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Theorem I.6.3

Theorem I.6.3

Theorem I.6.3. Every nonidentity permutation in Sn is uniquely (up to
the order of the factors) a product of disjoint cycles, each of which has
length at least 2.

Proof. Let σ ∈ Sn be a nonidentity. Define the relation ∼ on
In = {1, 2, . . . , n} as x ∼ y if and only if y = σm(x) for some m ∈ Z. We
claim that ∼ is an equivalence relation on In. (1) Reflexive: x ∼ x since
x = σ0(x) for all x ∈ In; (2) Symmetric: if x ∼ y then y = σm(x) and so
x = σ−m(y) and y ∼ x ; (3) Transitive: if x ∼ y and y ∼ z then
y = σm(x) and z = σn(y), so z = σn+m(x) and x ∼ z .

Denote the
equivalence classes of ∼ as {Bi | 1 ≤ i ≤ s}. The equivalence classes are
the orbits of σ and partition In by Theorem 0.1.4. Let B1,B2, . . . ,Br

(1 ≤ r ≤ s) be those orbits that contain more than one element of In (that
is, the orbits of length greater than one).
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Theorem I.6.3

Theorem I.6.3 (continued 1)

Proof (continued). For each i ≤ r , define σi ∈ Sn by:

σi (x) =

{
σ(x) if x ∈ Bi

x if x 6∈ Bi

(notice that σi is well defined since x ∈ Bi for only one i). Then σi |Bi
is a

bijection from Bi to Bi . Since the Bi are disjoint, then σ1, σ2, . . . , σr are
disjoint permutations. Next, for x ∈ In we have x ∈ Bi for a unique i and
so σ(x) = σi (x) = σ1σ2 · · ·σr (x) since the σk ’s are disjoint. Therefore,
σ = σ1σ2 · · ·σr on In. Now to show that each σk is a cycle.
If x ∈ Bi (i ≤ r) then since Bi is finite there is a least positive integer d
such that σd(x) = σj(x) for some j with 0 ≤ j < d (here the nonnegative
powers of σ produce images of x ∈ Bi and d is the “first time” that the
orbit of x has wrapped around and intersected itself).

Since σd−j(x) = x
and 0 < d − j ≤ d , we must have j = 0 and σd(x) = x (or else d is not
minimal and could be replaced with d − j above).
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Theorem I.6.3

Theorem I.6.3 (continued 2)

Proof (continued). Hence (x , σ(x), σ2(x), . . . , σd−1(x)) is a cycle of
length at least 2. If σm(x) ∈ Bi then m = ad + b for some a, b ∈ Z such
that 0 ≤ b < d (by the Division Algorithm, Theorem 0.6.3).
Hence

σm(x) = σad+b(x) = σbσad(x) = σb(x)

since σd(x) = x . So σm(x) = σb(x) where 0 ≤ b < d and hence

σm(x) ∈ {x , σ(x), σ2(x), . . . , σd−1(x)}.

Now for x ∈ Bi we have Bi = {σm(x) | m ∈ Z} since Bi is an equivalence
class, so we have shown that if σm(x) ∈ Bi then

σm(x) ∈ {x , σ(x), σ2(x), . . . , σd−1(x)}, so that

Bi ⊆ {x , σ(x), . . . , σd−1(x)},
and “clearly”

{x , σ(x), σ2(x), . . . , σd−1(x)} ⊆ Bi .
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Theorem I.6.3

Theorem I.6.3 (continued 3)

Proof (continued). Therefore Bi = {x , σ(x), σ2(x), . . . , σd−1(x)} where
x is some element of Bi . So σi is the cycle (x , σ(x), σ2(x), . . . , σd−1(x)).
Suppose τ1, τ2, . . . , τt are disjoint nontrivial cycles such that σ = τ1τ2 · · · τt

(to show uniqueness). Let x ∈ In be such that σ(x) 6= x . Since the τ ’s are
disjoint, there exists a unique j with 1 ≤ j ≤ t where σ(x) = τj(x). Now

