H, then H/K is a normal subgroup of G/K and $(G/K)/(H/K) \cong G/H$.

Proof. The identity map $1_G : G \to G$ satisfies $1_G(K) = K < H$. Define $I : G/K \to G/H$ as I(aK) = aH. Then I is a homomorphism (since the coset multiplication is done using representatives) and is onto since each coset of H is in $\operatorname{Im}(I)$ (notice K < H so K has "more" cosets in G than H). That is, I is an epimorphism. Now H = I(aK) if and only if $a \in H$, so $\operatorname{Ker}(I) = \{aK \mid a \in H\} = H/K$ (by definition of H/K as cosets of K in H). Since H/K is the kernel of a homomorphism then by Theorem 1.5.5, $H/K \triangleleft G/H$. By Corollary 1.5.7 (First Isomorphism Theorem), $G/H = \operatorname{Im}(I) \cong (G/K)/\operatorname{Ker}(I) = (G/K)/(H/K)$.

Corollary I.5.10. Third Isomorphism Theorem.

If H and K are normal subgroups of a group G such that K < H, then H/K is a normal subgroup of G/K and $(G/K)/(H/K) \cong G/H$.

Proof. The identity map $1_G : G \to G$ satisfies $1_G(K) = K < H$. Define $I : G/K \to G/H$ as I(aK) = aH. Then I is a homomorphism (since the coset multiplication is done using representatives) and is onto since each coset of H is in $\operatorname{Im}(I)$ (notice K < H so K has "more" cosets in G than H). That is, I is an epimorphism. Now H = I(aK) if and only if $a \in H$, so $\operatorname{Ker}(I) = \{aK \mid a \in H\} = H/K$ (by definition of H/K as cosets of K in H). Since H/K is the kernel of a homomorphism then by Theorem 1.5.5, $H/K \triangleleft G/H$. By Corollary 1.5.7 (First Isomorphism Theorem), $G/H = \operatorname{Im}(I) \cong (G/K)/\operatorname{Ker}(I) = (G/K)/(H/K)$.

Theorem I.5.11. If $f : G \to H$ is an epimorphism of groups, then the assignment $K \mapsto f(K)$ defines a one-to-one correspondence between the sets $S_f(G)$ of all subgroups K of G which contain Ker(f) and the set S(H) of all subgroups of H. Under this correspondence normal subgroups correspond to normal subgroups.

Proof. Since f is a homomorphism, then for K < G we have f(K) is a subgroup of H by Exercise I.2.9(b). So φ defined as $\varphi(K) = f(K)$ is a function $\varphi : S_f(G) \to S(H)$. By Exercise I.2.9(a), $f^{-1}(J)$ is a subgroup of G for every subgroup J of H. Since J < H implies $\text{Ker}(f) < f^{-1}(J)$ (since $e \in J$) and $f(f^{-1}(J)) = J$, then φ is onto (since $\varphi(f^{-1}(J)) = J$). By Exercise I.5.18, $f^{-1}(f(K)) = K$ if and only if Ker(f) < K.

Theorem I.5.11. If $f : G \to H$ is an epimorphism of groups, then the assignment $K \mapsto f(K)$ defines a one-to-one correspondence between the sets $S_f(G)$ of all subgroups K of G which contain Ker(f) and the set S(H) of all subgroups of H. Under this correspondence normal subgroups correspond to normal subgroups.

Proof. Since f is a homomorphism, then for K < G we have f(K) is a subgroup of H by Exercise I.2.9(b). So φ defined as $\varphi(K) = f(K)$ is a function $\varphi: S_f(G) \to S(H)$. By Exercise I.2.9(a), $f^{-1}(J)$ is a subgroup of *G* for every subgroup *J* of *H*. Since J < H implies Ker(*f*) $< f^{-1}(J)$ (since $e \in J$) and $f(f^{-1}(J)) = J$, then φ is onto (since $\varphi(f^{-1}(J)) = J$). By Exercise I.5.18, $f^{-1}(f(K)) = K$ if and only if Ker(f) < K. Now by definition, $S_f(G)$ consists exactly of all subgroups K of G satisfying $\operatorname{Ker}(f) < K$, and so K < G with $f^{-1}(f(K)) = K$. So the only thing mapped to f(K) under φ is K itself and φ is one to one. Hence, φ is one to one and onto; that is, φ is a one-to-one correspondence. We leave the claim about corresponding subgroups as homework.

