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Theorem 1.6.3

Theorem 1.6.3. Every nonidentity permutation in S, is uniquely (up to
the order of the factors) a product of disjoint cycles, each of which has
length at least 2.
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Theorem 1.6.3

Theorem 1.6.3. Every nonidentity permutation in S, is uniquely (up to
the order of the factors) a product of disjoint cycles, each of which has
length at least 2.

Proof. Let o € S, be a nonidentity. Define the relation ~ on
In=A{1,2,...,n} as x ~ y if and only if y = ¢™(x) for some m € Z. We
claim that ~ is an equivalence relation on /,. (1) Reflexive: x ~ x since
x = 0%(x) for all x € I,; (2) Symmetric: if x ~ y then y = 0™(x) and so
x=0""(y) and y ~ x; (3) Transitive: if x ~ y and y ~ z then

y =0"(x) and z = 0"(y), so z = 0""™(x) and x ~ z.
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Theorem 1.6.3

Theorem 1.6.3. Every nonidentity permutation in S, is uniquely (up to
the order of the factors) a product of disjoint cycles, each of which has
length at least 2.

Proof. Let o € S, be a nonidentity. Define the relation ~ on
In=A{1,2,...,n} as x ~ y if and only if y = ¢™(x) for some m € Z. We
claim that ~ is an equivalence relation on /,. (1) Reflexive: x ~ x since

x = 0%(x) for all x € I,; (2) Symmetric: if x ~ y then y = 0™(x) and so
x=0""(y) and y ~ x; (3) Transitive: if x ~ y and y ~ z then

y =0™(x) and z = 0"(y), so z = 0""™(x) and x ~ z. Denote the
equivalence classes of ~ as {B; | 1 < i < s}. The equivalence classes are
the orbits of o and partition /, by Theorem 0.1.4. Let By, B>,..., B,

(1 < r <) be those orbits that contain more than one element of /, (that
is, the orbits of length greater than one).

Modern Algebra November 1, 2021 3 /27



Theorem 1.6.3 (continued 1)

Proof (continued). For each i < r, define o; € S, by:

= {70 TreE

(notice that o; is well defined since x € B; for only one i). Then oj|g, is a
bijection from B; to B;. Since the B; are disjoint, then o1,05,...,0, are
disjoint permutations. Next, for x € I, we have x € B; for a unique i and
so 0(x) = 0i(x) = 0102 - - - 0,(x) since the o's are disjoint. Therefore,

o =o0102---0, on I,. Now to show that each o is a cycle.

Modern Algebra November 1, 2021 4 / 27



Theorem 1.6.3 (continued 1)

Proof (continued). For each i < r, define o; € S, by:

= {70 TreE

(notice that o; is well defined since x € B; for only one i). Then oj|g, is a
bijection from B; to B;. Since the B; are disjoint, then o1,05,...,0, are
disjoint permutations. Next, for x € I, we have x € B; for a unique i and
so 0(x) = 0i(x) = 0102 - - - 0,(x) since the o's are disjoint. Therefore,

o =o0102---0, on I,. Now to show that each o is a cycle.

If x € B; (i < r) then since B; is finite there is a least positive integer d
such that 09(x) = o/(x) for some j with 0 < j < d (here the nonnegative
powers of o produce images of x € B; and d is the “first time” that the
orbit of x has wrapped around and intersected itself).
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Theorem 1.6.3 (continued 1)

Proof (continued). For each i < r, define o; € S, by:

= {70 TreE

(notice that o; is well defined since x € B; for only one i). Then oj|g, is a
bijection from B; to B;. Since the B; are disjoint, then o1,05,...,0, are
disjoint permutations. Next, for x € I, we have x € B; for a unique i and
so 0(x) = 0i(x) = 0102 - - - 0,(x) since the o's are disjoint. Therefore,

o =o0102---0, on I,. Now to show that each o is a cycle.