τjσ = τj(τ1τ2 · · · τj · · · τt)

= τ1τjτ2 · · · τj · · · τt since the τ ’s are disjoint

= τ1τ2τj · · · τj · · · τt

= τ1τ2 · · · τ2
j · · · τt

= τ1τ2 · · · τj · · · τjτt

= (τ1τ2 · · · τj · · · τt)τj

= στj .
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Theorem I.6.3

Theorem I.6.3 (continued 4)

Proof (continued). So

σk(x) = σk−1σ(x)

= σk−1τj(x) since σ(x) = τj(x)

= σk−2στj(x) = σk−2τjσ(x)

= σk−2τjτj(x)

...

= τk
j (x) for all k ∈ Z.

So the orbit of x under τj is precisely the orbit of x under σ, say Bi .
Consequently, τj(y) = σ(y) for all y ∈ Bi (since y = σn(x) = τn

j (x) for
some n ∈ Z). Since τj is a cycle it has only one nontrivial orbit (if
τj = (i1, i2, . . . , iu) then the orbit is {i1, i2, . . . , iu}) and it must be that the
orbit is Bi .
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Theorem I.6.3

Theorem I.6.3 (continued 5)

Theorem I.6.3. Every nonidentity permutation in Sn is uniquely (up to
the order of the factors) a product of disjoint cycles, each of which has
length at least 2.

Proof (continued). Therefore for y 6∈ Bi we have that y is not an
element of the one orbit of τj and so τj(y) = y (y is fixed by τj since y is
not in the cycle τj). So τj = σi where σi is as defined above. “A suitable
inductive argument shows that r = t.” So, after rearrangement, σi = τi

for i = 1, 2, . . . , r and the representation of σ as a product of cycles is
unique (except possibly for order).
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Corollary I.6.4

Corollary I.6.4

Corollary I.6.4. The order of a permutation σ ∈ Sn is the least common
multiple of the orders of its disjoint cycles.

Proof. Let σ = σ1σ2 · · ·σr with {σi | 1 ≤ i ≤ r} the disjoint cycles. Since
disjoint cycles commute, σm = σm

1 σm
2 · · ·σm

r for all m ∈ Z. So σm = (1)
(the identity) if and only if σm

i = (1) for 1 ≤ i ≤ r . Now σm = (1) if and
only if |σi | divides m by Theorem I.3.4(iv). Therefore

σlcm(|σ1|,|σ2|,...,|σr |) = (1) and σk = (1) for no positive
k < lcm(|σ1|, |σ2|, . . . , |σr |). That is, |σ| = lcm(|σ1|, |σ2|, . . . , |σr |).
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Corollary I.6.5

Corollary I.6.5

Corollary I.6.5. Every permutation in Sn can be written as a product of
(not necessarily disjoint) transpositions.

Proof. It suffices by Theorem I.6.3 to show that every cycle is a product
of transpositions. For a 1-cycle, (x1) = (x1, x2)(x2, x1). For an r -cycle,

(x1, x2, . . . , xr ) = (x1, xr )(x1, xr−1)(x1, xr−2) · · · (x1, x3)(x1, x2).
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Theorem I.6.8

Theorem I.6.8

Theorem I.6.8. For each n ≥ 2, let An be the set of all even
permutations of Sn. Then An is a normal subgroup of Sn of index 2 and
order |Sn|/2 = n!/2. Furthermore An is the only subgroup of Sn of index
2. The group An is called the alternating group on n letters.

Proof. Let C be the multiplicative group on {−1, 1}. Define f : Sn → C
as f (σ) = sgn(σ). We claim that f is an epimorphism.

