Modern Algebra

Chapter I. Groups
[.6. Symmetric, Alternating, and Dihedral Groups
—Proofs of Theorems

Thomas W. Hungerford
Algebra

Theorem 1.6.3 (continued 1)

Proof (continued). For each i < r, define o; € S, by:

_J olx) ifxeB;
Ui(X)_{ X if x ¢ B;

(notice that o; is well defined since x € B; for only one 7). Then oj|g, is a
bijection from B; to B;. Since the B; are disjoint, then o1,05,...,0, are
disjoint permutations. Next, for x € I, we have x € B; for a unique i and
so 0(x) = 0i(x) = 0102 - - - 0,(x) since the o's are disjoint. Therefore,

o = 0105 ---0, on I,. Now to show that each oy is a cycle.

If x € B;i (i < r) then since B; is finite there is a least positive integer d
such that o9(x) = o7(x) for some j with 0 < j < d (here the nonnegative
powers of o produce images of x € B; and d is the "first time” that the
orbit of x has wrapped around and intersected itself). Since 09 7/(x) = x
and 0 < d —j < d, we must have j = 0 and 0%(x) = x (or else d is not
minimal and could be replaced with d — j above).
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Theorem 1.6.3

Theorem 1.6.3

Theorem 1.6.3. Every nonidentity permutation in S, is uniquely (up to
the order of the factors) a product of disjoint cycles, each of which has
length at least 2.

Proof. Let o € 5, be a nonidentity. Define the relation ~ on
Ih={1,2,...,n} as x ~ y if and only if y = 0™(x) for some m € Z. We
claim that ~ is an equivalence relation on /,. (1) Reflexive: x ~ x since

x = 0%(x) for all x € I,; (2) Symmetric: if x ~ y then y = 0™(x) and so
x =0""(y) and y ~ x; (3) Transitive: if x ~ y and y ~ z then

y =0™(x) and z = 0"(y), so z=0""™(x) and x ~ z. Denote the
equivalence classes of ~ as {B; | 1 </ < s}. The equivalence classes are
the orbits of o and partition I, by Theorem 0.1.4. Let By, By, ..., B,

(1 < r <'s) be those orbits that contain more than one element of /, (that
is, the orbits of length greater than one).
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Theorem 1.6.3

Theorem 1.6.3 (continued 2)

Proof (continued). Hence (x,0(x),0?(x),...,09%(x)) is a cycle of
length at least 2. If 0™ (x) € B; then m = ad + b for some a, b € Z such
that 0 < b < d (by the Division Algorithm, Theorem 0.6.3).
Hence

O’m(X) — O,ad+b(X) _ O,bo,ad( ) O'b(X)
since 09(x) = x. So 6™(x) = o®(x) where 0 < b < d and hence

oM(x) € {x,0(x),0%(x)...., 097 (x)}.

Now for x € B;j we have B; = {o™(x
"(

class, so we have shown that if o € B; then

) | m € Z} since B; is an equivalence
x)

oM(x) € {x,0(x),0%(x),...,097(x)}, so that
B C {x,0(x),.. .,O’d_l(X)},
and “clearly”

{x,0(x).0%(x)....,09Y(x)} C B;.
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Theorem 1.6.3 Theorem 1.6.3

Theorem 1.6.3 (continued 3) Theorem 1.6.3 (continued 4)
Proof (continued). Therefore B; = {x, o(x), o%(x),...,0971(x)} where Proof (continued). So
x is some element of B;. So o; is the cycle (x,o(x),o%(x),...,o971(x)). ) 1
Suppose 71, T2, . .., T¢ are disjoint nontrivial cycles such that 0 = 7y - - - 74 o'(x) = o o(x)
(to show uniqueness). Let x € [, be such that o(x) # x. Since the 7's are = crk 17i(x) since 0( ) = Ti(x)
disjoint, there exists a unique j with 1 < j < t where o(x) = 7j(x). Now — ok 257,(x) = 7jo(x)
— k=2_ .

= T1TjT2---Tj -+ Tt since the 7's are disjoint

= TITTjccTj Tt = Tjk(X) for all k € Z.

= T1T2..-’7—J.2..-’7—t

So the orbit of x under 7; is precisely the orbit of x under o, say B;.

