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Theorem I.5.1

Theorem I.5.1

Theorem I.5.1. If N is a subgroup of group G , then the following
conditions are equivalent.

(i) Left and right congruence modulo N coincide (that is, define
the same equivalence relation on G );

(ii) Every left coset of N in G is a right coset of N in G ;

(iii) aN = Na for all a ∈ G ;

(iv) For all a ∈ G , aNa−1 ⊂ N where aNa−1 = {ana−1 | n ∈ N};
(v) For all a ∈ G , aNa−1 = N.

Proof. (i) ⇒ (ii). If left and right congruence mod N coincide then
ab−1 ∈ N if and only if a−1b ∈ N (by Definition I.4.1). Let x ∈ aN. Then
a−1x ∈ N and by the congruence assumption ax−1 ∈ N. Therefore
(ax−1)−1 = xa−1 ∈ N and x ∈ Na; hence aN ⊆ Na. Similarly Na ⊆ aN
and aN = Na. �
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Theorem I.5.1

Theorem I.5.1 (continued 1)

Theorem I.5.1. If N is a subgroup of group G , then the following
conditions are equivalent.

(i) Left and right congruence modulo N coincide (that is, define
the same equivalence relation on G );

(ii) Every left coset of N in G is a right coset of N in G ;

(iii) aN = Na for all a ∈ G .

Proof (continued). (iii) ⇒ (i). Suppose aN = Na and let a ≡r b (mod
N); that is, ab−1 ∈ N. Then (ab−1)−1 = ba−1 ∈ N and b ∈ Na = aN.
Hence a−1b ∈ N and a ≡` b (mod N).
Similarly, a ≡` b (mod N) implies that a ≡r b (mod N) and if aN = Na
then left and right congruence coincide. �
(ii) ⇒ (iii). Let aN be a left coset of N. Then by hypothesis aN = Nb for
some b ∈ G . But e ∈ N so ae = a ∈ aN = Nb and similarly a ∈ Na. So
a ∈ Na ∩ Nb and since the cosets of N partition G , then it must be that
Na = Nb and so aN = Nb = Na. �
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Theorem I.5.1

Theorem I.5.1 (continued 2)

Theorem I.5.1. If N is a subgroup of group G , then the following
conditions are equivalent.

(ii) Every left coset of N in G is a right coset of N in G ;

(iii) aN = Na for all a ∈ G .

(iv) For all a ∈ G , aNa−1 ⊂ N where aNa−1 = {ana−1 | n ∈ N};
(v) For all a ∈ G , aNa−1 = N.

Proof (continued). (iii) ⇒ (iv). If aN = Na for all a ∈ G , then for each
n ∈ N we have an ∈ Na and so ana−1 ∈ N. Therefore aNa−1 ⊆ N. �
(iv) ⇒ (v). Suppose aNa−1 ⊆ N for all a ∈ G . Then replace a with a−1

we get a−1Na ⊆ N. So for any n ∈ N we have n = (aa−1)n(aa−1)
= a(a−1na)a−1 ∈ aNa−1 and so N ⊆ aNa−1. Combining this with the
hypothesis of (iv) gives aNa−1 = N for all a ∈ G . �

(v) ⇒ (ii). If aNa−1 = N for all a ∈ G , then aN = Na for all a ∈ G and
left and right cosets coincide.
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Theorem I.5.3

Theorem I.5.3

Theorem I.5.3. Let K and N be subgroups of a group G with N normal
in G . Then

(i) N ∩ K / K ;

(ii) N / N ∨ K ;

(iii) NK = N ∨ K = KN;

(iv) If K / G and K ∩ N = {e}, then nk = kn for all k ∈ K and
n ∈ N.

Proof. Recall that the join of subgroups H and K is the subgroup of G
generated by H ∪ K .

