Modern Algebra

Chapter I. Groups

I.6. Symmetric, Alternating, and Dihedral Groups —Proofs of Theorems

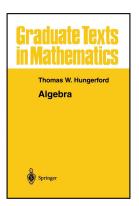


Table of contents

- Theorem I.6.3
- 2 Corollary I.6.4
- 3 Corollary I.6.5
- Theorem I.6.8
- 5 Lemma 1.6.11
- 6 Lemma I.6.12
- Theorem I.6.10
- 8 Theorem I.6.13

Theorem I.6.3

Theorem 1.6.3. Every nonidentity permutation in S_n is uniquely (up to the order of the factors) a product of disjoint cycles, each of which has length at least 2.

Proof. Let $\sigma \in S_n$ be a nonidentity. Define the relation \sim on $I_n = \{1, 2, ..., n\}$ as $x \sim y$ if and only if $y = \sigma^m(x)$ for some $m \in \mathbb{Z}$. We claim that \sim is an equivalence relation on I_n . (1) Reflexive: $x \sim x$ since $x = \sigma^0(x)$ for all $x \in I_n$; (2) Symmetric: if $x \sim y$ then $y = \sigma^m(x)$ and so $x = \sigma^{-m}(y)$ and $y \sim x$; (3) Transitive: if $x \sim y$ and $y \sim z$ then $y = \sigma^m(x)$ and $z = \sigma^n(y)$, so $z = \sigma^{n+m}(x)$ and $x \sim z$.

Theorem I.6.3

Theorem I.6.3. Every nonidentity permutation in S_n is uniquely (up to the order of the factors) a product of disjoint cycles, each of which has length at least 2.

Proof. Let $\sigma \in S_n$ be a nonidentity. Define the relation \sim on $I_n = \{1, 2, ..., n\}$ as $x \sim y$ if and only if $y = \sigma^m(x)$ for some $m \in \mathbb{Z}$. We claim that \sim is an equivalence relation on I_n . (1) Reflexive: $x \sim x$ since $x = \sigma^0(x)$ for all $x \in I_n$; (2) Symmetric: if $x \sim y$ then $y = \sigma^m(x)$ and so $x = \sigma^{-m}(y)$ and $y \sim x$; (3) Transitive: if $x \sim y$ and $y \sim z$ then $y = \sigma^m(x)$ and $z = \sigma^n(y)$, so $z = \sigma^{n+m}(x)$ and $x \sim z$. Denote the equivalence classes of \sim as $\{B_i \mid 1 \leq i \leq s\}$. The equivalence classes are the orbits of σ and partition I_n by Theorem 0.1.4. Let $B_1, B_2, ..., B_r$ $(1 \leq r \leq s)$ be those orbits that contain more than one element of I_n (that is, the orbits of length greater than one).

Theorem I.6.3

Theorem 1.6.3. Every nonidentity permutation in S_n is uniquely (up to the order of the factors) a product of disjoint cycles, each of which has length at least 2.

Proof. Let $\sigma \in S_n$ be a nonidentity. Define the relation \sim on $I_n = \{1, 2, ..., n\}$ as $x \sim y$ if and only if $y = \sigma^m(x)$ for some $m \in \mathbb{Z}$. We claim that \sim is an equivalence relation on I_n . (1) Reflexive: $x \sim x$ since $x = \sigma^0(x)$ for all $x \in I_n$; (2) Symmetric: if $x \sim y$ then $y = \sigma^m(x)$ and so $x = \sigma^{-m}(y)$ and $y \sim x$; (3) Transitive: if $x \sim y$ and $y \sim z$ then $y = \sigma^m(x)$ and $z = \sigma^n(y)$, so $z = \sigma^{n+m}(x)$ and $x \sim z$. Denote the equivalence classes of \sim as $\{B_i \mid 1 \leq i \leq s\}$. The equivalence classes are the orbits of σ and partition I_n by Theorem 0.1.4. Let $B_1, B_2, ..., B_r$ $(1 \leq r \leq s)$ be those orbits that contain more than one element of I_n (that is, the orbits of length greater than one).

Theorem I.6.3 (continued 1)

Proof (continued). For each $i \leq r$, define $\sigma_i \in S_n$ by:

$$\sigma_i(x) = \begin{cases} \sigma(x) & \text{if } x \in B_i \\ x & \text{if } x \notin B_i \end{cases}$$

(notice that σ_i is well defined since $x \in B_i$ for only one *i*). Then $\sigma_i|_{B_i}$ is a bijection from B_i to B_i . Since the B_i are disjoint, then $\sigma_1, \sigma_2, \ldots, \sigma_r$ are disjoint permutations. Next, for $x \in I_n$ we have $x \in B_i$ for a unique *i* and so $\sigma(x) = \sigma_i(x) = \sigma_1\sigma_2\cdots\sigma_r(x)$ since the σ_k 's are disjoint. Therefore, $\sigma = \sigma_1\sigma_2\cdots\sigma_r$ on I_n . Now to show that each σ_k is a cycle. If $x \in B_i$ $(i \leq r)$ then since B_i is finite there is a least positive integer *d* such that $\sigma^d(x) = \sigma^j(x)$ for some *j* with $0 \leq j < d$ (here the nonnegative powers of σ produce images of $x \in B_i$ and *d* is the "first time" that the orbit of *x* has wrapped around and intersected itself).

Theorem I.6.3 (continued 1)

Proof (continued). For each $i \leq r$, define $\sigma_i \in S_n$ by:

$$\sigma_i(x) = \begin{cases} \sigma(x) & \text{if } x \in B_i \\ x & \text{if } x \notin B_i \end{cases}$$

(notice that σ_i is well defined since $x \in B_i$ for only one *i*). Then $\sigma_i|_{B_i}$ is a bijection from B_i to B_i . Since the B_i are disjoint, then $\sigma_1, \sigma_2, \ldots, \sigma_r$ are disjoint permutations. Next, for $x \in I_n$ we have $x \in B_i$ for a unique i and so $\sigma(x) = \sigma_i(x) = \sigma_1 \sigma_2 \cdots \sigma_r(x)$ since the σ_k 's are disjoint. Therefore, $\sigma = \sigma_1 \sigma_2 \cdots \sigma_r$ on I_n . Now to show that each σ_k is a cycle. If $x \in B_i$ $(i \leq r)$ then since B_i is finite there is a least positive integer d such that $\sigma^d(x) = \sigma^j(x)$ for some j with $0 \le j < d$ (here the nonnegative powers of σ produce images of $x \in B_i$ and d is the "first time" that the orbit of x has wrapped around and intersected itself). Since $\sigma^{d-j}(x) = x$ and 0 < d - i < d, we must have i = 0 and $\sigma^d(x) = x$ (or else d is not minimal and could be replaced with d - i above).