First, let σ, τ ∈ Sn.
If σ and τ are both even or both odd, then στ is even. If σ is even
(respectively, odd) and τ is odd (respectively, even) then στ is odd (in all
four claims, just count the transpositions in a representation of σ and τ).
We then have in all four cases f (στ) = f (σ)f (τ) and f is a
homomomorphism. Also, f is onto since f ((1, 2)) = −1 and
f ((1, 2)(1, 2)) = 1. So f is an epimorphism.
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Theorem I.6.8

Theorem I.6.8 (continued)

Theorem I.6.8. For each n ≥ 2, let An be the set of all even
permutations of Sn. Then An is a normal subgroup of Sn of index 2 and
order |Sn|/2 = n!/2. Furthermore An is the only subgroup of Sn of index
2. The group An is called the alternating group on n letters.

Proof (continued). Now Ker(f ) = An (since 1 is the identity of the
multiplicative group {−1, 1}) and by Exercise I.2.9(a) An is a subgroup of
Sn. By Theorem I.5.5, An is a normal subgroup of Sn. By the First
Isomorphism Theorem (Corollary I.5.7), Sn/Ker(f ) = Sn/An

∼= Im(f ) = C
(this is where “onto” is used). So [Sn : An] = 2 (the number of cosets of
An in Sn) and by Lagrange’s Theorem (Corollary I.4.6)
|An| = |Sn|/2 = n!/2. By Exercise I.6.6, An is the unique subgroup of Sn

of index 2.
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Lemma I.6.11

Lemma I.6.11

Lemma I.6.11. Let r and s be distinct elements of {1, 2, . . . , n}. Then An

(where n ≥ 3) is generated by the 3-cycles {(r , s, k) | 1 ≤ k ≤ n, k 6= r , s}.

Proof. For n = 3, the set of cycles is (WLOG) {(1, 2, 3)} and
(1, 2, 3)2 = (1, 3, 2), (1, 2, 3)3 = (1)(2)(3), and these are the three
elements of A3.

Now for n > 3. Since An consists of all even
permutations, then An is generated by all pairs of transpositions of the
form (a, b)(c , d) (disjoint transpositions) and (a, d)(a, c) (transpositions
sharing one element; if transpositions share two elements they are the
same and the product is the identity) where a, b, c , d are distinct. Since
(a, b)(c , d) = (a, c , b)(a, c , d) and (a, b)(a, c) = (a, c , b), then the set of
all 3-cycles generates all pairs of such transpositions and hence generates
An.
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Lemma I.6.11

Lemma I.6.11 (continued 1)

Lemma I.6.11. Let r and s be distinct elements of {1, 2, . . . , n}. Then An

(where n ≥ 3) is generated by the 3-cycles {(r , s, k) | 1 ≤ k ≤ n, k 6= r , s}.

Proof (continued). Next, recall that we started with given distinct r and
s. Let a, b, c be distinct elements which are different from r and s. Then
any 3-cycle of An must be of one of the following forms:

(r , s, a), (r , a, s) (containing both r and s and sending r 7→ s or s 7→ r),
(r , a, b) (containing r and not s),
(s, a, b) (containing s and not r), and
(a, b, c) (containing neither r nor s).

() Modern Algebra November 1, 2021 14 / 27



Lemma I.6.11

Lemma I.6.11 (continued 2)

Lemma I.6.11. Let r and s be distinct elements of {1, 2, . . . , n}. Then An

(where n ≥ 3) is generated by the 3-cycles {(r , s, k) | 1 ≤ k ≤ n, k 6= r , s}.

Proof (continued). We now write each of these 3-cycles in terms of the
3-cycles given in the statement of the theorem:

(r , s, a) = (r , s, a)

(r , a, s) = (r , s, a)2

(r , a, b) = (r , s, b)(r , s, a)2

(s, a, b) = (r , s, b)2(r , s, a)

(a, b, c) = (r , s, a)2(r , s, c)(r , s, b)2(r , s, a).

So any 3-cycle (and hence any element of An, by the first paragraph) is
generated by the set {(r , s, k) | 1 ≤ k ≤ n, k 6= r , s} where r and s were
initially given.
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Lemma I.6.12

Lemma I.6.12

Lemma I.6.12. If N is a normal subgroup of An (where n ≥ 3) and N
contains a 3-cycle, then N = An.