()

Theorem I.5.11. If $f : G \to H$ is an epimorphism of groups, then the assignment $K \mapsto f(K)$ defines a one-to-one correspondence between the sets $S_f(G)$ of all subgroups K of G which contain Ker(f) and the set S(H) of all subgroups of H. Under this correspondence normal subgroups correspond to normal subgroups.

Proof. Since f is a homomorphism, then for K < G we have f(K) is a subgroup of H by Exercise I.2.9(b). So φ defined as $\varphi(K) = f(K)$ is a function $\varphi: S_f(G) \to S(H)$. By Exercise I.2.9(a), $f^{-1}(J)$ is a subgroup of G for every subgroup J of H. Since J < H implies $Ker(f) < f^{-1}(J)$ (since $e \in J$) and $f(f^{-1}(J)) = J$, then φ is onto (since $\varphi(f^{-1}(J)) = J$). By Exercise I.5.18, $f^{-1}(f(K)) = K$ if and only if Ker(f) < K. Now by definition, $S_f(G)$ consists exactly of all subgroups K of G satisfying $\operatorname{Ker}(f) < K$, and so K < G with $f^{-1}(f(K)) = K$. So the only thing mapped to f(K) under φ is K itself and φ is one to one. Hence, φ is one to one and onto; that is, φ is a one-to-one correspondence.

We leave the claim about corresponding subgroups as homework.

Corollary 1.5.12. If N is a normal subgroup of a group G, then every subgroup of G/N is of the form K/N, where K is a subgroup of G that contains N. Furthermore, K/N is normal in G/N if and only if K is normal in G.

Proof. Let $\pi : G \to G/N$ be the canonical epimorphism $\pi(g) = gN$. Then $\text{Ker}(\pi) = N$ (since N is the identity in G/N). By Theorem I.5.11 for every subgroup M of G/N (i.e., every element M of S(H) = S(G/N) in the notation of Theorem 1.5.11) there corresponds a subgroup K of G where K contains $\text{Ker}(\pi) = N$ (so K is in $S_{\pi}(G)$ in the notation of Theorem I.5.11). The correspondence is given by $\varphi(K) = \pi(K) = M$ and so $\pi(K) = \{kN \mid k \in K\} = K/N$, and $M \cong K/N$. Furthermore, K/N is normal in G/N if and only if K is normal in G by the part of Theorem 1.5.11 which states that normal subgroups correspond to

Corollary 1.5.12. If N is a normal subgroup of a group G, then every subgroup of G/N is of the form K/N, where K is a subgroup of G that contains N. Furthermore, K/N is normal in G/N if and only if K is normal in G.

Proof. Let $\pi: G \to G/N$ be the canonical epimorphism $\pi(g) = gN$. Then $\text{Ker}(\pi) = N$ (since N is the identity in G/N). By Theorem I.5.11 for every subgroup M of G/N (i.e., every element M of S(H) = S(G/N) in the notation of Theorem 1.5.11) there corresponds a subgroup K of G where K contains $\text{Ker}(\pi) = N$ (so K is in $S_{\pi}(G)$ in the notation of Theorem I.5.11). The correspondence is given by $\varphi(K) = \pi(K) = M$ and so $\pi(K) = \{kN \mid k \in K\} = K/N$, and $M \cong K/N$. Furthermore, K/N is normal in G/N if and only if K is normal in G by the part of Theorem 1.5.11 which states that normal subgroups correspond to normal subgroups.

Modern Algebra