Theorem I.6.3 (continued 1)

Proof (continued). For each $i \leq r$, define $\sigma_i \in S_n$ by:

$$\sigma_i(x) = \begin{cases} \sigma(x) & \text{if } x \in B_i \\ x & \text{if } x \notin B_i \end{cases}$$

(notice that σ_i is well defined since $x \in B_i$ for only one *i*). Then $\sigma_i|_{B_i}$ is a bijection from B_i to B_i . Since the B_i are disjoint, then $\sigma_1, \sigma_2, \ldots, \sigma_r$ are disjoint permutations. Next, for $x \in I_n$ we have $x \in B_i$ for a unique i and so $\sigma(x) = \sigma_i(x) = \sigma_1 \sigma_2 \cdots \sigma_r(x)$ since the σ_k 's are disjoint. Therefore, $\sigma = \sigma_1 \sigma_2 \cdots \sigma_r$ on I_n . Now to show that each σ_k is a cycle. If $x \in B_i$ $(i \leq r)$ then since B_i is finite there is a least positive integer d such that $\sigma^d(x) = \sigma^j(x)$ for some j with $0 \le j < d$ (here the nonnegative powers of σ produce images of $x \in B_i$ and d is the "first time" that the orbit of x has wrapped around and intersected itself). Since $\sigma^{d-j}(x) = x$ and 0 < d - i < d, we must have i = 0 and $\sigma^d(x) = x$ (or else d is not minimal and could be replaced with d - i above).

Theorem I.6.3 (continued 2)

Proof (continued). Hence $(x, \sigma(x), \sigma^2(x), \ldots, \sigma^{d-1}(x))$ is a cycle of length at least 2. If $\sigma^m(x) \in B_i$ then m = ad + b for some $a, b \in \mathbb{Z}$ such that $0 \le b < d$ (by the Division Algorithm, Theorem 0.6.3). Hence

$$\sigma^{m}(x) = \sigma^{ad+b}(x) = \sigma^{b}\sigma^{ad}(x) = \sigma^{b}(x)$$

since $\sigma^d(x) = x$. So $\sigma^m(x) = \sigma^b(x)$ where $0 \le b < d$ and hence

$$\sigma^m(x) \in \{x, \sigma(x), \sigma^2(x), \dots, \sigma^{d-1}(x)\}.$$

Now for $x \in B_i$ we have $B_i = \{\sigma^m(x) \mid m \in \mathbb{Z}\}$ since B_i is an equivalence class, so we have shown that if $\sigma^m(x) \in B_i$ then

$$\sigma^{m}(x) \in \{x, \sigma(x), \sigma^{2}(x), \dots, \sigma^{d-1}(x)\}, \text{ so that}$$
$$B_{i} \subseteq \{x, \sigma(x), \dots, \sigma^{d-1}(x)\},$$

and "clearly"

$$\{x, \sigma(x), \sigma^2(x), \ldots, \sigma^{d-1}(x)\} \subseteq B_i.$$

Theorem I.6.3 (continued 2)

Proof (continued). Hence $(x, \sigma(x), \sigma^2(x), \ldots, \sigma^{d-1}(x))$ is a cycle of length at least 2. If $\sigma^m(x) \in B_i$ then m = ad + b for some $a, b \in \mathbb{Z}$ such that $0 \le b < d$ (by the Division Algorithm, Theorem 0.6.3). Hence

$$\sigma^{m}(x) = \sigma^{ad+b}(x) = \sigma^{b}\sigma^{ad}(x) = \sigma^{b}(x)$$

since $\sigma^d(x) = x$. So $\sigma^m(x) = \sigma^b(x)$ where $0 \le b < d$ and hence

$$\sigma^m(x) \in \{x, \sigma(x), \sigma^2(x), \ldots, \sigma^{d-1}(x)\}.$$

Now for $x \in B_i$ we have $B_i = \{\sigma^m(x) \mid m \in \mathbb{Z}\}$ since B_i is an equivalence class, so we have shown that if $\sigma^m(x) \in B_i$ then

$$\sigma^m(x) \in \{x, \sigma(x), \sigma^2(x), \dots, \sigma^{d-1}(x)\},$$
 so that
 $B_i \subseteq \{x, \sigma(x), \dots, \sigma^{d-1}(x)\},$

and "clearly"

$$\{x, \sigma(x), \sigma^2(x), \ldots, \sigma^{d-1}(x)\} \subseteq B_i.$$

Theorem I.6.3 (continued 3)

Proof (continued). Therefore $B_i = \{x, \sigma(x), \sigma^2(x), \ldots, \sigma^{d-1}(x)\}$ where x is some element of B_i . So σ_i is the cycle $(x, \sigma(x), \sigma^2(x), \ldots, \sigma^{d-1}(x))$. Suppose $\tau_1, \tau_2, \ldots, \tau_t$ are disjoint nontrivial cycles such that $\sigma = \tau_1 \tau_2 \cdots \tau_t$ (to show uniqueness). Let $x \in I_n$ be such that $\sigma(x) \neq x$. Since the τ 's are disjoint, there exists a unique j with $1 \le j \le t$ where $\sigma(x) = \tau_i(x)$. Now

$$\begin{aligned} \tau_j \sigma &= \tau_j (\tau_1 \tau_2 \cdots \tau_j \cdots \tau_t) \\ &= \tau_1 \tau_j \tau_2 \cdots \tau_j \cdots \tau_t \text{ since the } \tau' \text{s are disjoint} \\ &= \tau_1 \tau_2 \tau_j \cdots \tau_j \cdots \tau_t \\ &= \tau_1 \tau_2 \cdots \tau_j^2 \cdots \tau_t \\ &= \tau_1 \tau_2 \cdots \tau_j \cdots \tau_j \tau_t \\ &= (\tau_1 \tau_2 \cdots \tau_j \cdots \tau_t) \tau_j \\ &= \sigma \tau_j. \end{aligned}$$