If x € B; (i < r) then since B; is finite there is a least positive integer d
such that 09(x) = o/(x) for some j with 0 < j < d (here the nonnegative
powers of o produce images of x € B; and d is the “first time” that the
orbit of x has wrapped around and intersected itself). Since 097/ (x) = x
and 0 < d —j < d, we must have j = 0 and 0%(x) = x (or else d is not
minimal and could be replaced with d — j above).
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Theorem 1.6.3 (continued 2)

Proof (continued). Hence (x,0(x),0%(x),...,097}(x)) is a cycle of
length at least 2. If 0™(x) € B; then m = ad + b for some a, b € Z such
that 0 < b < d (by the Division Algorithm, Theorem 0.6.3).
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Theorem 1.6.3 (continued 2)
Proof (continued). Hence (x,0(x),0%(x),...,097}(x)) is a cycle of
length at least 2. If 0™(x) € B; then m = ad + b for some a, b € Z such

that 0 < b < d (by the Division Algorithm, Theorem 0.6.3).

Hence
O’m(X) — O,ad+b(x) — Ubo,ad(x) — Ub(X)

since 09(x) = x. So 0™(x) = o®(x) where 0 < b < d and hence
oM(x) € {x,0(x),0%(x),...,09H(x)}.

Now for x € B; we have B; = {¢(x) | m € Z} since B; is an equivalence
class, so we have shown that if 0™(x) € B; then

o™(x) € {x,0(x),0%(x),...,097}(x)}, so that
Bi C {x,0(x),...,09 Y (x)},

and “clearly”
{x,0(x),0%(x),...,0971(x)} C B;.
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Theorem 1.6.3 (continued 3)

Proof (continued). Therefore B; = {x, o(x),o%(x),...,0971(x)} where
x is some element of B;. So o is the cycle (x,o(x),0%(x),...,c971(x)).
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Theorem 1.6.3 (continued 3)

Proof (continued). Therefore B; = {x, o(x), 0%(x), . ..
x is some element of B;. So o is the cycle (x,o(x),0?(x),...
Suppose 11, 72, ..

Tjo

,0971(x)} where
,0971(x)).

., 7 are disjoint nontrivial cycles such that o = 10+ - 7
(to show uniqueness). Let x € I, be such that o(x) # x. Since the 7's are
disjoint, there exists a unique j with 1 < j <t where o(x) = 7j(x). Now

(e T Te)
T1TjT2 -~ Tj - T¢ since the 7's are disjoint
TAITYTj T Ty

7‘17‘2-"7’]2-"%

TITy - Ty TiT

(rira -7y Te)T

oTj.
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Theorem 1.6.3 (continued 4)

Proof (continued). So

ch(x) =

Q
a
—~~

X
vm

= 7f(x) forall k € Z.

ince o(x) = 7j(x)

= 0" 21j0(x)

So the orbit of x under 7; is precisely the orbit of x under o, say B;.
Consequently, 7j(y) = o(y) for all y € B; (since y = 0"(x) = 77(x) for

J

some n € Z). Since 7j is a cycle it has only one nontrivial orbit (if

7j = (i1, i2, . . ., iy) then the orbit is {i1, ip, ..

orbit is B;.
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Theorem 1.6.3 (continued 5)

Theorem 1.6.3. Every nonidentity permutation in S, is uniquely (up to
the order of the factors) a product of disjoint cycles, each of which has
length at least 2.

Proof (continued). Therefore for y ¢ B; we have that y is not an
element of the one orbit of 7; and so 7j(y) =y (y is fixed by 7; since y is
not in the cycle 77). So 7; = o; where o is as defined above. “A suitable
inductive argument shows that r = t." So, after rearrangement, o; = 7;
for i =1,2,...,r and the representation of o as a product of cycles is
unique (except possibly for order). O
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Corollary 1.6.4

Corollary 1.6.4. The order of a permutation o € S, is the least common
multiple of the orders of its disjoint cycles.
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Corollary 1.6.4

Corollary 1.6.4. The order of a permutation o € S, is the least common
multiple of the orders of its disjoint cycles.

