Modern Algebra

Chapter I. Groups 1.7. Categories: Products, Coproducts, and Free Objects –Proofs of Theorems

Theorem 1.7.3

Theorem 1.7.3. Let C be a category of objects and $\{A_i \mid i \in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof. Since *P* is a product, *Q* is an object in *C*, and $\psi_i : Q \to A_i$ there is a unique morphism $g : Q \to P$ such that $\pi_i \circ g = \psi_i$ for all $i \in I$. Similarly, since *Q* is a product, *P* is an object in *C*, and $\pi_i : P \to A_i$, there is a unique morphism $f : P \to Q$ such that $\psi_i \circ f = \pi_i$ for all $i \in I$. So these diagrams commute:

Modern Algebra

Theorem I.7.3

Theorem 1.7.3. Let C be a category of objects and $\{A_i \mid i \in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof. Since *P* is a product, *Q* is an object in *C*, and $\psi_i : Q \to A_i$ there is a unique morphism $g : Q \to P$ such that $\pi_i \circ g = \psi_i$ for all $i \in I$. Similarly, since *Q* is a product, *P* is an object in *C*, and $\pi_i : P \to A_i$, there is a unique morphism $f : P \to Q$ such that $\psi_i \circ f = \pi_i$ for all $i \in I$. So these diagrams commute:

Theorem I.7.3

Theorem 1.7.3. Let C be a category of objects and $\{A_i \mid i \in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof. Since *P* is a product, *Q* is an object in *C*, and $\psi_i : Q \to A_i$ there is a unique morphism $g : Q \to P$ such that $\pi_i \circ g = \psi_i$ for all $i \in I$. Similarly, since *Q* is a product, *P* is an object in *C*, and $\pi_i : P \to A_i$, there is a unique morphism $f : P \to Q$ such that $\psi_i \circ f = \pi_i$ for all $i \in I$. So these diagrams commute:

Theorem I.7.3 (continued 1)

Theorem 1.7.3. Let C be a category of objects and $\{A_i \mid i \in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof (continued). So we can compose *f* and *g* to get:

So $g \circ f : P \to P$ is a morphism such that $\pi_i \circ (g \circ f) = \pi_i$ for all $i \in I$. But with $(P, \{\pi_i\})$ as a product, P as an object, and $\pi_i : P \to A_i$, there is a unique morphism mapping P to P. Since the identity 1_P is such a morphism then it must be that $g \circ f = 1_P$.

Theorem I.7.3 (continued 2)

Theorem 1.7.3. Let C be a category of objects and $\{A_i \mid i \in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof (continued). Similarly we have

and that $f \circ g = 1_Q$. So f (and g) are equivalences and P is equivalent to Q.

Theorem I.7.8

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and |X| = |X'|, then F is equivalent to F'.

Proof. Since |X| = |X'|, there is a bijection $f : X \to X'$. Since F is free on X, there is a set map $i : X \to F$. Since F' is free on X', there is a set map $j : X' \to F'$. Consider $j \circ f : X \to F'$. Since object F is free on set Xand F' is an object then there is a unique morphism $\varphi : F \to F'$ such that $j \circ f = \varphi \circ i$:

Theorem 1.7.8

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and |X| = |X'|, then F is equivalent to F'.

Proof. Since |X| = |X'|, there is a bijection $f : X \to X'$. Since F is free on X, there is a set map $i : X \to F$. Since F' is free on X', there is a set map $j : X' \to F'$. Consider $j \circ f : X \to F'$. Since object F is free on set Xand F' is an object then there is a unique morphism $\varphi : F \to F'$ such that $j \circ f = \varphi \circ i$:

Theorem 1.7.8

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and |X| = |X'|, then F is equivalent to F'.

Proof. Since |X| = |X'|, there is a bijection $f : X \to X'$. Since F is free on X, there is a set map $i : X \to F$. Since F' is free on X', there is a set map $j : X' \to F'$. Consider $j \circ f : X \to F'$. Since object F is free on set Xand F' is an object then there is a unique morphism $\varphi : F \to F'$ such that $j \circ f = \varphi \circ i$:

Theorem I.7.8 (continued 1)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and |X| = |X'|, then F is equivalent to F'.

Proof (continued). Since $j : X' \to F'$ and $f : X \to X'$ we can expand this to the commutative diagram:

Theorem I.7.8 (continued 2)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and |X| = |X'|, then F is equivalent to F'.

Proof (continued). Similarly, since $f : X \to X'$ is a bijection, we have $f^{-1} : X \to X$. Consider $i \circ f^{-1} : X' \to F$. Since object F' is free on set X' and F is an object then there is a unique morphism $\psi : F' \to F$ such that $i \circ f^{-1} = \psi \circ j$:

Theorem I.7.8 (continued 3)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and |X| = |X'|, then F is equivalent to F'.

Proof (continued). Since $i : X \to F$ and $f^{-1} : X' \to X$ we can expand this to the commutative diagram:

Theorem I.7.8 (continued 4)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and |X| = |X'|, then F is equivalent to F'. **Proof (continued).** Combining the above diagrams gives the commutative diagram:

Theorem I.7.8 (continued 4)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and |X| = |X'|, then F is equivalent to F'. **Proof (continued).** Combining the above diagrams gives the commutative diagram:

()

Theorem 1.7.10. Any two universal (respectively, couniversal) objects in a category C are equivalent.

Proof. Let *I* and *J* be universal objects in *C*. Since *I* is universal and *J* is an object, there is a unique morphism $f : I \to J$. Similarly, since *J* is universal and *I* is an object there is a unique morphism $g : J \to I$. The composition $g \circ f : I \to I$ is a morphism of *C*. But $1_I : I \to I$ is also a morphism of *C*.

Theorem 1.7.10. Any two universal (respectively, couniversal) objects in a category C are equivalent.

Proof. Let *I* and *J* be universal objects in *C*. Since *I* is universal and *J* is an object, there is a unique morphism $f: I \to J$. Similarly, since *J* is universal and *I* is an object there is a unique morphism $g: J \to I$. The composition $g \circ f: I \to I$ is a morphism of *C*. But $1_I: I \to I$ is also a morphism of *C*. Since *I* is universal, there is a unique morphism mapping $I \to I$ and so $g \circ f = 1_I$. Similarly, since *J* is universal, $f \circ g = 1_J$. So $f: I \to J$ is an equivalence and *I* and *J* are equivalent. The proof for *I* and *J* couniversal is similar (*f* and *g* just interchange roles).

Theorem 1.7.10. Any two universal (respectively, couniversal) objects in a category C are equivalent.

Proof. Let *I* and *J* be universal objects in *C*. Since *I* is universal and *J* is an object, there is a unique morphism $f: I \to J$. Similarly, since *J* is universal and *I* is an object there is a unique morphism $g: J \to I$. The composition $g \circ f: I \to I$ is a morphism of *C*. But $1_I: I \to I$ is also a morphism of *C*. Since *I* is universal, there is a unique morphism mapping $I \to I$ and so $g \circ f = 1_I$. Similarly, since *J* is universal, $f \circ g = 1_J$. So $f: I \to J$ is an equivalence and *I* and *J* are equivalent. The proof for *I* and *J* couniversal is similar (*f* and *g* just interchange roles).