Theorem I.6.3 (continued 3)

Proof (continued). Therefore $B_i = \{x, \sigma(x), \sigma^2(x), \dots, \sigma^{d-1}(x)\}$ where x is some element of B_i . So σ_i is the cycle $(x, \sigma(x), \sigma^2(x), \dots, \sigma^{d-1}(x))$. Suppose $\tau_1, \tau_2, \dots, \tau_t$ are disjoint nontrivial cycles such that $\sigma = \tau_1 \tau_2 \cdots \tau_t$ (to show uniqueness). Let $x \in I_n$ be such that $\sigma(x) \neq x$. Since the τ 's are disjoint, there exists a unique j with $1 \leq j \leq t$ where $\sigma(x) = \tau_j(x)$. Now

$$\begin{aligned} \tau_j \sigma &= \tau_j (\tau_1 \tau_2 \cdots \tau_j \cdots \tau_t) \\ &= \tau_1 \tau_j \tau_2 \cdots \tau_j \cdots \tau_t \text{ since the } \tau \text{'s are disjoint} \\ &= \tau_1 \tau_2 \tau_j \cdots \tau_j \cdots \tau_t \\ &= \tau_1 \tau_2 \cdots \tau_j^2 \cdots \tau_t \\ &= \tau_1 \tau_2 \cdots \tau_j \cdots \tau_j \tau_t \\ &= (\tau_1 \tau_2 \cdots \tau_j \cdots \tau_t) \tau_j \\ &= \sigma \tau_j. \end{aligned}$$

Theorem I.6.3 (continued 4)

Proof (continued). So

$$\sigma^{k}(x) = \sigma^{k-1}\sigma(x)$$

$$= \sigma^{k-1}\tau_{j}(x) \text{ since } \sigma(x) = \tau_{j}(x)$$

$$= \sigma^{k-2}\sigma\tau_{j}(x) = \sigma^{k-2}\tau_{j}\sigma(x)$$

$$= \sigma^{k-2}\tau_{j}\tau_{j}(x)$$

$$\vdots$$

$$= \tau_{j}^{k}(x) \text{ for all } k \in \mathbb{Z}.$$

So the orbit of x under τ_j is precisely the orbit of x under σ , say B_i . Consequently, $\tau_j(y) = \sigma(y)$ for all $y \in B_i$ (since $y = \sigma^n(x) = \tau_j^n(x)$ for some $n \in \mathbb{Z}$). Since τ_j is a cycle it has only one nontrivial orbit (if $\tau_j = (i_1, i_2, \ldots, i_u)$ then the orbit is $\{i_1, i_2, \ldots, i_u\}$) and it must be that the orbit is B_i .

Theorem I.6.3 (continued 5)

Theorem I.6.3. Every nonidentity permutation in S_n is uniquely (up to the order of the factors) a product of disjoint cycles, each of which has length at least 2.

Proof (continued). Therefore for $y \notin B_i$ we have that y is not an element of the one orbit of τ_j and so $\tau_j(y) = y$ (y is fixed by τ_j since y is not in the cycle τ_j). So $\tau_j = \sigma_i$ where σ_i is as defined above. "A suitable inductive argument shows that r = t." So, after rearrangement, $\sigma_i = \tau_i$ for i = 1, 2, ..., r and the representation of σ as a product of cycles is unique (except possibly for order).

Corollary 1.6.4. The order of a permutation $\sigma \in S_n$ is the least common multiple of the orders of its disjoint cycles.

Proof. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_r$ with $\{\sigma_i \mid 1 \le i \le r\}$ the disjoint cycles. Since disjoint cycles commute, $\sigma^m = \sigma_1^m \sigma_2^m \cdots \sigma_r^m$ for all $m \in \mathbb{Z}$. So $\sigma^m = (1)$ (the identity) if and only if $\sigma_i^m = (1)$ for $1 \le i \le r$. Now $\sigma^m = (1)$ if and only if $|\sigma_i|$ divides m by Theorem I.3.4(iv). Therefore $\sigma^{|\operatorname{Cm}(|\sigma_1|, |\sigma_2|, \ldots, |\sigma_r|)} = (1)$ and $\sigma^k = (1)$ for no positive $k < \operatorname{Icm}(|\sigma_1|, |\sigma_2|, \ldots, |\sigma_r|)$. That is, $|\sigma| = \operatorname{Icm}(|\sigma_1|, |\sigma_2|, \ldots, |\sigma_r|)$.

Corollary I.6.4. The order of a permutation $\sigma \in S_n$ is the least common multiple of the orders of its disjoint cycles.

Proof. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_r$ with $\{\sigma_i \mid 1 \le i \le r\}$ the disjoint cycles. Since disjoint cycles commute, $\sigma^m = \sigma_1^m \sigma_2^m \cdots \sigma_r^m$ for all $m \in \mathbb{Z}$. So $\sigma^m = (1)$ (the identity) if and only if $\sigma_i^m = (1)$ for $1 \le i \le r$. Now $\sigma^m = (1)$ if and only if $|\sigma_i|$ divides m by Theorem I.3.4(iv). Therefore $\sigma^{\text{lcm}(|\sigma_1|, |\sigma_2|, \dots, |\sigma_r|)} = (1)$ and $\sigma^k = (1)$ for no positive $k < \text{lcm}(|\sigma_1|, |\sigma_2|, \dots, |\sigma_r|)$. That is, $|\sigma| = \text{lcm}(|\sigma_1|, |\sigma_2|, \dots, |\sigma_r|)$.

Corollary 1.6.5. Every permutation in S_n can be written as a product of (not necessarily disjoint) transpositions.

Proof. It suffices by Theorem 1.6.3 to show that every cycle is a product of transpositions. For a 1-cycle, $(x_1) = (x_1, x_2)(x_2, x_1)$. For an *r*-cycle,

 $(x_1, x_2, \ldots, x_r) = (x_1, x_r)(x_1, x_{r-1})(x_1, x_{r-2}) \cdots (x_1, x_3)(x_1, x_2).$

Corollary 1.6.5. Every permutation in S_n can be written as a product of (not necessarily disjoint) transpositions.