Proof. Let r , s, c be distinct where (r , s, c) is a 3-cycle in N. Then for
any k 6= r , s, c the 3-cycle (r , s, k) ∈ N since

(r , s, k) = (r , s)(c , k)(r , s, c)2(c , k)(r , s)

= [(r , s)(c , k)](r , s, c)2[(r , s)(c , k)]−1 ∈ N

by Theorem I.5.1(iv) and Definition I.5.2. So for given r , s ∈ {1, 2, . . . , n}
(given as the “first” two elements of the 3-cycle hypothesized to be in N)
we have all cycles of the form (r , s, k) ∈ N where k 6= r , s. By Lemma
I.6.11, these 3-cycles generate An and N = An.
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by Theorem I.5.1(iv) and Definition I.5.2. So for given r , s ∈ {1, 2, . . . , n}
(given as the “first” two elements of the 3-cycle hypothesized to be in N)
we have all cycles of the form (r , s, k) ∈ N where k 6= r , s. By Lemma
I.6.11, these 3-cycles generate An and N = An.
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Theorem I.6.10

Theorem I.6.10

Theorem I.6.10. The alternating group An is simple if and only if n 6= 4.

Proof. Since |A2| = 1 and |A3| = 3, then these groups have no proper
subgroups and so are (vacuously) simple. In Exercise I.6.7 you are asked to
show that N = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} is a normal
subgroup of A4 (or see my online Supplement. The Alternating Groups An

are Simple for n ≥ 5 for Introduction to Modern Algebra [MATH
4127/5127]).

For n ≥ 5, we show that if N is a nontrivial normal subgroup
of An then N = An (and so An is simple) in five cases. We’ll explain below
why these five cases are the only possible cases.

Case 1. N contains a 3-cycle. Then by Lemma I.6.12, N = An.
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Theorem I.6.10

Theorem I.6.10 (continued 1)

Proof. Case 2. N contains an element σ which, when written as a
product of disjoint cycles (Theorem I.6.3), has at least one of the cycles of
length r ≥ 4. Say σ = (a1, a2, . . . , ar )τ (where τ is disjoint from the
r -cycle). Then (a1, a2, a3) ∈ An, so denote it as δ = (a1, a2, a3). Since
σ ∈ N and N is normal, then σ−1 ∈ N and δσδ−1 ∈ N (Theorem
I.5.4(iv)), so σ−1(δσδ−1) ∈ N. But

σ−1(δσδ−1) = [τ−1(a1, ar , ar−1, . . . , a3, a2)]

(a1, a2, a3)[(a1, a2, . . . , ar )τ ](a1, a3, a2)

= (a1, ar , ar−1, . . . , a3, a2)(a1, a2, a3)(a1, a2, . . . , ar )

(a1, a3, a2) (since τ is disjoint from the others)

= (a1, a3, ar )

and so N contains the 3-cycle (a1, a3, ar ) and by Lemma I.6.12, N = An.
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Theorem I.6.10

Theorem I.6.10 (continued 2)

Theorem I.6.10. The alternating group An is simple if and only if n 6= 4.

Proof Case 3. N contains an element σ which is the product of disjoint
cycles, at least two of which have length 3. So, say,
σ = (a1, a2, a3)(a4, a5, a6)τ (where τ is disjoint from the two 3-cycles).
Then (a1, a2, a4) ∈ An so denote it δ = (a1, a2, a4). As in Case 2,

σ−1(δσδ−1) = [τ−1(a4, a6, a5)(a1, a3, a2)](a1, a2, a4)

[(a1, a2, a3)(a4, a5, a6)τ ](a1, a4, a2)

= (a1, a4, a2, a6, a3)

and so N contains the 5-cycle (a1, a4, a2, a6, a3). By Case 2, N = An.
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Theorem I.6.10

Theorem I.6.10 (continued 3)

Theorem I.6.10. The alternating group An is simple if and only if n 6= 4.