Proof. Let 0 = 0102+ o, with {o; | 1 < i < r} the disjoint cycles. Since
disjoint cycles commute, 0 = o{"c" - -- o) for all m € Z. So ¢™ = (1)
(the identity) if and only if o/ = (1) for 1 </ < r. Now ¢ = (1) if and
only if |oj| divides m by Theorem 1.3.4(iv). Therefore

glemlorlfoal,...lovl) = (1) and % = (1) for no positive

k <lem(|o1],|o2], .., |or]). Thatis, |o| = lem(|o1], |o2], ..., |oF]). O
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Corollary 1.6.5

Corollary 1.6.5. Every permutation in S, can be written as a product of
(not necessarily disjoint) transpositions.
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Corollary 1.6.5

Corollary 1.6.5

Corollary 1.6.5. Every permutation in S, can be written as a product of
(not necessarily disjoint) transpositions.

Proof. It suffices by Theorem 1.6.3 to show that every cycle is a product
of transpositions. For a 1-cycle, (x1) = (x1,x2)(x2, x1). For an r-cycle,

(X1, X2, ..oy X ) = (X1, %) (X1, Xr—1) (X1, Xr—2) - - - (X1, X3) (X1, X2).

O
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Theorem 1.6.8

Theorem 1.6.8. For each n > 2, let A, be the set of all even
permutations of S,. Then A, is a normal subgroup of S, of index 2 and
order |Sp|/2 = n!/2. Furthermore A, is the only subgroup of S, of index
2. The group A, is called the alternating group on n letters.
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Theorem 1.6.8

Theorem 1.6.8. For each n > 2, let A, be the set of all even
permutations of S,. Then A, is a normal subgroup of S, of index 2 and
order |Sp|/2 = n!/2. Furthermore A, is the only subgroup of S, of index
2. The group A, is called the alternating group on n letters.

Proof. Let C be the multiplicative group on {—1,1}. Define f : S, — C
as (o) = sgn(o). We claim that f is an epimorphism.
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Theorem 1.6.8

Theorem 1.6.8. For each n > 2, let A, be the set of all even
permutations of S,. Then A, is a normal subgroup of S, of index 2 and
order |Sp|/2 = n!/2. Furthermore A, is the only subgroup of S, of index
2. The group A, is called the alternating group on n letters.

Proof. Let C be the multiplicative group on {—1,1}. Define f : S, — C
as f(o) = sgn(o). We claim that f is an epimorphism. First, let 0,7 € S,.
If 0 and 7 are both even or both odd, then o7 is even. If o is even
(respectively, odd) and 7 is odd (respectively, even) then o7 is odd (in all
four claims, just count the transpositions in a representation of ¢ and 7).
We then have in all four cases f(o7) = f(o)f(7) and f is a
homomomorphism. Also, f is onto since f((1,2)) = —1 and

f((1,2)(1,2)) = 1. So f is an epimorphism.
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Theorem 1.6.8 (continued)

Theorem 1.6.8. For each n > 2, let A, be the set of all even
permutations of S,. Then A, is a normal subgroup of S,, of index 2 and
order |Sp|/2 = n!/2. Furthermore A, is the only subgroup of S, of index
2. The group A, is called the alternating group on n letters.

Proof (continued). Now Ker(f) = A, (since 1 is the identity of the
multiplicative group {—1,1}) and by Exercise 1.2.9(a) A, is a subgroup of
S,. By Theorem 1.5.5, A, is a normal subgroup of S,. By the First
Isomorphism Theorem (Corollary 1.5.7), S,/Ker(f) = S,/An = Im(f) = C
(this is where “onto” is used). So [S, : As] = 2 (the number of cosets of
Ap in Sp) and by Lagrange's Theorem (Corollary 1.4.6)

|An| = |Sn|/2 = n!/2. By Exercise 1.6.6, A, is the unique subgroup of S,
of index 2. O]
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Lemma 1.6.11

Lemma 1.6.11. Let r and s be distinct elements of {1,2,...,n}. Then A,
(where n > 3) is generated by the 3-cycles {(r,s, k) |1 < k < n, k # r,s}.
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Lemma 1.6.11

Lemma 1.6.11. Let r and s be distinct elements of {1,2,...,n}. Then A,
(where n > 3) is generated by the 3-cycles {(r,s, k) |1 < k < n, k # r,s}.
Proof. For n = 3, the set of cycles is (WLOG) {(1,2,3)} and

(1,2,3)2 = (1,3,2), (1,2,3)3 = (1)(2)(3), and these are the three
elements of As.
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Lemma 1.6.11

Lemma 1.6.11. Let r and s be distinct elements of {1,2,...,n}. Then A,
(where n > 3) is generated by the 3-cycles {(r,s, k) |1 < k < n, k # r,s}.