Proof. It suffices by Theorem I.6.3 to show that every cycle is a product of transpositions. For a 1-cycle, $(x_1) = (x_1, x_2)(x_2, x_1)$. For an *r*-cycle,

$$(x_1, x_2, \ldots, x_r) = (x_1, x_r)(x_1, x_{r-1})(x_1, x_{r-2}) \cdots (x_1, x_3)(x_1, x_2).$$

Theorem 1.6.8

Theorem 1.6.8. For each $n \ge 2$, let A_n be the set of all even permutations of S_n . Then A_n is a normal subgroup of S_n of index 2 and order $|S_n|/2 = n!/2$. Furthermore A_n is the only subgroup of S_n of index 2. The group A_n is called the *alternating group* on *n* letters.

Proof. Let C be the multiplicative group on $\{-1, 1\}$. Define $f : S_n \to C$ as $f(\sigma) = \text{sgn}(\sigma)$. We claim that f is an epimorphism.

Modern Algebra

Theorem 1.6.8

Theorem 1.6.8. For each $n \ge 2$, let A_n be the set of all even permutations of S_n . Then A_n is a normal subgroup of S_n of index 2 and order $|S_n|/2 = n!/2$. Furthermore A_n is the only subgroup of S_n of index 2. The group A_n is called the *alternating group* on n letters.

Proof. Let *C* be the multiplicative group on $\{-1,1\}$. Define $f: S_n \to C$ as $f(\sigma) = \operatorname{sgn}(\sigma)$. We claim that *f* is an epimorphism. First, let $\sigma, \tau \in S_n$. If σ and τ are both even or both odd, then $\sigma\tau$ is even. If σ is even (respectively, odd) and τ is odd (respectively, even) then $\sigma\tau$ is odd (in all four claims, just count the transpositions in a representation of σ and τ). We then have in all four cases $f(\sigma\tau) = f(\sigma)f(\tau)$ and *f* is a homomomorphism. Also, *f* is onto since f((1,2)) = -1 and f((1,2)(1,2)) = 1. So *f* is an epimorphism.

Theorem 1.6.8

Theorem 1.6.8. For each $n \ge 2$, let A_n be the set of all even permutations of S_n . Then A_n is a normal subgroup of S_n of index 2 and order $|S_n|/2 = n!/2$. Furthermore A_n is the only subgroup of S_n of index 2. The group A_n is called the *alternating group* on n letters.

Proof. Let *C* be the multiplicative group on $\{-1,1\}$. Define $f: S_n \to C$ as $f(\sigma) = \operatorname{sgn}(\sigma)$. We claim that *f* is an epimorphism. First, let $\sigma, \tau \in S_n$. If σ and τ are both even or both odd, then $\sigma\tau$ is even. If σ is even (respectively, odd) and τ is odd (respectively, even) then $\sigma\tau$ is odd (in all four claims, just count the transpositions in a representation of σ and τ). We then have in all four cases $f(\sigma\tau) = f(\sigma)f(\tau)$ and *f* is a homomomorphism. Also, *f* is onto since f((1,2)) = -1 and f((1,2)(1,2)) = 1. So *f* is an epimorphism.

Theorem I.6.8 (continued)

Theorem 1.6.8. For each $n \ge 2$, let A_n be the set of all even permutations of S_n . Then A_n is a normal subgroup of S_n of index 2 and order $|S_n|/2 = n!/2$. Furthermore A_n is the only subgroup of S_n of index 2. The group A_n is called the *alternating group* on n letters.

Proof (continued). Now Ker $(f) = A_n$ (since 1 is the identity of the multiplicative group $\{-1,1\}$) and by Exercise I.2.9(a) A_n is a subgroup of S_n . By Theorem I.5.5, A_n is a normal subgroup of S_n . By the First Isomorphism Theorem (Corollary I.5.7), $S_n/\text{Ker}(f) = S_n/A_n \cong \text{Im}(f) = C$ (this is where "onto" is used). So $[S_n : A_n] = 2$ (the number of cosets of A_n in S_n) and by Lagrange's Theorem (Corollary I.4.6) $|A_n| = |S_n|/2 = n!/2$. By Exercise I.6.6, A_n is the unique subgroup of S_n of index 2.

Lemma I.6.11. Let *r* and *s* be distinct elements of $\{1, 2, ..., n\}$. Then A_n (where $n \ge 3$) is generated by the 3-cycles $\{(r, s, k) \mid 1 \le k \le n, k \ne r, s\}$.

Proof. For n = 3, the set of cycles is (WLOG) $\{(1, 2, 3)\}$ and $(1, 2, 3)^2 = (1, 3, 2)$, $(1, 2, 3)^3 = (1)(2)(3)$, and these are the three elements of A_3 .

Lemma I.6.11. Let *r* and *s* be distinct elements of $\{1, 2, ..., n\}$. Then A_n (where $n \ge 3$) is generated by the 3-cycles $\{(r, s, k) \mid 1 \le k \le n, k \ne r, s\}$.

Proof. For n = 3, the set of cycles is (WLOG) {(1,2,3)} and (1,2,3)² = (1,3,2), (1,2,3)³ = (1)(2)(3), and these are the three elements of A_3 . Now for n > 3. Since A_n consists of all even permutations, then A_n is generated by all pairs of transpositions of the form (a, b)(c, d) (disjoint transpositions) and (a, d)(a, c) (transpositions sharing one element; if transpositions share two elements they are the same and the product is the identity) where a, b, c, d are distinct. Since (a, b)(c, d) = (a, c, b)(a, c, d) and (a, b)(a, c) = (a, c, b), then the set of all 3-cycles generates all pairs of such transpositions and hence generates A_n .

Lemma I.6.11. Let *r* and *s* be distinct elements of $\{1, 2, ..., n\}$. Then A_n (where $n \ge 3$) is generated by the 3-cycles $\{(r, s, k) \mid 1 \le k \le n, k \ne r, s\}$.