(i) Let n ∈ N ∩ K and a ∈ K . Then ana−1 ∈ N since N / G and a ∈ G .
Also, ana−1 ∈ K since K < G and we have assumed that a, n ∈ K . So
such a and n satisfy ana−1 ∈ N ∩ K and a(N ∩ K )a−1 ⊆ N ∩ K , so
N ∩ K / K by Theorem I.5.1(iv). �
(ii) Since N and K are subgroups of G then N ∨ K < G (N ∨ K is the
smallest group containing N ∪ K and G is a group containing N ∪ K ).
Since N / G and N < N ∨ K , then N / N ∨ K . �
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Theorem I.5.3

Theorem I.5.3 (continued 1)

Theorem I.5.3. Let K and N be subgroups of a group G with N normal
in G . Then

(iii) NK = N ∨ K = KN.

Proof (continued). (iii) Now NK = {nk | n ∈ N, k ∈ K} and N ∨ K is
the smallest group containing N ∪ K , so certainly NK ⊂ N ∨ K . An
element x ∈ N ∨ K is a product of the form n1k1n2k2 · · · nrkr where
ni ∈ N, ki ∈ K by Theorem I.2.8. Since N / G then niki = kin

′
i for some

n′i ∈ N (by Theorem I.5.1(iii) where we consider the coset Nki = kiN) and
therefore x can be written in the form n(k1k2 · · · kr ) where n ∈ N (we
move the ki s “to the right” one at a time and then use the normality of N
to shift all the n′i s “to the left”). Thus any n1k1n2k2 · · · nrkr ∈ N ∨K is of
the form n(k1k2 · · · kr ) ∈ NK and so N ∨ K ⊆ NK . Therefore
NK = N ∨ K .

Similarly (still using the normality of N) we can shift the
ni s “to the right” and show that KN = N ∨ K . �
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Theorem I.5.3

Theorem I.5.3 (continued 2)

Theorem I.5.3. Let K and N be subgroups of a group G with N normal
in G . Then

(i) N ∩ K / K ;

(ii) N / N ∨ K ;

(iii) NK = N ∨ K = KN;

(iv) If K / G and K ∩ N = {e}, then nk = kn for all k ∈ K and
n ∈ N.

Proof (continued). (iv) Let k ∈ K and n ∈ N. Then nkn−1 ∈ K since
we now hypothesize K / G . Also kn−1k−1 ∈ N since N / G . Hence
(nkn−1)k−1 ∈ K (since nkn−1, k−1 ∈ K ) and
(nkn−1)k−1 = n(kn−1k−1) ∈ N (since n, kn−1k−1 ∈ N). So
nkn−1k−1 ∈ N ∩ K = {e} and nk = kn.
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Theorem I.5.4

Theorem I.5.4

Theorem I.5.4. If N is a normal subgroup of a group G and G/N is the
set of all (left) cosets of N in G , then G/N is a group of order [G : N]
under the binary operation given by (aN)(bN) = (ab)N.
Proof. Much of the work is already done in Theorem I.1.5. For g ∈ G ,
the coset gN is the equivalence class of g ∈ G under the equivalence
relation of congruence modulo N by Theorem I.4.2(ii). To use Theorem
I.1.5, we need to confirm that a1 ∼ a2 and b1 ∼ b2 imply that
a1b1 ∼ a2b2. So suppose that a1 ≡ a2 (mod N) and b1 ≡ b2 (mod N);
that is, a1a

−1
2 = na ∈ N and b1b

−1
2 = nb ∈ N. Then

(a1b1)(a2b2)
−1 = a1b1b

−1
2 a−1

2 = a1nba
−1
2 .

Since N is normal, a1N = Na1

by Theorem I.5.1(iii) which implies that a1nb = na1 for some n ∈ N. So
(a1b1)(a2b2)

−1 = a1nba
−1
2 = na1a

−1
2 = n(a1a

−1
2 ) = nna ∈ N. Therefore,

a1b1 ≡ a2b2 (mod N). Theorem I.1.5 now implies that the equivalence
classes (i.e., the cosets of N) form a monoid. Since G contains an identity
and inverses then, based on how coset multiplication is defined, the cosets
of N form a group as claimed.
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Theorem I.5.5

Theorem I.5.5

Theorem I.5.5. If f : G → H is a homomorphism of groups, then the
kernel of f is a normal subgroup of G . Conversely, if N is a normal
subgroup of G , then the map π : G → G/N given by π(a) = aN is an
epimorphism (that is, an onto homomorphism) with kernel N.