Proof. For n = 3, the set of cycles is (WLOG) {(1,2,3)} and

(1,2,3)2 = (1,3,2), (1,2,3)3 = (1)(2)(3), and these are the three
elements of Asz. Now for n > 3. Since A, consists of all even
permutations, then A, is generated by all pairs of transpositions of the
form (a, b)(c, d) (disjoint transpositions) and (a, d)(a, ¢) (transpositions
sharing one element; if transpositions share two elements they are the
same and the product is the identity) where a, b, ¢, d are distinct. Since
(a, b)(c,d) = (a,c, b)(a,c,d) and (a, b)(a,c) = (a, c, b), then the set of
all 3-cycles generates all pairs of such transpositions and hence generates
Ap.
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Lemma 1.6.11 (continued 1)

Lemma 1.6.11. Let r and s be distinct elements of {1,2,...,n}. Then A,
(where n > 3) is generated by the 3-cycles {(r,s, k) |1 < k < n, k # r,s}.

Proof (continued). Next, recall that we started with given distinct r and
s. Let a, b, ¢ be distinct elements which are different from r and s. Then
any 3-cycle of A, must be of one of the following forms:

r,s,a), (r,a,s) (containing both r and s and sending r — s or s — r),
r,a, b) (containing r and not s),

b) (containing s and not r), and
, €) (containing neither r nor s).

Q
o

Modern Algebra November 1, 2021 14 / 27



Lemma 1.6.11 (continued 2)

Lemma 1.6.11. Let r and s be distinct elements of {1,2,...,n}. Then A,
(where n > 3) is generated by the 3-cycles {(r,s, k) |1 < k < n, k # r,s}.

Proof (continued). We now write each of these 3-cycles in terms of the
3-cycles given in the statement of the theorem:

(r,s,a) = (r,s,a)

(r,a,s) = (r,s,a)?

(r,a,b) = (r,s,b)(r,s,a)?

(s,a,b) = (r,s,b)*(r,s,a)

(a,b,c) = (r,s,a)%(r,s,c)(r,s,b)*(r,s,a).

So any 3-cycle (and hence any element of A, by the first paragraph) is
generated by the set {(r,s, k) |1 < k < n,k # r,s} where r and s were
initially given. O
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Lemma 1.6.12

Lemma 1.6.12. If N is a normal subgroup of A, (where n > 3) and N
contains a 3-cycle, then N = A,,.
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Lemma 1.6.12

Lemma 1.6.12. If N is a normal subgroup of A, (where n > 3) and N
contains a 3-cycle, then N = A,,.

Proof. Let r,s, ¢ be distinct where (r, s, c) is a 3-cycle in N. Then for
any k # r,s, c the 3-cycle (r,s, k) € N since

(rys, k) =(r,s)(c,k)(r,s, c)2(c, k)(r,s)

= [(r.s)(c, KI(r,s.)?[(r,s)(c. k)| F € N

by Theorem 1.5.1(iv) and Definition 1.5.2. So for given r,s € {1,2,...,n}
(given as the “first” two elements of the 3-cycle hypothesized to be in N)
we have all cycles of the form (r,s, k) € N where k # r,s. By Lemma

[.6.11, these 3-cycles generate A, and N = A,,. O
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Theorem 1.6.10

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.
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Theorem 1.6.10

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.

Proof. Since |A;| =1 and |As3| = 3, then these groups have no proper
subgroups and so are (vacuously) simple. In Exercise 1.6.7 you are asked to
show that N = {(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)} is a normal
subgroup of A4 (or see my online Supplement. The Alternating Groups A,
are Simple for n > 5 for Introduction to Modern Algebra [MATH
4127/5127]).
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Theorem 1.6.10

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.