Proof. For n = 3, the set of cycles is (WLOG) $\{(1, 2, 3)\}$ and $(1, 2, 3)^2 = (1, 3, 2)$, $(1, 2, 3)^3 = (1)(2)(3)$, and these are the three elements of A_3 . Now for n > 3. Since A_n consists of all even permutations, then A_n is generated by all pairs of transpositions of the form (a, b)(c, d) (disjoint transpositions) and (a, d)(a, c) (transpositions sharing one element; if transpositions share two elements they are the same and the product is the identity) where a, b, c, d are distinct. Since (a, b)(c, d) = (a, c, b)(a, c, d) and (a, b)(a, c) = (a, c, b), then the set of all 3-cycles generates all pairs of such transpositions and hence generates A_n .

Lemma I.6.11 (continued 1)

Lemma I.6.11. Let r and s be distinct elements of $\{1, 2, ..., n\}$. Then A_n (where $n \ge 3$) is generated by the 3-cycles $\{(r, s, k) \mid 1 \le k \le n, k \ne r, s\}$.

Proof (continued). Next, recall that we started with given distinct r and s. Let a, b, c be distinct elements which are different from r and s. Then any 3-cycle of A_n must be of one of the following forms:

(r, s, a), (r, a, s) (containing both r and s and sending $r \mapsto s$ or $s \mapsto r$), (r, a, b) (containing r and not s), (s, a, b) (containing s and not r), and (a, b, c) (containing neither r nor s).

Lemma I.6.11 (continued 2)

Lemma I.6.11. Let r and s be distinct elements of $\{1, 2, ..., n\}$. Then A_n (where $n \ge 3$) is generated by the 3-cycles $\{(r, s, k) \mid 1 \le k \le n, k \ne r, s\}$.

Proof (continued). We now write each of these 3-cycles in terms of the 3-cycles given in the statement of the theorem:

$$(r, s, a) = (r, s, a)$$

$$(r, a, s) = (r, s, a)^{2}$$

$$(r, a, b) = (r, s, b)(r, s, a)^{2}$$

$$(s, a, b) = (r, s, b)^{2}(r, s, a)$$

$$(a, b, c) = (r, s, a)^{2}(r, s, c)(r, s, b)^{2}(r, s, a).$$

So any 3-cycle (and hence any element of A_n , by the first paragraph) is generated by the set $\{(r, s, k) \mid 1 \le k \le n, k \ne r, s\}$ where r and s were initially given.

()

Lemma I.6.12. If N is a normal subgroup of A_n (where $n \ge 3$) and N contains a 3-cycle, then $N = A_n$.

Proof. Let r, s, c be distinct where (r, s, c) is a 3-cycle in N. Then for any $k \neq r, s, c$ the 3-cycle $(r, s, k) \in N$ since

$$(r, s, k) = (r, s)(c, k)(r, s, c)^{2}(c, k)(r, s)$$

$$= [(r,s)(c,k)](r,s,c)^{2}[(r,s)(c,k)]^{-1} \in N$$

by Theorem I.5.1(iv) and Definition I.5.2. So for given $r, s \in \{1, 2, ..., n\}$ (given as the "first" two elements of the 3-cycle hypothesized to be in N) we have all cycles of the form $(r, s, k) \in N$ where $k \neq r, s$. By Lemma I.6.11, these 3-cycles generate A_n and $N = A_n$.

Lemma I.6.12. If N is a normal subgroup of A_n (where $n \ge 3$) and N contains a 3-cycle, then $N = A_n$.

Proof. Let r, s, c be distinct where (r, s, c) is a 3-cycle in N. Then for any $k \neq r, s, c$ the 3-cycle $(r, s, k) \in N$ since

$$(r, s, k) = (r, s)(c, k)(r, s, c)^{2}(c, k)(r, s)$$

= $[(r, s)(c, k)](r, s, c)^{2}[(r, s)(c, k)]^{-1} \in N$

by Theorem I.5.1(iv) and Definition I.5.2. So for given $r, s \in \{1, 2, ..., n\}$ (given as the "first" two elements of the 3-cycle hypothesized to be in N) we have all cycles of the form $(r, s, k) \in N$ where $k \neq r, s$. By Lemma I.6.11, these 3-cycles generate A_n and $N = A_n$.

Proof. Since $|A_2| = 1$ and $|A_3| = 3$, then these groups have no proper subgroups and so are (vacuously) simple. In Exercise I.6.7 you are asked to show that $N = \{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ is a normal subgroup of A_4 (or see my online Supplement. The Alternating Groups A_n are Simple for $n \ge 5$ for Introduction to Modern Algebra [MATH 4127/5127]).

Proof. Since $|A_2| = 1$ and $|A_3| = 3$, then these groups have no proper subgroups and so are (vacuously) simple. In Exercise I.6.7 you are asked to show that $N = \{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ is a normal subgroup of A_4 (or see my online Supplement. The Alternating Groups A_n are Simple for $n \ge 5$ for Introduction to Modern Algebra [MATH 4127/5127]). For $n \ge 5$, we show that if N is a nontrivial normal subgroup of A_n then $N = A_n$ (and so A_n is simple) in five cases. We'll explain below why these five cases are the only possible cases.

()

Proof. Since $|A_2| = 1$ and $|A_3| = 3$, then these groups have no proper subgroups and so are (vacuously) simple. In Exercise I.6.7 you are asked to show that $N = \{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ is a normal subgroup of A_4 (or see my online Supplement. The Alternating Groups A_n are Simple for $n \ge 5$ for Introduction to Modern Algebra [MATH 4127/5127]). For $n \ge 5$, we show that if N is a nontrivial normal subgroup of A_n then $N = A_n$ (and so A_n is simple) in five cases. We'll explain below why these five cases are the only possible cases.

Case 1. N contains a 3-cycle. Then by Lemma I.6.12, $N = A_n$.

Proof. Since $|A_2| = 1$ and $|A_3| = 3$, then these groups have no proper subgroups and so are (vacuously) simple. In Exercise I.6.7 you are asked to show that $N = \{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ is a normal subgroup of A_4 (or see my online Supplement. The Alternating Groups A_n are Simple for $n \ge 5$ for Introduction to Modern Algebra [MATH 4127/5127]). For $n \ge 5$, we show that if N is a nontrivial normal subgroup of A_n then $N = A_n$ (and so A_n is simple) in five cases. We'll explain below why these five cases are the only possible cases.