Proof. Case 4. N contains an element σ which is the product of one
3-cycle and some 2-cycles. Say σ = (a1, a2, a3)τ where τ is disjoint from
the 3-cycle and τ is a product of disjoint 2-cycles. Then σ2 ∈ N and

σ2 = (a1, a2, a3)τ(a1, a2, a3)τ

= (a1, a2, a3)
2τ2

= (a1, a2, a3)
2 (since τ consists of disjoint transpositions)

= (a1, a2, a3)

and so N contains the 3-cycle (a1, a2, a3). By Lemma I.6.12, N = An.
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Theorem I.6.10

Theorem I.6.10 (continued 4)

Proof. Case 5. Every element of N is the product of an even number of
disjoint 2-cycles. Let σ ∈ N with σ = (a1, a2)(a3, a4)τ where τ is disjoint
from the transpositions and τ is a product of an even number of disjoint
2-cycles. Then (a1, a2, a3) ∈ An so we denote it δ = (a1, a2, a3). Then
σ−1(δσδ−1) ∈ N as in Case 2. Now

σ−1(δσδ−1) = [τ−1(a3, a4)(a1, a2)](a1, a2, a3)[(a1, a2)(a3, a4)τ ](a1a3a2)

= (a1, a3)(a2, a4).

Since n ≥ 5, there is an element b distinct from a1, a2, a3, a4. Since
ξ = (a1, a3, b) ∈ An and ζ = (a1, a3)(a2, a4) ∈ N then ζ(ξζξ−1) ∈ N as in
Case 2. But

ζ(ξζξ−1) = [(a1, a3)(a2, a4)](a1, a3, b)[(a1, a2)(a2, a4)](a1, b, a3)

= (a1, a3, b)

and so N contains the 3-cycle (a1, a2, b). By Lemma I.6.12, N = An.
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Theorem I.6.10

Theorem I.6.10 (continued 5)

Theorem I.6.10. The alternating group An is simple if and only if n 6= 4.
Proof (continued). Now to see why at least one of Case 1–5 must hold,
we consider writing the elements of N as disjoint products of cycles. Case
2 describes the situation in which there is a permutation which is the
product of disjoint cycles, at least one of which has length 4 or greater. So
if Case 2 does not hold, then all elements of N can be written as a disjoint
product of cycles of lengths 2 and 3. Case 5 covers the case where N
contains only permutations consisting of no 3-cycles but only 2-cycles (an
even number since N ⊂ An). Case 1 covers the case where N contains a
permutation consisting of a single 3-cycle alone. Case 4 covers the case
where N contains a permutation consisting of a single 3-cycle and a bunch
of 2-cycles. Case 3 covers the case where N contains a permutation
consisting of two or more 3-cycles. Therefore, in terms of decompositions
of permutations into disjoint cycles and with an eye towards 3-cycles, if
Case 2 does not hold then at least one of Case 1, 3, 4, 5 must hold.
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Theorem I.6.13

Theorem I.6.13

Theorem I.6.13. For each n ≥ 3 the dihedral group Dn is a group of
order 2n whose generators a and b satisfy:

(i) an = (1); b2 = (1); ak 6= (1) if 0 < k < n;

(ii) ba = a−1b.

Any group G which is generated by elements a, b ∈ G satisfying (i) and
(ii) for some n ≥ 3 (with e ∈ G in place of (1)) is isomorphic to Dn.

Proof. First, with a = (1, 2, . . . , n) we have an = (1) and ak 6= (1) for
0 < k < n. Next, b fixes 1 so b2 fixes 1. For any 1 < i ≤ n we have
b(i) = n + 2− i and so b2(i) = b(n + 2− i) = n + 2− (n + 2− i) = i . So
b2 = (1). So (i) holds.
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Theorem I.6.13

Theorem I.6.13 (continued 1)

Proof (continued). Next

ba =

(
1 2 3 4 5 · · · i · · · n − 1 n
1 n n − 1 n − 2 n − 3 · · · n + 2− i · · · 3 2

)
(1, 2, 3, . . . , n − 1, n)

=

(
1 2 3 4 5 · · · i − 1 · · · n − 1 n
n n − 1 n − 2 n − 3 n − 4 · · · n + 2− i · · · 2 1