= T2 Consequently, 7;(y) = a(y) for all y € B; (since y = 0"(x) = 7/'(x) for

= (-7 77 some n € Z). Since 7; is a cycle it has only one nontrivial orbit (if
= o7 7j = (i1, i, . .., iy) then the orbit is {i1, i, ..., i,}) and it must be that the
orbit is B;.
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Theorem 1.6.3 (continued 5) Corollary 1.6.4

Theorem 1.6.3. Every nonidentity permutation in S, is uniquely (up to
the order of the factors) a product of disjoint cycles, each of which has
length at least 2.

Corollary 1.6.4. The order of a permutation o € S, is the least common
multiple of the orders of its disjoint cycles.

Proof. Let 0 = 0102 - -0, with {o; | 1 < i < r} the disjoint cycles. Since

Proof (continued). Therefore for y ¢ B; we have that y is not an disjoint cycles commute, 0™ = 004" --- o] for all m € Z. So o™ = (1)
element of the one orbit of 7; and so 7j(y) = y (y is fixed by 7} since y is (the identity) if and only if 0/ = (1) for 1 </ < r. Now ¢ = (1) if and
not in the cycle 7j). So 7; = o; where o is as defined above. “A suitable only if |oj| divides m by Theorem 1.3.4(iv). Therefore

inductive argument shows that r = t.” So, after rearrangement, o; = 7; oMol loz)lor]) — (1) and ok = (1) for no positive

for i =1,2,...,r and the representation of o as a product of cycles is k <lem(|o1|,|o2l, ..., |or]). Thatis, |o| = lem(|o1l, o2, ..., |oF]). O
unique (except possibly for order). O



Corollary 1.6.5

Theorem 1.6.8

Theorem 1.6.8. For each n > 2, let A, be the set of all even
permutations of S,. Then A, is a normal subgroup of S, of index 2 and
order |S,|/2 = n!/2. Furthermore A, is the only subgroup of S, of index
2. The group A, is called the alternating group on n letters.

Corollary 1.6.5. Every permutation in S, can be written as a product of
(not necessarily disjoint) transpositions.

Proof. It suffices by Theorem [.6.3 to show that every cycle is a product

Proof. Let C be the multiplicative group on {—1,1}. Define f : S, — C
of transpositions. For a 1-cycle, (x1) = (x1,%2)(x2, x1). For an r-cycle,

as f(o) = sgn(o). We claim that f is an epimorphism. First, let 0,7 € Sp,.
If o and 7 are both even or both odd, then o7 is even. If o is even

(2, xe) = (O, xe) Oty Xe-1) O, xe—2) -+ (31, x3) (3, xe)- (respectively, odd) and 7 is odd (respectively, even) then o7 is odd (in all
0 four claims, just count the transpositions in a representation of o and 7).
We then have in all four cases f(o7) = f(0)f(7) and f is a
homomomorphism. Also, f is onto since f((1,2)) = —1 and
f((1,2)(1,2)) = 1. So f is an epimorphism.
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Theorem 1.6.8 Lemma 1.6.11

Theorem 1.6.8 (continued)

Theorem 1.6.8. For each n > 2, let A, be the set of all even
permutations of S,. Then A, is a normal subgroup of S,, of index 2 and
order |Sp|/2 = n!/2. Furthermore A, is the only subgroup of S, of index
2. The group A, is called the alternating group on n letters.

Proof (continued). Now Ker(f) = A, (since 1 is the identity of the
multiplicative group {—1,1}) and by Exercise 1.2.9(a) A, is a subgroup of
S,. By Theorem 1.5.5, A, is a normal subgroup of S,. By the First
Isomorphism Theorem (Corollary 1.5.7), S,/Ker(f) = S,/An = Im(f) = C
(this is where “onto” is used). So [S, : As] = 2 (the number of cosets of
Anin Sp;) and by Lagrange's Theorem (Corollary 1.4.6)

|An| = |Sn|/2 = n!/2. By Exercise 1.6.6, A, is the unique subgroup of S,
of index 2. O
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Lemma 1.6.11

Lemma 1.6.11. Let r and s be distinct elements of {1,2,...,n}. Then A,
(where n > 3) is generated by the 3-cycles {(r,s,k) |1 < k < n, k # r,s}.