Proof. Since |A;| =1 and |As3| = 3, then these groups have no proper
subgroups and so are (vacuously) simple. In Exercise 1.6.7 you are asked to
show that N = {(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)} is a normal
subgroup of A4 (or see my online Supplement. The Alternating Groups A,
are Simple for n > 5 for Introduction to Modern Algebra [MATH
4127/5127]). For n > 5, we show that if N is a nontrivial normal subgroup
of A, then N = A, (and so A, is simple) in five cases. We'll explain below
why these five cases are the only possible cases.
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Theorem 1.6.10

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.

Proof. Since |A;| =1 and |As3| = 3, then these groups have no proper
subgroups and so are (vacuously) simple. In Exercise 1.6.7 you are asked to
show that N = {(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)} is a normal
subgroup of A4 (or see my online Supplement. The Alternating Groups A,
are Simple for n > 5 for Introduction to Modern Algebra [MATH
4127/5127]). For n > 5, we show that if N is a nontrivial normal subgroup
of A, then N = A, (and so A, is simple) in five cases. We'll explain below
why these five cases are the only possible cases.

Case 1. N contains a 3-cycle. Then by Lemma 1.6.12, N = A,,.
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Theorem 1.6.10 (continued 1)

Proof. Case 2. N contains an element o which, when written as a
product of disjoint cycles (Theorem 1.6.3), has at least one of the cycles of
length r > 4. Say 0 = (a1, a2, ..., a,)7 (where 7 is disjoint from the
r-cycle). Then (a1, a2, a3) € Ap, so denote it as 0 = (a1, a, a3). Since

o € N and N is normal, then 01 € N and 606~ € N (Theorem
1.5.4(iv)), so o~ 1(d0671) € N.
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Theorem 1.6.10 (continued 1)

Proof. Case 2. N contains an element o which, when written as a
product of disjoint cycles (Theorem 1.6.3), has at least one of the cycles of
length r > 4. Say 0 = (a1, a2, ..., a,)7 (where 7 is disjoint from the
r-cycle). Then (a1, a2, a3) € Ap, so denote it as 0 = (a1, a, a3). Since

o € N and N is normal, then 01 € N and 606~ € N (Theorem
1.5.4(iv)), so o~ 1(do671) € N. But

“Y6067Y) = [t a1, ar,ar-1,...,a83,a)]

a1, a, as)[(a1, az, - .., a,)7](a1, a3, a2)
ai,ar,ar-1,...,as,a)(a1,a,a3)(a1,az,...,ar)
a1, a3, az) (since 7 is disjoint from the others)

(
(
(
(a1, a3, ar)

and so N contains the 3-cycle (a1, as, a,) and by Lemma 1.6.12, N = A,,.
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Theorem 1.6.10 (continued 2)

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.

Proof Case 3. N contains an element o which is the product of disjoint
cycles, at least two of which have length 3. So, say,

o = (a1, a2, a3)(aa, as, ag)T (where 7 is disjoint from the two 3-cycles).
Then (a1, a2,a1) € A, so denote it § = (a1, a2,a4). As in Case 2,

0_1(505_1) = [7_1(34, ae, as)(a1, a3, a2)](a1, a2, as)
[(a1, a2, a3)(as, as, a6)7](a1, as, a2)

= (a1, as, a2, as, a3)

and so N contains the 5-cycle (a1, as, az, as, a3). By Case 2, N = A,,.
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Theorem 1.6.10 (continued 3)

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.

Proof. Case 4. N contains an element o which is the product of one
3-cycle and some 2-cycles. Say o = (a1, a2, a3)T where 7 is disjoint from
the 3-cycle and 7 is a product of disjoint 2-cycles. Then ¢ € N and

2

g = 7'(31,32,83)7’

2 (since 7 consists of disjoint transpositions)

and so N contains the 3-cycle (a1, az, a3). By Lemma 1.6.12, N = A,,.
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Theorem 1.6.10 (continued 4)

Proof. Case 5. Every element of N is the product of an even number of
disjoint 2-cycles. Let o0 € N with o = (a1, a2)(as, as)™ where 7 is disjoint
from the transpositions and 7 is a product of an even number of disjoint
2-cycles. Then (a1, a2, a3) € A, so we denote it § = (a1, az, a3z). Then

o~ Y(6a671) € N as in Case 2. Now

o 1(6067Y) = [t a3, a4)(a1, a2)](a1, a2, a3)[(a1, a2) (a3, a4 ) 7] (a1a3a2)
= (a1, a3)(a2, as).

