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Proposition I.8.2

Proposition I.8.2

Theorem I.8.2. Let {Gi | i ∈ I} be a family of groups, let H be a group,
and let {ϕi : H → Gi | i ∈ I} a family of group homomorphisms. Then
there is a unique homomorphism ϕ : H →

∏
Gi such that πiϕ = ϕi for all

i ∈ I and this property determines
∏

Gi uniquely up to isomorphism. (In
other words,

∏
Gi is a product in the category of groups.)

Proof. By Theorem 0.5.2, the map of sets ϕ : H →
∏

i∈I Gi given by
ϕ(a) = {ϕi (a)}i∈I ∈

∏
i∈I Gi is the unique function such that πiϕ = ϕi for

all i ∈ I . We now confirm that ϕ is a homomorphism. Let a, b ∈ H. Then

ϕ(ab) = {ϕi (ab)}i∈I

= {ϕi (a)ϕi (b)}i∈I since ϕi is a homomorphism

= ϕ(a)ϕ(b).
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Proposition I.8.2

Proposition I.8.2 (continued)

Proof (continued). We now consider Definition I.7.2. With P =
∏

i∈I Gi

and {πi}i∈I a family of morphisms (onto homomorphisms by Theorem
I.8.1(ii)), with B = H any object (i.e., group) and {ϕi}i∈I a family of
morphisms (group homomorphisms) mapping B → Ai (or H → Gi here),
we have the unique morphism ϕ mapping B → P (i.e., unique
homomorphism ϕ : H →

∏
Gi ) such that πi ◦ ϕ = ϕi for all i ∈ I . So∏

i∈I Gi is a product in the categorical sense as defined in Definition I.7.2
and we can use properties of categories from Section I.7.
By Theorem I.7.3, any two products of {Gi}i∈I are equivalent. That is,
there are morphisms (group homomorphisms) between the two products
which compose to give an identity mapping and hence the products are
isomorphic.
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Proposition I.8.4(i)

Proposition I.8.4(i)

Theorem I.8.4(i). If {Gi | i ∈ I} is a family of groups, then:
(i)

∏w
i∈I Gi is a normal subgroup of

∏
i∈I Gi .

Proof. We use Theorem I.5.1(iv) and show for all a ∈
∏

i∈I Gi and
N =

∏w
i∈I Gi that aNa−1 ⊆ N. Let n ∈

∏w
i∈I Gi . Then n = {n(i)}i∈I

where n(i) ∈ Gi and n(i) = ei for all but finitely many i ∈ I (where ei is
the identity in Gi ; say n(i) 6= ei for i ∈ I0). Let a ∈

∏
i∈I Gi . Then

a = {a(i)}i∈I where a(i) ∈ Gi . So a−1 = {(a(i))−1}i∈I .

Now
ana−1 = {a(i)}i∈I{n(i)}i∈I{(a(i))−1}i∈I = {a(i)n(i)(a(i))−1}i∈I . Since
a(i), n(i), (a(i))−1 ∈ Gi for all i ∈ I , then a(i)n(i)(a(i))−1 ∈ Gi for all
i ∈ I . Since n(i) = ei for all i ∈ I \ I0 then
a(i)n(i)(a(i))−1 = a(i)ei (a(i))

−1 = ei for all i ∈ I \ I0. That is,
a(i)n(i)(a(i))−1 = ei for all but finitely many i ∈ I , and so
ana−1 = {a(i)n(i)(a(i))−1}i∈I ∈

∏w
i∈I Gi . Since n ∈ N is arbitrary,

aNa−1 = a
(∏w

i∈I Gi

)
a−1 ⊆ N =

∏w
i∈I Gi . Therefore, by Theorem I.5.1(iv),

N =
∏w

i∈I Gi is a normal subgroup of
∏

i∈I Gi .
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Proposition I.8.5

Proposition I.8.5

Theorem I.8.5. Let {Ai | i ∈ I} be a family of (additive) abelian groups.
If B is an abelian group and {ψi : Ai → B | i ∈ I} is a family of
homomorphisms, then there is a unique homomorphism mapping the
(external) direct sum

∑
Ai to B, ψ :

∑
i∈I Ai → B such that ψιi = ψi for

all i ∈ I and this property determines
∑

i∈I Ai uniquely up to isomorphism.
That is,

∑
i∈I Ai is a coproduct in the category of abelian groups.