Case 1. N contains a 3-cycle. Then by Lemma I.6.12, $N = A_n$.

Theorem I.6.10 (continued 1)

Proof. Case 2. *N* contains an element σ which, when written as a product of disjoint cycles (Theorem I.6.3), has at least one of the cycles of length $r \ge 4$. Say $\sigma = (a_1, a_2, \ldots, a_r)\tau$ (where τ is disjoint from the *r*-cycle). Then $(a_1, a_2, a_3) \in A_n$, so denote it as $\delta = (a_1, a_2, a_3)$. Since $\sigma \in N$ and *N* is normal, then $\sigma^{-1} \in N$ and $\delta\sigma\delta^{-1} \in N$ (Theorem I.5.4(iv)), so $\sigma^{-1}(\delta\sigma\delta^{-1}) \in N$. But

$$\sigma^{-1}(\delta\sigma\delta^{-1}) = [\tau^{-1}(a_1, a_r, a_{r-1}, \dots, a_3, a_2)]$$

$$(a_1, a_2, a_3)[(a_1, a_2, \dots, a_r)\tau](a_1, a_3, a_2)$$

$$= (a_1, a_r, a_{r-1}, \dots, a_3, a_2)(a_1, a_2, a_3)(a_1, a_2, \dots, a_r)$$

$$(a_1, a_3, a_2) \text{ (since } \tau \text{ is disjoint from the others)}$$

$$= (a_1, a_3, a_r)$$

and so N contains the 3-cycle (a_1, a_3, a_r) and by Lemma I.6.12, $N = A_n$.

Theorem I.6.10 (continued 1)

Proof. Case 2. *N* contains an element σ which, when written as a product of disjoint cycles (Theorem I.6.3), has at least one of the cycles of length $r \ge 4$. Say $\sigma = (a_1, a_2, \ldots, a_r)\tau$ (where τ is disjoint from the *r*-cycle). Then $(a_1, a_2, a_3) \in A_n$, so denote it as $\delta = (a_1, a_2, a_3)$. Since $\sigma \in N$ and *N* is normal, then $\sigma^{-1} \in N$ and $\delta\sigma\delta^{-1} \in N$ (Theorem I.5.4(iv)), so $\sigma^{-1}(\delta\sigma\delta^{-1}) \in N$. But

$$\sigma^{-1}(\delta\sigma\delta^{-1}) = [\tau^{-1}(a_1, a_r, a_{r-1}, \dots, a_3, a_2)]$$

$$(a_1, a_2, a_3)[(a_1, a_2, \dots, a_r)\tau](a_1, a_3, a_2)$$

$$= (a_1, a_r, a_{r-1}, \dots, a_3, a_2)(a_1, a_2, a_3)(a_1, a_2, \dots, a_r)$$

$$(a_1, a_3, a_2) \text{ (since } \tau \text{ is disjoint from the others)}$$

$$= (a_1, a_3, a_r)$$

and so N contains the 3-cycle (a_1, a_3, a_r) and by Lemma I.6.12, $N = A_n$.

Theorem I.6.10 (continued 2)

Theorem I.6.10. The alternating group A_n is simple if and only if $n \neq 4$.

Proof Case 3. *N* contains an element σ which is the product of disjoint cycles, at least two of which have length 3. So, say, $\sigma = (a_1, a_2, a_3)(a_4, a_5, a_6)\tau$ (where τ is disjoint from the two 3-cycles). Then $(a_1, a_2, a_4) \in A_n$ so denote it $\delta = (a_1, a_2, a_4)$. As in Case 2,

$$\sigma^{-1}(\delta\sigma\delta^{-1}) = [\tau^{-1}(a_4, a_6, a_5)(a_1, a_3, a_2)](a_1, a_2, a_4)$$

$$[(a_1, a_2, a_3)(a_4, a_5, a_6)\tau](a_1, a_4, a_2)$$

$$= (a_1, a_4, a_2, a_6, a_3)$$

and so N contains the 5-cycle $(a_1, a_4, a_2, a_6, a_3)$. By Case 2, $N = A_n$.

Theorem I.6.10 (continued 3)

Theorem I.6.10. The alternating group A_n is simple if and only if $n \neq 4$.

Proof. Case 4. *N* contains an element σ which is the product of one 3-cycle and some 2-cycles. Say $\sigma = (a_1, a_2, a_3)\tau$ where τ is disjoint from the 3-cycle and τ is a product of disjoint 2-cycles. Then $\sigma^2 \in N$ and

$$\sigma^{2} = (a_{1}, a_{2}, a_{3})\tau(a_{1}, a_{2}, a_{3})\tau$$

= $(a_{1}, a_{2}, a_{3})^{2}\tau^{2}$
= $(a_{1}, a_{2}, a_{3})^{2}$ (since τ consists of disjoint transpositions)
= (a_{1}, a_{2}, a_{3})

and so N contains the 3-cycle (a_1, a_2, a_3) . By Lemma I.6.12, $N = A_n$.

Modern Algebra

Theorem I.6.10 (continued 4)

Proof. Case 5. Every element of *N* is the product of an even number of disjoint 2-cycles. Let $\sigma \in N$ with $\sigma = (a_1, a_2)(a_3, a_4)\tau$ where τ is disjoint from the transpositions and τ is a product of an even number of disjoint 2-cycles. Then $(a_1, a_2, a_3) \in A_n$ so we denote it $\delta = (a_1, a_2, a_3)$. Then $\sigma^{-1}(\delta\sigma\delta^{-1}) \in N$ as in Case 2. Now

$$\sigma^{-1}(\delta\sigma\delta^{-1}) = [\tau^{-1}(a_3, a_4)(a_1, a_2)](a_1, a_2, a_3)[(a_1, a_2)(a_3, a_4)\tau](a_1a_3a_2)$$

= $(a_1, a_3)(a_2, a_4).$

Since $n \ge 5$, there is an element *b* distinct from a_1, a_2, a_3, a_4 . Since $\xi = (a_1, a_3, b) \in A_n$ and $\zeta = (a_1, a_3)(a_2, a_4) \in N$ then $\zeta(\xi \zeta \xi^{-1}) \in N$ as in Case 2. But

$$\begin{aligned} \zeta(\xi\zeta\xi^{-1}) &= [(a_1, a_3)(a_2, a_4)](a_1, a_3, b)[(a_1, a_2)(a_2, a_4)](a_1, b, a_3) \\ &= (a_1, a_3, b) \end{aligned}$$

and so N contains the 3-cycle (a_1, a_2, b) . By Lemma I.6.12, $N = A_n$.