Proof. For n = 3, the set of cycles is (WLOG) {(1,2,3)} and

(1,2,3)? = (1,3,2), (1,2,3)3 = (1)(2)(3), and these are the three
elements of As. Now for n > 3. Since A, consists of all even
permutations, then A, is generated by all pairs of transpositions of the
form (a, b)(c, d) (disjoint transpositions) and (a, d)(a, ¢) (transpositions
sharing one element; if transpositions share two elements they are the
same and the product is the identity) where a, b, ¢, d are distinct. Since
(a, b)(c,d) = (a,c,b)(a, c,d) and (a, b)(a,c) = (a, c, b), then the set of
all 3-cycles generates all pairs of such transpositions and hence generates
An.
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Lemma 1.6.11

Lemma 1.6.11 (continued 1)

Lemma 1.6.11. Let r and s be distinct elements of {1,2,...,n}. Then A,
(where n > 3) is generated by the 3-cycles {(r,s, k) |1 < k < n, k #r,s}.

Proof (continued). Next, recall that we started with given distinct r and
s. Let a, b, ¢ be distinct elements which are different from r and s. Then
any 3-cycle of A, must be of one of the following forms:

(r,s,a), (r,a,s) (containing both r and s and sending r — s or s — r),
(r,a, b) (containing r and not s),
(s, a, b) (containing s and not r), and
(a, b, ¢) (containing neither r nor s).
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Lemma 1.6.12

Lemma |.6.12

Lemma 1.6.12. If N is a normal subgroup of A, (where n > 3) and N
contains a 3-cycle, then N = A,,.

Proof. Let r,s, ¢ be distinct where (r, s, c) is a 3-cycle in N. Then for
any k # r, s, c the 3-cycle (r,s, k) € N since

(r,s,k) = (r,s)(c, k)(r,s,c)?(c, k)(r,s)

=[(r,s)(c, KI(r,s.)?[(r;s)(c, k)| " € N

by Theorem 1.5.1(iv) and Definition 1.5.2. So for given r,s € {1,2,...,n}
(given as the "first” two elements of the 3-cycle hypothesized to be in N)
we have all cycles of the form (r,s, k) € N where k # r,s. By Lemma

1.6.11, these 3-cycles generate A, and N = A,,. O
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Lemma 1.6.11

Lemma 1.6.11 (continued 2)

Lemma 1.6.11. Let r and s be distinct elements of {1,2,...,n}. Then A,
(where n > 3) is generated by the 3-cycles {(r,s, k) |1 < k < n, k # r,s}.

Proof (continued). We now write each of these 3-cycles in terms of the
3-cycles given in the statement of the theorem:

(r,s,a) (r,s,a)

(r,a,s) = (r,s,a)?

(r,a,b) = (r,s,b)(r,s,a)?

(s,a,b) = (r,s,b)*(r,s,a)

(a,b,c) = (r,s,a)%(r,s,c)(r,s, b)*(r,s,a).

So any 3-cycle (and hence any element of A,, by the first paragraph) is
generated by the set {(r,s, k) |1 < k < n, k # r,s} where r and s were
initially given. O
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Theorem 1.6.10

Theorem 1.6.10

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.

Proof. Since |A2| =1 and |Asz| = 3, then these groups have no proper
subgroups and so are (vacuously) simple. In Exercise 1.6.7 you are asked to
show that N = {(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)} is a normal
subgroup of A4 (or see my online Supplement. The Alternating Groups A,
are Simple for n > 5 for Introduction to Modern Algebra [MATH
4127/5127]). For n > 5, we show that if N is a nontrivial normal subgroup
of A, then N = A, (and so A, is simple) in five cases. We'll explain below
why these five cases are the only possible cases.