Proof. If {ai} ∈
∑

Ai is nonzero (that is, if ai 6= 0 for some i ∈ I ), then
only finitely many of the ai are nonzero (see Definition I.8.3), say
ai1 , ai2 , . . . , air . Define ψ :

∑
Ai → B as ψ(0) = 0 and

ψ({ai}) = ψi1(ai1) + ψi2(ai2) + · · ·+ ψir (air ) =
∑
i∈I0

ψi (ai )

where I0 = {i1, i2, . . . , ir} = {i ∈ I | ai 6= 0}.

We leave as homework the verification that ψ is a homomorphism and
ψιi = ψi for all i ∈ I (this is where commutivity is required).
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Proposition I.8.5

Proposition I.8.5 (continued 1)

Proof (continued). For each {ai} ∈
∑

Ai with only finitely many
nonzero ai we have {ai} =

∑
i∈I0

ιi (ai ) where I0 (a finite set, as required
in the definition of external direct sum) is as above (since ιi “embeds”
each ai into an |I |-tuple with only finitely many nonzero entries). Now for
the uniqueness of ψ. If ξ :

∑
Ai → B is a homomorphism such that

ξιi = ψi for all i ∈ I then

ξ({ai}) = ξ

∑
i∈I0

ιi (ai )

 by the observation above

=
∑
i∈I0

ξιi (ai ) since ξ is a homomorphism

=
∑
i∈I0

ψi (ai ) by hypothesis of equality of ξιi = ψi for all i ∈ I

=
∑
i∈I0

ψιi (ai ) by above (“homework”)
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Proposition I.8.5

Proposition I.8.5 (continued 2)

Proof (continued).

ξ({ai}) =
∑
i∈I0

ψιi (ai ) by above

= ψ

∑
i∈I0

ιi (ai )

 since ψ is a homomorphism

= ψ({ai}) since {ai} =
∑
i∈I0

ιi (ai ).

So ξ = ψ and ψ is unique. This uniqueness implies that
∑

Ai is a
coproduct in the category of abelian groups (see Definition I.7.4).
By Theorem I.7.5, any two coproducts of {Ai}i∈I are equivalent. That is,
there are morphisms (i.e., group homomorphisms) between the two
coproducts which compose to give an identity mapping and hence the
coproducts are isomorphic.

() Modern Algebra March 18, 2021 8 / 13



Proposition I.8.5

Proposition I.8.5 (continued 2)

Proof (continued).

ξ({ai}) =
∑
i∈I0

ψιi (ai ) by above

= ψ

∑
i∈I0

ιi (ai )

 since ψ is a homomorphism

= ψ({ai}) since {ai} =
∑
i∈I0

ιi (ai ).

So ξ = ψ and ψ is unique. This uniqueness implies that
∑

Ai is a
coproduct in the category of abelian groups (see Definition I.7.4).
By Theorem I.7.5, any two coproducts of {Ai}i∈I are equivalent. That is,
there are morphisms (i.e., group homomorphisms) between the two
coproducts which compose to give an identity mapping and hence the
coproducts are isomorphic.

() Modern Algebra March 18, 2021 8 / 13



Theorem I.8.6

Theorem I.8.6

Theorem I.8.6. Let {Ni | i ∈ I} be a family of normal subgroups of a
group G such that

(i) G = 〈∪i∈INi 〉;
(ii) for each k ∈ I , we have Nk ∩ 〈∪i 6=kNi 〉 = 〈e〉.

Then G ∼=
∏
i∈I

w
Ni .