Since n > 5, there is an element b distinct from ay, a», a3, as. Since
¢ = (a1,a3,b) € Ay and ( = (a1, a3)(a2,24) € N then ((£C€71) € N as in
Case 2.
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Theorem 1.6.10 (continued 4)

Proof. Case 5. Every element of N is the product of an even number of
disjoint 2-cycles. Let o0 € N with o = (a1, a2)(as, as)™ where 7 is disjoint
from the transpositions and 7 is a product of an even number of disjoint
2-cycles. Then (a1, a2, a3) € A, so we denote it § = (a1, az, a3z). Then

o~ Y(6a671) € N as in Case 2. Now

o 1(6067Y) = [t a3, a4)(a1, a2)](a1, a2, a3)[(a1, a2) (a3, a4 ) 7] (a1a3a2)
= (a1, a3)(a2, as).

Since n > 5, there is an element b distinct from ay, a», a3, as. Since
€ =(a1,a3,b) € A, and ¢ = (a1, a3)(az,a4) € N then ((£¢671) € N as in
Case 2. But

(&™) = (a1, a3)(az, a4)](a1, a3, b)[(a1, 2) (a2, a4)] (a1, b, a3)
= (31,33,1))

and so N contains the 3-cycle (a1, az, b). By Lemma 1.6.12, N = A,.
Modern Algebra November 1, 2021 21 /27



Theorem 1.6.10 (continued 5)

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.
Proof (continued). Now to see why at least one of Case 1-5 must hold,
we consider writing the elements of N as disjoint products of cycles. Case
2 describes the situation in which there is a permutation which is the
product of disjoint cycles, at least one of which has length 4 or greater. So
if Case 2 does not hold, then all elements of N can be written as a disjoint
product of cycles of lengths 2 and 3. Case 5 covers the case where N
contains only permutations consisting of no 3-cycles but only 2-cycles (an
even number since N C Ap).
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Theorem 1.6.10 (continued 5)

Theorem 1.6.10. The alternating group A, is simple if and only if n # 4.
Proof (continued). Now to see why at least one of Case 1-5 must hold,
we consider writing the elements of N as disjoint products of cycles. Case
2 describes the situation in which there is a permutation which is the
product of disjoint cycles, at least one of which has length 4 or greater. So
if Case 2 does not hold, then all elements of N can be written as a disjoint
product of cycles of lengths 2 and 3. Case 5 covers the case where N
contains only permutations consisting of no 3-cycles but only 2-cycles (an
even number since N C A,). Case 1 covers the case where N contains a
permutation consisting of a single 3-cycle alone. Case 4 covers the case
where N contains a permutation consisting of a single 3-cycle and a bunch
of 2-cycles. Case 3 covers the case where N contains a permutation
consisting of two or more 3-cycles. Therefore, in terms of decompositions
of permutations into disjoint cycles and with an eye towards 3-cycles, if
Case 2 does not hold then at least one of Case 1, 3, 4, 5 must hold. O
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Theorem 1.6.13

Theorem 1.6.13. For each n > 3 the dihedral group D, is a group of
order 2n whose generators a and b satisfy:

(i) a" = (1); b2 = (1); a # (1) if 0 < k < n;

(ii) ba=a"lh.
Any group G which is generated by elements a, b € G satisfying (i) and
(ii) for some n > 3 (with e € G in place of (1)) is isomorphic to D,.
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Theorem 1.6.13

Theorem 1.6.13. For each n > 3 the dihedral group D, is a group of
order 2n whose generators a and b satisfy:

(i) a" = (1); b2 = (1); a # (1) if 0 < k < n;

(ii) ba=a"lh.
Any group G which is generated by elements a, b € G satisfying (i) and
(ii) for some n > 3 (with e € G in place of (1)) is isomorphic to D,.