Proof. If x ∈ Ker(f ) and a ∈ G then f (axa−1) = f (a)f (x)f (a−1) =
f (a)eH f (a−1) = f (a)f (a−1) = f (aa−1) = f (eG ) = eH and so
axa−1 ∈ Ker(f ). Hence, since we have taken x ∈ Ker(f ) then
a(Ker(f ))a−1 ⊂ Ker(f ) for all a ∈ G , and so by Theorem I.5.1(iv),
Ker(f ) / G .

Next, suppose N is a normal subgroup. Then π : G → G/N given by
π(a) = aN is “clearly” onto (such a ranges over all elements of G and
hence π produces all cosets of N). Now π(ab) = (ab)N = (aN)(bN)
= π(a)π(b) (by the definition of coset multiplication). So π is a
homomorphism and hence an epimorphism. Finally, Ker(π) = {a ∈ G |
π(a) = eGN = N} = {a ∈ G | aN = N} = {a ∈ G | a ∈ N} = N.
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= π(a)π(b) (by the definition of coset multiplication). So π is a
homomorphism and hence an epimorphism. Finally, Ker(π) = {a ∈ G |
π(a) = eGN = N} = {a ∈ G | aN = N} = {a ∈ G | a ∈ N} = N.
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Theorem I.5.6

Theorem I.5.6

Theorem I.5.6. If f : G → H is a homomorphism and N is a normal
subgroup of G contained in the kernel of f , then there is a unique
homomorphism f : G/N → H such that f (aN) = f (a) for all a ∈ G . Also,
Im(f ) = Im(f ) and Ker(f ) = Ker(f )/N. f is an isomorphism if and only if
f is an epimorphism and N = Ker(f ).

Proof. First, we introduce f . If b ∈ aN then b = an for some n ∈ N. So,
since f is a homomorphism then
f (b) = f (an) = f (a)f (n) = f (a)eH = f (a) (since n ∈ N ⊆ Ker(f )). Since
b is any representative of coset aN, then defining f : G/N → H as
f (aN) = f (a) produces a well defined function. Since
f ((aN)(bN)) = f ((ab)N) = f (ab) = f (a)f (b) = f (aN)f (bN) then f is a
homomorphism.
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Theorem I.5.6

Theorem I.5.6 (continued 1)

Theorem I.5.6. If f : G → H is a homomorphism and N is a normal
subgroup of G contained in the kernel of f , then there is a unique
homomorphism f : G/N → H such that f (aN) = f (a) for all a ∈ G . Also,
Im(f ) = Im(f ) and Ker(f ) = Ker(f )/N. f is an isomorphism if and only if
f is an epimorphism and N = Ker(f ).

Proof (continued). Next, Im(f ) = Im(f ) from the definition of f as
f (aN) = f (a) (recall that “Im(f )” is the range of function f ; see page 4).
Also, aN ∈ Ker(f ) if and only if f (aN) = e if and only if f (a) = e if and
only if a ∈ Ker(f ). So Ker(f ) = {aN | a ∈ Ker(f )} = Ker(f )/N (notice
that the elements of Ker(f )/N are the cosets of N by elements of Ker(f )).
This establishes the “also” part of the claim.

Since f is defined entirely in terms of f , the uniqueness claim follows.
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Theorem I.5.6

Theorem I.5.6 (continued 2)

Theorem I.5.6. If f : G → H is a homomorphism and N is a normal
subgroup of G contained in the kernel of f , then there is a unique
homomorphism f : G/N → H such that f (aN) = f (a) for all a ∈ G . Also,
Im(f ) = Im(f ) and Ker(f ) = Ker(f )/N. f is an isomorphism if and only if
f is an epimorphism and N = Ker(f ).

Proof (continued). Finally, for the isomorphism claim, notice that f is an
epimorphism (an onto homomorphism) if and only if f is an epimorphism.