Proof. If {ai} ∈
∏w Ni then (by Definition I.8.3) ai = e for all but a finite

number of i ∈ I . Let I0 be the finite set {i ∈ I | ai 6= e}. Then
∏

i∈I0
ai is

a well-defined element of G (i.e., independent of the order of the product)
since for a ∈ Ni and b ∈ Nj (with i 6= j), ab = ba by Theorem I.5.3(iv).
Define ϕ :

∏w Ni → G as ϕ({ai}) =
∏

i∈I0
ai (and ϕ({e}) = e).
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Theorem I.8.6

Theorem I.8.6 (continued 1)

Proof (continued). First, for {ai}, {bi} ∈
∏w Ni where I0 is as above

and I1 = {i ∈ I | bi 6= e}, we have

ϕ({ai}{bi}) = ϕ({aibi}) =
∏
I0∪I1

(aibi )

=

 ∏
I0∪I1

ai

  ∏
I0∪I1

bi

 by the commutivity

observation above

=

∏
I0

ai

 ∏
I1

bi

 since ai = e for i 6∈ I0,

and bi = e for i 6∈ I1

= ϕ({ai})ϕ({bi})

so ϕ is a homomorphism.
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Theorem I.8.6

Theorem I.8.6 (continued 2)

Proof (continued). For ak ∈ Nk we have

ϕιk(ak) = ϕ({ai}i∈I ) where ai = e for i 6= k

=
∏

ak since ak is the only non-e element

= ak .

That is (in terms of i), ϕιi (ai ) = ai for all ai ∈ Ni .
Next, to show ϕ is onto. Since G is generated by the subgroups Ni , every
element a of G is a finite product of elements from various Ni (see
Theorem I.2.8). Since elements of Ni and Nj commute (for i 6= j) as
mentioned above, a can be written as a product

a =
∏
i∈I0

ai where ai ∈ Ni (∗)

and I0 is some finite subset of I .
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Theorem I.8.6

Theorem I.8.6 (continued 3)

Proof (continued). Hence
∏

i∈I0
ιi (ai ) ∈

∏w
i∈I Ni and

ϕ

∏
i∈I0

ιi (ai )

 =
∏
i∈I0

ϕιi (ai ) since ϕ is a homomorphism

=
∏
i∈I0

ai since ϕιi (ai ) = ai as shown above

= a by (∗).

So ϕ is onto.
Now to show that ϕ is one to one. Suppose ϕ({ai}) =

∏
i∈I0

ai = e ∈ G .
WLOG we take I0 = {1, 2, . . . , n}. Then

∏
i∈I0

ai = a1a2 · · · an = e with

ai ∈ Ni . Hence a−1
1 = a2a3 · · · an ∈ N1 ∩ 〈∪n

i=2Ni 〉 = 〈e〉 and therefore
a−1
1 = e and a1 = e. Similarly ai = e for all i ∈ I0 (and also for all i ∈ I ).

So Ker(ϕ) = {e} and by Theorem I.2.3(i) ϕ is one to one.
Hence, ϕ is an isomorphism and G ∼=

∏w
i∈I Ni .
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Corollary I.8.11

Corollary I.8.11

Corollary I.8.11. Let {Gi | i ∈ I} and {Ni | i ∈ I} be families of groups
such that Ni is a normal subgroup of Gi for each i ∈ I .

(i)
∏

Ni is a normal subgroup of
∏

Gi and∏
Gi/

∏
Ni

∼=
∏

Gi/Ni .

(ii)
∏wNi is a normal subgroup of

∏wGi and∏wGi/
∏wNi

∼=
∏wGi/Ni .

Proof of (i). For each i ∈ I , let πi : Gi → Gi/Ni be the canonical
epimorphism (see Theorem I.5.5). By Theorem I.8.10, the map∏
πi :

∏
Gi →

∏
Gi/Ni is an epimorphism with kernel

∏
Ni . Then∏

Gi/
∏

Ni
∼=

∏
Gi/Ni by the First Isomorphism Theorem (Corollary

I.5.7) since Im(
∏
πi ) =

∏
Gi/Ni because

∏
πi is onto.
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∏wGi and∏wGi/
∏wNi

∼=
∏wGi/Ni .

Proof of (i). For each i ∈ I , let πi : Gi → Gi/Ni be the canonical
epimorphism (see Theorem I.5.5). By Theorem I.8.10, the map∏
πi :

∏
Gi →

∏
Gi/Ni is an epimorphism with kernel

∏
Ni . Then∏

Gi/
∏

Ni
∼=

∏
Gi/Ni by the First Isomorphism Theorem (Corollary

I.5.7) since Im(
∏
πi ) =

∏
Gi/Ni because

∏
πi is onto.
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