Modern Algebra

Chapter I. Groups I.7. Categories: Products, Coproducts, and Free Objects –Proofs of Theorems

Theorem 1.7.3. Let $\mathcal C$ be a category of objects and $\{A_i\mid i\in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof. Since P is a product, Q is an object in C, and $\psi_i: Q \to A_i$ there is a unique morphism $g:Q\to P$ such that $\pi_i\circ g=\psi_i$ for all $i\in I.$ Similarly, since Q is a product, P is an object in $\mathcal{C},$ and $\pi_i:P\rightarrow A_i,$ there is a unique morphism $f: P \to Q$ such that $\psi_i \circ f = \pi_i$ for all $i \in I.$ So these diagrams commute:

Theorem 1.7.3. Let $\mathcal C$ be a category of objects and $\{A_i\mid i\in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof. Since P is a product, Q is an object in \mathcal{C} , and $\psi_i: Q \rightarrow A_i$ there is a unique morphism $g:Q\to P$ such that $\pi_i\circ g=\psi_i$ for all $i\in I.$ Similarly, since Q is a product, P is an object in \mathcal{C} , and $\pi_i:P\rightarrow \mathcal{A}_i,$ there is a unique morphism $f: P \to Q$ such that $\psi_i \circ f = \pi_i$ for all $i \in I.$ So these diagrams commute:

Theorem 1.7.3. Let $\mathcal C$ be a category of objects and $\{A_i\mid i\in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof. Since P is a product, Q is an object in \mathcal{C} , and $\psi_i: Q \rightarrow A_i$ there is a unique morphism $g:Q\to P$ such that $\pi_i\circ g=\psi_i$ for all $i\in I.$ Similarly, since Q is a product, P is an object in \mathcal{C} , and $\pi_i:P\rightarrow \mathcal{A}_i,$ there is a unique morphism $f: P \to Q$ such that $\psi_i \circ f = \pi_i$ for all $i \in I.$ So these diagrams commute:

Theorem I.7.3 (continued 1)

Theorem 1.7.3. Let $\mathcal C$ be a category of objects and $\{A_i\mid i\in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof (continued). So we can compose f and g to get:

So $g \circ f : P \to P$ is a morphism such that $\pi_i \circ (g \circ f) = \pi_i$ for all $i \in I.$ But with $(P,\{\pi_i\})$ as a product, P as an object, and $\pi_i:P\rightarrow A_i,$ there is a unique morphism mapping P to P. Since the identity 1_P is such a morphism then it must be that $g \circ f = 1_P$.

Theorem I.7.3 (continued 2)

Theorem 1.7.3. Let $\mathcal C$ be a category of objects and $\{A_i\mid i\in I\}$ a family of objects in C. If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both products of $\{A_i \mid i \in I\}$ then P and Q are equivalent.

Proof (continued). Similarly we have

and that $f \circ g = 1_Q$. So f (and g) are equivalences and P is equivalent to Q.

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and $|X| = |X'|$, then F is equivalent to F'.

Proof. Since $|X| = |X'|$, there is a bijection $f : X \to X'$. Since F is free on X , there is a set map $i: X \to F$. Since F' is free on X' , there is a set map $j: X' \to F'.$ Consider $j \circ f : X \to F'.$ Since object F is free on set X and F' is an object then there is a unique morphism $\varphi : F \to F'$ such that $i \circ f = \varphi \circ i$:

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and $|X| = |X'|$, then F is equivalent to F'.

Proof. Since $|X| = |X'|$, there is a bijection $f : X \to X'$. Since F is free on X , there is a set map $i: X \rightarrow F$. Since F' is free on X' , there is a set map $j: X' \to F'.$ Consider $j \circ f : X \to F'.$ Since object F is free on set X and F' is an object then there is a unique morphism $\varphi:\mathsf{F}\to\mathsf{F}'$ such that $i \circ f = \varphi \circ i$:

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and $|X| = |X'|$, then F is equivalent to F'.

Proof. Since $|X| = |X'|$, there is a bijection $f : X \to X'$. Since F is free on X , there is a set map $i: X \rightarrow F$. Since F' is free on X' , there is a set map $j: X' \to F'.$ Consider $j \circ f : X \to F'.$ Since object F is free on set X and F' is an object then there is a unique morphism $\varphi:\mathsf{F}\to\mathsf{F}'$ such that $i \circ f = \varphi \circ i$:

Theorem I.7.8 (continued 1)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and $|X| = |X'|$, then F is equivalent to F'.

Proof (continued). Since $j : X' \to F'$ and $f : X \to X'$ we can expand this to the commutative diagram:

Theorem I.7.8 (continued 2)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and $|X| = |X'|$, then F is equivalent to F'.

Proof (continued). Similarly, since $f : X \rightarrow X'$ is a bijection, we have $f^{-1}: X \to X$. Consider $i \circ f^{-1}: X' \to F$. Since object F' is free on set X' and \bar{F} is an object then there is a unique morphism $\psi: F' \to \bar{F}$ such that $i\circ f^{-1}=\psi\circ j$:

Theorem I.7.8 (continued 3)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and $|X| = |X'|$, then F is equivalent to F'.

Proof (continued). Since $i: X \rightarrow F$ and $f^{-1}: X' \rightarrow X$ we can expand

Theorem I.7.8 (continued 4)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and $|X|=|X'|$, then F is equivalent to F'. Proof (continued). Combining the above diagrams gives the commutative diagram:

Theorem I.7.8 (continued 4)

Theorem 1.7.8. If C is a concrete category, if F and F' are objects of C such that F is free on the set X and F' is free on the set X' and $|X|=|X'|$, then F is equivalent to F'. Proof (continued). Combining the above diagrams gives the

Theorem I.7.10. Any two universal (respectively, couniversal) objects in a category C are equivalent.

Proof. Let I and J be universal objects in C. Since I is universal and J is an object, there is a unique morphism $f: I \rightarrow J$. Similarly, since J is universal and I is an object there is a unique morphism $g: J \rightarrow I$. The composition $g \circ f : I \to I$ is a morphism of $\mathcal{C}.$ But $1_I : I \to I$ is also a morphism of C .

Theorem I.7.10. Any two universal (respectively, couniversal) objects in a category C are equivalent.

Proof. Let I and J be universal objects in C. Since I is universal and J is an object, there is a unique morphism $f: I \rightarrow J$. Similarly, since J is universal and I is an object there is a unique morphism $g: J \rightarrow I$. The composition $g \circ f : I \to I$ is a morphism of $\mathcal{C}.$ But $1_I : I \to I$ is also a **morphism of C.** Since I is universal, there is a unique morphism mapping $I \rightarrow I$ and so $g \circ f = 1_I$. Similarly, since J is universal, $f \circ g = 1_J$. So $f: I \rightarrow J$ is an equivalence and I and J are equivalent. The proof for I and J couniversal is similar (f and g just interchange roles).

Theorem I.7.10. Any two universal (respectively, couniversal) objects in a category C are equivalent.

Proof. Let I and J be universal objects in C. Since I is universal and J is an object, there is a unique morphism $f: I \rightarrow J$. Similarly, since J is universal and I is an object there is a unique morphism $g: J \rightarrow I$. The composition $g \circ f : I \to I$ is a morphism of $\mathcal{C}.$ But $1_I : I \to I$ is also a morphism of C . Since I is universal, there is a unique morphism mapping $I \rightarrow I$ and so $g \circ f = 1_I$. Similarly, since J is universal, $f \circ g = 1_J$. So $f: I \rightarrow J$ is an equivalence and I and J are equivalent. The proof for I and J couniversal is similar (f and g just interchange roles).