By Theorem I.2.3, f is a monomorphism (a one to one homomorphism) if
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Ker(f ) = N.
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Corollary I.5.8

Corollary I.5.8

Corollary I.5.8. If f : G → H is a homomorphism of groups, N / G ,
M / H, and f (N) < M, then f induces a homomorphism
f : G/N → H/M, given by aN 7→ f (a)M. f is an isomorphism if and only
if Im(f ) ∨M = H and f −1(M) ⊂ N. In particular if f is an epimorphism
such that f (N) = M and Ker(f ) ⊂ N, then f is an isomorphism.

Proof. We break this into three stages (one of which we leave as a
homework problem).

(A) Let π : H → H/M be the canonical epimorphism, π(h) = hM.
Consider the composition π ◦ f : G → H/M. Since f (N) < M then
N ⊆ f −1(M). Now Ker(πf ) consists of the elements of G mapped to M
under π ◦ f ; this is the elements of G mapped to M by f (since
π(h) = hM = M if and only if h ∈ M) and hence is f −1(M). So
N ⊆ f −1(M) = Ker(πf ). Hence N is a normal subgroup of G contained in
the kernel of πf .
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Corollary I.5.8

Corollary I.5.8 (continued 1)

Corollary I.5.8. If f : G → H is a homomorphism of groups, N / G ,
M / H, and f (N) < M, then f induces a homomorphism
f : G/N → H/M, given by aN 7→ f (a)M. f is an isomorphism if and only
if Im(f ) ∨M = H and f −1(M) ⊂ N. In particular if f is an epimorphism
such that f (N) = M and Ker(f ) ⊂ N, then f is an isomorphism.

Proof (continued). So by Theorem I.5.6 (applied to πf ) the map (in the
notation of Theorem I.5.6 this map would be denoted πf )
f : G/N → H/M given by aN 7→ (πf )(a) = f (a)M (that is,
πf (aN) = (πf )(a) = π(f (a)) = f (a)M) is a (unique) homomorphism that
is an isomorphism if and only if πf is an epimorphism and N = Ker(πf ).

(B) This last condition is equivalent to Im(f ) ∨M = H and f −1(M) ⊆ N.
We leave this as a homework problem.
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Corollary I.5.8

Corollary I.5.8 (continued 2)

Corollary I.5.8. If f : G → H is a homomorphism of groups, N / G ,
M / H, and f (N) < M, then f induces a homomorphism
f : G/N → H/M, given by aN 7→ f (a)M. f is an isomorphism if and only
if Im(f ) ∨M = H and f −1(M) ⊂ N. In particular if f is an epimorphism
such that f (N) = M and Ker(f ) ⊂ N, then f is an isomorphism.

Proof (continued).
(C) (The “in particular” part.) If f is an epimorphism (and hence onto)
then H = Im(f ) = Im(f ) ∨M. Hypothesizing f (N) = M and Ker(f ) ⊆ N
gives f −1(M) ⊆ N as follows. Suppose not; ASSUME f (g) ∈ M for some
g ∈ G \ N. Since f (N) = M then for some n ∈ N we have f (n) = f (g).
Then f (gn−1) = f (g)f (n−1) = f (g)(f (n))−1 = f (g)(f (g))−1 = e and
gn−1 ∈ Ker(f ) ⊆ N. But n ∈ N also, so (gn−1)n = g ∈ N, a
CONTRADICTION. So the assumption that such g exists is false and
f −1(M) ⊆ N. So the conditions of (B) are satisfied and f is an
isomorphism.
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Corollary I.5.9, Second Isomorphism Theorem

Corollary I.5.9

Corollary I.5.9. Second Isomorphism Theorem.
If K and N are subgroups of a group G , with N normal in G , then
K/(N ∩ K ) ∼= NK/N.