)
= (n, n − 1, . . . , 3, 2, 1)(

1 2 3 4 5 · · · i · · · n − 1 n
1 n n − 1 n − 2 n − 3 · · · n + 2− i · · · 3 2

)
= a−1b

and (ii) holds.
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Theorem I.6.13

Theorem I.6.13 (continued 2)

Proof (continued). By Theorem I.2.8,

Dn = 〈a, b〉 = {am1bm2am3bm4 · · · bmk | k ∈ 2Z, k > 0,mi ∈ Z}
= {aibj | i , j ∈ Z} by repeated application of (ii)

= {aibj | 0 ≤ i < n; j = 0, 1} by (i).

Now let 0 ≤ i < n and j = 0. Then aibj(1) = ai (1) = 1 + i and
aibj(2) = ai (2) = 2 + i . For 0 ≤ i < n and j = 1,
aibj(1) = aib(1) = ai (1) = 1 + i and aibj(2) = aib(2) = ai (n) = n + i . So
if i 6= i ′ then aibj(1) = 1 + i 6= 1 + i ′ = ai ′bj(1). If j = 0 and j ′ = 1 then
for any i

aibj(2) = ai (2) = 2 + i 6= n + i = ai (n) = aib1(2) = aibj ′(2).

So if either i 6= i ′ or j 6= j ′ then aibj is different from ai ′bj ′ . So
{aibj | 0 ≤ i < n; j = 0, 1} consists of 2n permutations and |Dn| = 2n.

() Modern Algebra November 1, 2021 25 / 27



Theorem I.6.13

Theorem I.6.13 (continued 3)

Proof (continued). Next, suppose G is a group generated by a, b ∈ G
and a, b satisfy (i) and (ii) for some n ≥ 3. By Theorem I.2.8 and the
argument above which uses (i) and (ii), we have that every element of G
is of the form aibj where 0 ≤ i < n and j = 0, 1. Denote the generators of
Dn by a1 and b1 (to avoid confusion with the generators of G ). Define
f : Dn → G as f (ai

1b
j
1) = aibj . Then f is a homomorphism:

f (ai
1b

j
1a

i ′
1 bj ′

1 ) = f (ai−i ′

1 bj+j ′

1 ) by (ii)

= ai−i ′bj+j ′ = aibjai ′bj ′ by (ii)

= f (ai
1b

j
1)f (ai ′

1 bj ′

1 ).

Since each element of G is of the form aibj where 0 ≤ i < n and j = 0, 1
and each element of Dn is of the form ai

1b
j
1 where 0 ≤ i < n and j = 0, 1,

then f is onto and f is an epimorphism.
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Theorem I.6.13

Theorem I.6.13 (continued 4)

Theorem I.6.13. For each n ≥ 3 the dihedral group Dn is a group of
order 2n whose generators a and b satisfy:

(i) an = (1); b2 = (1); ak 6= (1) if 0 < k < n;

(ii) ba = a−1b.

Any group G which is generated by elements a, b ∈ G satisfying (i) and
(ii) for some n ≥ 3 (with e ∈ G in place of (1)) is isomorphic to Dn.

Proof (continued). We now show that f is one to one (i.e., a
monomorphism). We use Theorem I.2.3(i) and show that
Ker(f ) = {e} = {(1)}. Suppose ai

1b
j
1 ∈ Ker(f ) or f (ai

1b
j
1) = aibj = e ∈ G

with 0 ≤ i < n and j = 0, 1. ASSUME j = 1 then ai = b−1 = b and by
(ii) ai+1 = aia = ba = a−1b = a−1ai = ai−1 which implies a2 = e. This
CONTRADICTS (i) since n ≥ 3. Therefore j = 0 and e = aib0 = ai with
0 ≤ i < n which implies that i = 0 by (i). Thus ai

1b
j
1 = a0

1b
0
1 = (1). So

Ker(f ) = {(1)} and f is one to one. Therefore f is an isomorphism.
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