Proof. First, with a = (1,2,...,n) we have a” = (1) and a* # (1) for

0 < k < n. Next, b fixes 1 so b? fixes 1. For any 1 < i < n we have
b(i)=n+2—iandso b>(i)=b(n+2—i)=n+2—(n+2—i)=i. So
b? = (1). So (i) holds.
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Theorem 1.6.13

Theorem 1.6.13 (continued 1)

Proof (continued). Next

ba — 1 2 3 4 5 i -« n—1 n
N1 0 n-1 n-20n-3 - pny2-j -~ 3 2
(1,2,3,...,n—1,n)

_ 1 2 3 4 5 i—1 -+« n—1 n
“\'n n—-1 n—-2 n-3 n—4 -+ n4+2—i - 2 1

=(nn—-1,...,3,2,1)
12 3 4 5 .. i =10\ _
1 nn-1n-2n-3 -« nt2—i --- 3 2)7°

and (ii) holds.
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Theorem 1.6.13 (continued 2)

Proof (continued). By Theorem 1.2.8,

D, = (a,b)={a™b™a™p™...b" | k € 2Z,k >0, m; € Z}
= {a'b/ | i,j € Z} by repeated application of (i)
{a'b |0 <i<nj=0,1} by ().

Now let 0 < i< nandj=0. Then a'b/(1) = ai(1
abf(2)—a(2)—2+/ ForO<i<nandj=1,
a'b/(1) = a'b(1) = (1)—1+/andabf() a'b(2) = a'(n) = n+i. So
if i # i then a'b/(1) =1+ i#1+i" =a H(1). If j=0and j/ =1 then
for any i

)=1+iand

Ab(2)=ai(2)=2+i#n+i=a(n)=abl(2=ab(2)

So if either i # i’ or j # j' then a'b/ is different from a’ b/’. So
{a't/ |0 < i< n;j=0,1} consists of 2n permutations and |D,| = 2n.
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Theorem 1.6.13 (continued 3)

Proof (continued). Next, suppose G is a group generated by a, b € G
and a, b satisfy (i) and (ii) for some n > 3. By Theorem 1.2.8 and the
argument above which uses (/) and (ii), we have that every element of G
is of the form a'b/ where 0 < i < n and j = 0,1. Denote the generators of
D, by a; and by (to avoid confusion with the generators of G). Define
f:Dy— Gas f(ajb)) =a'b.
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Theorem 1.6.13 (continued 3)

Proof (continued). Next, suppose G is a group generated by a, b € G
and a, b satisfy (i) and (ii) for some n > 3. By Theorem 1.2.8 and the
argument above which uses (/) and (ii), we have that every element of G
is of the form a'b/ where 0 < i < n and j = 0,1. Denote the generators of
D, by a; and by (to avoid confusion with the generators of G). Define
f:D,— G as f(ajb)) = a'b/. Then f is a homomorphism:

faiblalbl) = f(al~"B*') by (ii)
= W =W B by (ii)
= f(alb])f(a] b]).

Since each element of G is of the form a"b'f where 0 <i<nandj=0,1
and each element of D, is of the form a’lbll where 0 </ < nandj=0,1,
then f is onto and f is an epimorphism.
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Theorem 1.6.13 (continued 4)

Theorem 1.6.13. For each n > 3 the dihedral group D, is a group of
order 2n whose generators a and b satisfy:

(i) a" = (1); > =(1); a¥ # (1) if 0 < k < n;

(ii) ba=a"lb.
Any group G which is generated by elements a, b € G satisfying (/) and
(ii) for some n > 3 (with e € G in place of (1)) is isomorphic to D,.

Proof (continued). We now show that f is one to one (i.e., a
monomorphism). We use Theorem 1.2.3(i) and show that

Ker(f) = {e} = {(1)}. Suppose aib} € Ker(f) or f(albj) =ab=ecG
W|th0</<nandj—0 1. ASSUMEJ—lthena =bh1 —band by
(ii) a"t! = a'a=ba=a b= a"la’ = a'~! which implies a> = e. This
CONTRADICTS (i) since n > 3. Therefore j = 0 and e = a'b® = a' with
0 < i < n which implies that i = 0 by (i). Thus a}b} = a9b% = (1). So
Ker(f) = {(1)} and f is one to one. Therefore f is an isomorphism. O
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