Theorem I.6.10 (continued 4)

Proof. Case 5. Every element of *N* is the product of an even number of disjoint 2-cycles. Let $\sigma \in N$ with $\sigma = (a_1, a_2)(a_3, a_4)\tau$ where τ is disjoint from the transpositions and τ is a product of an even number of disjoint 2-cycles. Then $(a_1, a_2, a_3) \in A_n$ so we denote it $\delta = (a_1, a_2, a_3)$. Then $\sigma^{-1}(\delta\sigma\delta^{-1}) \in N$ as in Case 2. Now

$$\sigma^{-1}(\delta\sigma\delta^{-1}) = [\tau^{-1}(a_3, a_4)(a_1, a_2)](a_1, a_2, a_3)[(a_1, a_2)(a_3, a_4)\tau](a_1a_3a_2)$$

= $(a_1, a_3)(a_2, a_4).$

Since $n \ge 5$, there is an element *b* distinct from a_1, a_2, a_3, a_4 . Since $\xi = (a_1, a_3, b) \in A_n$ and $\zeta = (a_1, a_3)(a_2, a_4) \in N$ then $\zeta(\xi\zeta\xi^{-1}) \in N$ as in Case 2. But

$$\begin{aligned} \zeta(\xi\zeta\xi^{-1}) &= [(a_1, a_3)(a_2, a_4)](a_1, a_3, b)[(a_1, a_2)(a_2, a_4)](a_1, b, a_3) \\ &= (a_1, a_3, b) \end{aligned}$$

and so N contains the 3-cycle (a_1, a_2, b) . By Lemma I.6.12, $N = A_n$.

Theorem I.6.10 (continued 5)

Theorem I.6.10. The alternating group A_n is simple if and only if $n \neq 4$. Proof (continued). Now to see why at least one of Case 1-5 must hold, we consider writing the elements of N as disjoint products of cycles. Case 2 describes the situation in which there is a permutation which is the product of disjoint cycles, at least one of which has length 4 or greater. So if Case 2 does not hold, then all elements of N can be written as a disjoint product of cycles of lengths 2 and 3. Case 5 covers the case where Ncontains only permutations consisting of no 3-cycles but only 2-cycles (an even number since $N \subset A_n$). Case 1 covers the case where N contains a permutation consisting of a single 3-cycle alone. Case 4 covers the case where N contains a permutation consisting of a single 3-cycle and a bunch of 2-cycles. Case 3 covers the case where N contains a permutation consisting of two or more 3-cycles. Therefore, in terms of decompositions of permutations into disjoint cycles and with an eye towards 3-cycles, if Case 2 does not hold then at least one of Case 1, 3, 4, 5 must hold.

Theorem I.6.10 (continued 5)

Theorem I.6.10. The alternating group A_n is simple if and only if $n \neq 4$. Proof (continued). Now to see why at least one of Case 1-5 must hold, we consider writing the elements of N as disjoint products of cycles. Case 2 describes the situation in which there is a permutation which is the product of disjoint cycles, at least one of which has length 4 or greater. So if Case 2 does not hold, then all elements of N can be written as a disjoint product of cycles of lengths 2 and 3. Case 5 covers the case where Ncontains only permutations consisting of no 3-cycles but only 2-cycles (an even number since $N \subset A_n$). Case 1 covers the case where N contains a permutation consisting of a single 3-cycle alone. Case 4 covers the case where N contains a permutation consisting of a single 3-cycle and a bunch of 2-cycles. Case 3 covers the case where N contains a permutation consisting of two or more 3-cycles. Therefore, in terms of decompositions of permutations into disjoint cycles and with an eye towards 3-cycles, if Case 2 does not hold then at least one of Case 1, 3, 4, 5 must hold.

Theorem I.6.13

Theorem I.6.13. For each $n \ge 3$ the dihedral group D_n is a group of order 2n whose generators a and b satisfy:

(i)
$$a^n = (1); b^2 = (1); a^k \neq (1)$$
 if $0 < k < n;$
(ii) $ba = a^{-1}b$.

Any group G which is generated by elements $a, b \in G$ satisfying (i) and (ii) for some $n \ge 3$ (with $e \in G$ in place of (1)) is isomorphic to D_n .

Proof. First, with a = (1, 2, ..., n) we have $a^n = (1)$ and $a^k \neq (1)$ for 0 < k < n. Next, *b* fixes 1 so b^2 fixes 1. For any $1 < i \le n$ we have b(i) = n + 2 - i and so $b^2(i) = b(n + 2 - i) = n + 2 - (n + 2 - i) = i$. So $b^2 = (1)$. So (*i*) holds.

Theorem I.6.13

Theorem I.6.13. For each $n \ge 3$ the dihedral group D_n is a group of order 2n whose generators a and b satisfy:

(i)
$$a^n = (1); b^2 = (1); a^k \neq (1)$$
 if $0 < k < n;$
(ii) $ba = a^{-1}b$.

Any group G which is generated by elements $a, b \in G$ satisfying (i) and (ii) for some $n \ge 3$ (with $e \in G$ in place of (1)) is isomorphic to D_n .

Proof. First, with a = (1, 2, ..., n) we have $a^n = (1)$ and $a^k \neq (1)$ for 0 < k < n. Next, *b* fixes 1 so b^2 fixes 1. For any $1 < i \le n$ we have b(i) = n + 2 - i and so $b^2(i) = b(n + 2 - i) = n + 2 - (n + 2 - i) = i$. So $b^2 = (1)$. So (*i*) holds.