Proof. We have N / NK by Theorem I.5.3(ii) and NK = N ∨ K by
Theorem I.5.3(iii). With 1G as the identity, we have the composition

K
1G−→ NK

π−→ NK/N (where π is the canonical epimorphism) is a
homomorphism, say f = π ◦ 1G . The kernel of f is the elements of K
mapped to N (the identity element of NK/N), so Ker(f ) = N ∩ K . So, by
the First Isomorphism Theorem (Corollary I.5.7) f induces an isomorphism
f : K/(K ∩ N) → Im(f ) and so: K/(K ∩ N) ∼= Im(f ). (∗)

Every element in NK/N is of the form (nk)N (for n ∈ N, k ∈ K ). Since
N / G then nk = kn1 for some n1 ∈ N, “whence” (nk)N = (kn1)N
= kN = f (k). So every element of NK/N is in Im(f ) and f is onto
NK/N. So f is an epimorphism and Im(f ) = NK/N. So by (∗), we see
that K/K ∩ N ∼= NK/N, under isomorphism f .
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Corollary I.5.10, Third Isomorphism Theorem

Corollary I.5.10

Corollary I.5.10. Third Isomorphism Theorem.
If H and K are normal subgroups of a group G such that K < H, then
H/K is a normal subgroup of G/K and (G/K )/(H/K ) ∼= G/H.

Proof. The identity map 1G : G → G satisfies 1G (K ) = K < H. Define
I : G/K → G/H as I (aK ) = aH. Then I is a homomorphism (since the
coset multiplication is done using representatives) and is onto since each
coset of H is in Im(I ) (notice K < H so K has “more” cosets in G than
H). That is, I is an epimorphism.

Now H = I (aK ) if and only if a ∈ H, so
Ker(I ) = {aK | a ∈ H} = H/K (by definition of H/K as cosets of K in
H). Since H/K is the kernel of a homomorphism then by Theorem I.5.5,
H/K / G/H. By Corollary I.5.7 (First Isomorphism Theorem),
G/H = Im(I ) ∼= (G/K )/Ker(I ) = (G/K )/(H/K ).
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Theorem I.5.11

Theorem I.5.11

Theorem I.5.11. If f : G → H is an epimorphism of groups, then the
assignment K 7→ f (K ) defines a one-to-one correspondence between the
sets Sf (G ) of all subgroups K of G which contain Ker(f ) and the set
S(H) of all subgroups of H. Under this correspondence normal subgroups
correspond to normal subgroups.
Proof. Since f is a homomorphism, then for K < G we have f (K ) is a
subgroup of H by Exercise I.2.9(b). So ϕ defined as ϕ(K ) = f (K ) is a
function ϕ : Sf (G ) → S(H). By Exercise I.2.9(a), f −1(J) is a subgroup of
G for every subgroup J of H. Since J < H implies Ker(f ) < f −1(J) (since
e ∈ J) and f (f −1(J)) = J, then ϕ is onto (since ϕ(f −1(J)) = J). By
Exercise I.5.18, f −1(f (K )) = K if and only if Ker(f ) < K .

Now by
definition, Sf (G ) consists exactly of all subgroups K of G satisfying
Ker(f ) < K , and so K < G with f −1(f (K )) = K . So the only thing
mapped to f (K ) under ϕ is K itself and ϕ is one to one. Hence, ϕ is one
to one and onto; that is, ϕ is a one-to-one correspondence.
We leave the claim about corresponding subgroups as homework.
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Corollary I.5.12

Corollary I.5.12

Corollary I.5.12. If N is a normal subgroup of a group G , then every
subgroup of G/N is of the form K/N, where K is a subgroup of G that
contains N. Furthermore, K/N is normal in G/N if and only if K is
normal in G .

Proof. Let π : G → G/N be the canonical epimorphism π(g) = gN.
Then Ker(π) = N (since N is the identity in G/N). By Theorem I.5.11 for
every subgroup M of G/N (i.e., every element M of S(H) = S(G/N) in
the notation of Theorem I.5.11) there corresponds a subgroup K of G
where K contains Ker(π) = N (so K is in Sπ(G ) in the notation of
Theorem I.5.11). The correspondence is given by ϕ(K ) = π(K ) = M and
so π(K ) = {kN | k ∈ K} = K/N, and M ∼= K/N.
Furthermore, K/N is normal in G/N if and only if K is normal in G by the
part of Theorem I.5.11 which states that normal subgroups correspond to
normal subgroups.
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