Case 1. N contains a 3-cycle. Then by Lemma 1.6.12, N = A,,.
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Theorem 1.6.10 (continued 1)

Proof. Case 2. N contains an element ¢ which, when written as a
product of disjoint cycles (Theorem 1.6.3), has at least one of the cycles of
length r > 4. Say 0 = (a1, a2,...,a,)7 (where 7 is disjoint from the
r-cycle). Then (a1, ap,a3) € Ay, so denote it as 0 = (a1, ap, a3). Since

o € N and N is normal, then 0= € N and 606! € N (Theorem
1.5.4(iv)), so 0 ~1(d0671) € N. But

o Y0007t = [t Ya1,ar a5 1,...,a3, )]
(a1, a2, a3)[(a1, a2, ...,a,)7](a1, as, a2)
= (a1,ar,3r-1,...,33,32)(a1,a2,a3)(a1,a2,...,a,)
(a1, a3, a2) (since 7 is disjoint from the others)
= (a1,as3,ar)

and so N contains the 3-cycle (a1, as, a,) and by Lemma 1.6.12, N = A,,.
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Theorem 1.6.10 (continued 3)

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.

Proof. Case 4. N contains an element o which is the product of one
3-cycle and some 2-cycles. Say o = (a1, a2, a3)7 where 7 is disjoint from
the 3-cycle and 7 is a product of disjoint 2-cycles. Then 02 € N and

o =

(31, a, 33)7(317 a, 33)T

= (31, a, 33)2T2
(a1, a2, a3)2 (since T consists of disjoint transpositions)
(

81,32,33)

and so N contains the 3-cycle (a1, az, a3). By Lemma 1.6.12, N = A,.
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Theorem 1.6.10 (continued 2)

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.

Proof Case 3. N contains an element ¢ which is the product of disjoint
cycles, at least two of which have length 3. So, say,

o = (a1, a2, az)(aa, as, as)T (where 7 is disjoint from the two 3-cycles).
Then (a1, a2,a4) € A, so denote it § = (a1, a2,a4). As in Case 2,

0'_1(50'5_1) = [7_1(34,36,35)(31,33,32)](31,32,34)
[(a1, a2, a3)(as, a5, a6) 7] (a1, as, a2)

= (317‘94’32’36733)

and so N contains the 5-cycle (a1, as, a», ag, a3). By Case 2, N = A,,.
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Theorem 1.6.10 (continued 4)

Proof. Case 5. Every element of N is the product of an even number of
disjoint 2-cycles. Let o € N with o = (a1, ap)(as3, a4)7 where 7 is disjoint
from the transpositions and 7 is a product of an even number of disjoint

2-cycles. Then (a1, a2, a3) € A, so we denote it 6 = (a1, az,az). Then

o (6067 1) € N as in Case 2. Now

0'_1(505_1) = [7_1(33,34)(31,32)](31,32,33)[(31,32)(33,34)7](313332)
= (31,33)(32,34).

Since n > 5, there is an element b distinct from a1, ap, as, a4. Since
¢ = (a1,a3,b) € A, and ¢ = (a1,a3)(a2,a1) € N then ((£¢€1) € N as in
Case 2. But

(€™ = (a1, a3)(a2, a4)](a1, a3, b)[(a1, a2) (a2, a4)] (a1, b, a3)

= (31, as, b)
and so N contains the 3-cycle (a1, ap, b). By Lemma 1.6.12, N = A,,.
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Theorem 1.6.10 (continued 5)

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.
Proof (continued). Now to see why at least one of Case 1-5 must hold,
we consider writing the elements of N as disjoint products of cycles. Case
2 describes the situation in which there is a permutation which is the
product of disjoint cycles, at least one of which has length 4 or greater. So
if Case 2 does not hold, then all elements of N can be written as a disjoint
product of cycles of lengths 2 and 3. Case 5 covers the case where N
contains only permutations consisting of no 3-cycles but only 2-cycles (an
even number since N C A,). Case 1 covers the case where N contains a
permutation consisting of a single 3-cycle alone. Case 4 covers the case
where N contains a permutation consisting of a single 3-cycle and a bunch
of 2-cycles. Case 3 covers the case where N contains a permutation
consisting of two or more 3-cycles. Therefore, in terms of decompositions
of permutations into disjoint cycles and with an eye towards 3-cycles, if
Case 2 does not hold then at least one of Case 1, 3, 4, 5 must hold. O
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Theorem 1.6.13 (continued 1)

Proof (continued). Next

(12 3 4 5 . i - n—1 n
“\1 n n-1 n—-2 n—=3 -+ n+2—i - 3 2
(1,2,3,...,n—1,n)