Theorem I.6.13 (continued 1)

Proof (continued). Next

$$ba = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & i & \cdots & n-1 & n \\ 1 & n & n-1 & n-2 & n-3 & \cdots & n+2-i & \cdots & 3 & 2 \end{pmatrix}$$
$$(1,2,3,\ldots,n-1,n)$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & i-1 & \cdots & n-1 & n \\ n & n-1 & n-2 & n-3 & n-4 & \cdots & n+2-i & \cdots & 2 & 1 \end{pmatrix}$$
$$= (n,n-1,\ldots,3,2,1)$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & i & \cdots & n-1 & n \\ 1 & n & n-1 & n-2 & n-3 & \cdots & n+2-i & \cdots & 3 & 2 \end{pmatrix} = a^{-1}b$$
and (*ii*) holds.

Theorem I.6.13 (continued 2)

Proof (continued). By Theorem I.2.8,

$$D_n = \langle a, b \rangle = \{a^{m_1} b^{m_2} a^{m_3} b^{m_4} \cdots b^{m_k} \mid k \in 2\mathbb{Z}, k > 0, m_i \in \mathbb{Z}\}$$

= $\{a^i b^j \mid i, j \in \mathbb{Z}\}$ by repeated application of (*ii*)
= $\{a^i b^j \mid 0 \le i < n; j = 0, 1\}$ by (*i*).

Now let $0 \le i < n$ and j = 0. Then $a^i b^j (1) = a^i (1) = 1 + i$ and $a^i b^j (2) = a^i (2) = 2 + i$. For $0 \le i < n$ and j = 1, $a^i b^j (1) = a^i b(1) = a^i (1) = 1 + i$ and $a^i b^j (2) = a^i b(2) = a^i (n) = n + i$. So if $i \ne i'$ then $a^i b^j (1) = 1 + i \ne 1 + i' = a^{i'} b^j (1)$. If j = 0 and j' = 1 then for any i

$$a^{i}b^{j}(2) = a^{i}(2) = 2 + i \neq n + i = a^{i}(n) = a^{i}b^{1}(2) = a^{i}b^{j'}(2).$$

So if either $i \neq i'$ or $j \neq j'$ then $a^i b^j$ is different from $a^{i'} b^{j'}$. So $\{a^i b^j \mid 0 \leq i < n; j = 0, 1\}$ consists of 2n permutations and $|D_n| = 2n$.

Theorem I.6.13 (continued 3)

Proof (continued). Next, suppose G is a group generated by $a, b \in G$ and a, b satisfy (i) and (ii) for some $n \ge 3$. By Theorem I.2.8 and the argument above which uses (i) and (ii), we have that every element of G is of the form $a^i b^j$ where $0 \le i < n$ and j = 0, 1. Denote the generators of D_n by a_1 and b_1 (to avoid confusion with the generators of G). Define $f: D_n \to G$ as $f(a_1^i b_1^j) = a^i b^j$. Then f is a homomorphism:

$$f(a_{1}^{i}b_{1}^{j}a_{1}^{i'}b_{1}^{j'}) = f(a_{1}^{i-i'}b_{1}^{j+j'}) \text{ by } (ii)$$

= $a^{i-i'}b^{j+j'} = a^{i}b^{j}a^{i'}b^{j'} \text{ by } (ii)$
= $f(a_{1}^{i}b_{1}^{j})f(a_{1}^{i'}b_{1}^{j'}).$

Since each element of G is of the form $a^i b^j$ where $0 \le i < n$ and j = 0, 1and each element of D_n is of the form $a^i_1 b^j_1$ where $0 \le i < n$ and j = 0, 1, then f is onto and f is an epimorphism.

Theorem I.6.13 (continued 3)

Proof (continued). Next, suppose G is a group generated by $a, b \in G$ and a, b satisfy (i) and (ii) for some $n \ge 3$. By Theorem I.2.8 and the argument above which uses (i) and (ii), we have that every element of G is of the form $a^i b^j$ where $0 \le i < n$ and j = 0, 1. Denote the generators of D_n by a_1 and b_1 (to avoid confusion with the generators of G). Define $f: D_n \to G$ as $f(a_1^i b_1^j) = a^i b^j$. Then f is a homomorphism:

$$f(a_1^i b_1^j a_1^{i'} b_1^{j'}) = f(a_1^{i-i'} b_1^{j+j'}) \text{ by } (ii)$$

= $a^{i-i'} b^{j+j'} = a^i b^j a^{i'} b^{j'} \text{ by } (ii)$
= $f(a_1^i b_1^j) f(a_1^{i'} b_1^{j'}).$

Since each element of G is of the form $a^i b^j$ where $0 \le i < n$ and j = 0, 1and each element of D_n is of the form $a_1^i b_1^j$ where $0 \le i < n$ and j = 0, 1, then f is onto and f is an epimorphism.

Theorem I.6.13 (continued 4)

Theorem I.6.13. For each $n \ge 3$ the dihedral group D_n is a group of order 2n whose generators a and b satisfy:

(i)
$$a^n = (1); b^2 = (1); a^k \neq (1)$$
 if $0 < k < n;$
(ii) $ba = a^{-1}b$.

Any group G which is generated by elements $a, b \in G$ satisfying (i) and (ii) for some $n \ge 3$ (with $e \in G$ in place of (1)) is isomorphic to D_n .

Proof (continued). We now show that *f* is one to one (i.e., a monomorphism). We use Theorem I.2.3(i) and show that $\text{Ker}(f) = \{e\} = \{(1)\}$. Suppose $a_1^i b_1^j \in \text{Ker}(f)$ or $f(a_1^i b_1^j) = a^i b^j = e \in G$ with $0 \le i < n$ and j = 0, 1. ASSUME j = 1 then $a^i = b^{-1} = b$ and by (*ii*) $a^{i+1} = a^i a = ba = a^{-1}b = a^{-1}a^i = a^{i-1}$ which implies $a^2 = e$. This CONTRADICTS (*i*) since $n \ge 3$. Therefore j = 0 and $e = a^i b^0 = a^i$ with $0 \le i < n$ which implies that i = 0 by (*i*). Thus $a_1^i b_1^j = a_1^0 b_1^0 = (1)$. So $\text{Ker}(f) = \{(1)\}$ and *f* is one to one. Therefore *f* is an isomorphism.