(1 2 3 4 5 ... -1 .. -1 n
“"\'n n-1 n—-2 n-3 n—4 -~ n42—i --. 2 1

=(n,n—1,...,3,2,1)
12 3 4 5 .. i on=1 0\ _
1 n n—1 n—-2 n-=-3 -+ n4+2—i - 3 2 )

and (/i) holds.
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Theorem 1.6.13

Theorem 1.6.13

Theorem 1.6.13. For each n > 3 the dihedral group D, is a group of
order 2n whose generators a and b satisfy:

(i) a" = (1); b2 = (1); ak # (1) if 0 < k < n;

(i) ba=a"1b.
Any group G which is generated by elements a, b € G satisfying (/) and
(ii) for some n > 3 (with e € G in place of (1)) is isomorphic to Dj.

Proof. First, with a = (1,2,...,n) we have a" = (1) and a* # (1) for

0 < k < n. Next, b fixes 1 so b? fixes 1. For any 1 < i < n we have
b(i)=n+2—iandso b?(i)=b(n+2—i)=n+2—(n+2—i)=1i. So
b? = (1). So (i) holds.
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Theorem 1.6.13

Theorem 1.6.13 (continued 2)

Proof (continued). By Theorem 1.2.8,

D, = {(ab)={a™b™a™bp™...b" | k € 2Z, k >0, m; € Z}
= {a'b/ | i,j € Z} by repeated application of (i)
= {a'V|0<i<nj=0,1} by ().

Now let 0 < i< nandj=0. Then a'b/(1) = a'(1) =1+ i and
ab(2)=a(2)=2+i For0O<i<nandj=1,
a'bl(1) = a'b(1) = a'(1) =1+iand a'b/(2) = a'b(2) = a'(n) = n+i. So
if i # i then a’bl(1)=1+i#1+i =a b(1). If j=0and j/ =1 then
for any i

ab(2)=a'(2) =2+i#n+i=a(n)=ab'(2) =4t (2).

So if either i # i or j # j' then a'b/ is different from a’ b/, So
{a'b/ |0 < i< n;j=0,1} consists of 2n permutations and |D,| = 2n.
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Theorem 1.6.13

Theorem 1.6.13 (continued 3)

Proof (continued). Next, suppose G is a group generated by a,b € G
and a, b satisfy (i) and (ii) for some n > 3. By Theorem 1.2.8 and the
argument above which uses (i) and (ii), we have that every element of G
is of the form a'b/ where 0 < i < n and j = 0, 1. Denote the generators of
D, by a1 and by (to avoid confusion with the generators of G). Define
f:D,— G as f(ajb)) = a'b/. Then f is a homomorphism:

faiblaiby) = f(ai "B by (i)
_ b = aba b by (il)

A

= f(alb])f(af b]).

Since each element of G is of the form a’b_j where 0 <j<nandj=0,1
and each element of D,, is of the form ajb] where 0 </ < nand j=0,1,
then f is onto and f is an epimorphism.
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Theorem 1.6.13

Theorem 1.6.13 (continued 4)

Theorem 1.6.13. For each n > 3 the dihedral group D, is a group of
order 2n whose generators a and b satisfy:

(i) a" = (1); b2 = (1); a* # (1) if 0 < k < n;

(i) ba=a"1h.
Any group G which is generated by elements a, b € G satisfying (/) and
(ii) for some n > 3 (with e € G in place of (1)) is isomorphic to Dj.

Proof (continued). We now show that f is one to one (i.e., a
monomorphism). We use Theorem 1.2.3(i) and show that

Ker(f) = {e} = {(1)}. Suppose aibj € Ker(f) or f(aib}) =a'bl =ec G
with 0 <i<nandj=0,1. ASSUME j =1 then a’ = b~ = b and by
(i) a*! = a'a = ba = a~'b = ala’ = a'~! which implies a> = e. This
CONTRADICTS (i) since n > 3. Therefore j = 0 and e = a'b® = a' with
0 < i < n which implies that i = 0 by (i). Thus ajb] = a%b9 = (1). So
Ker(f) = {(1)} and f is one to one. Therefore f is an isomorphism. O
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