Modern Algebra

Chapter I. Groups

I.8. Direct Products and Direct Sums—Proofs of Theorems

- 2 [Proposition I.8.4\(i\)](#page-6-0)
- 3 [Proposition I.8.5](#page-9-0)
- Theorem 1.8.6

Theorem 1.8.2. Let $\{G_i \mid i \in I\}$ be a family of groups, let H be a group, and let $\{ \varphi_i: \mathsf{H} \to \mathsf{G}_i \mid i \in I \}$ a family of group homomorphisms. Then there is a unique homomorphism $\varphi: H \to \prod \mathsf{G}_i$ such that $\pi_i \varphi = \varphi_i$ for all $i \in I$ and this property determines $\prod G_i$ uniquely up to isomorphism. (In other words, $\prod G_i$ is a product in the category of groups.)

Proof. By Theorem 0.5.2, the map of sets $\varphi : H \to \prod_{i \in I} G_i$ given by $\varphi(\mathsf{a})=\{\varphi_i(\mathsf{a})\}_{i\in I}\in\prod_{i\in I}\mathsf{G}_i$ is the unique function such that $\pi_i\varphi=\varphi_i$ for all $i \in I$. We now confirm that φ is a homomorphism. Let $a, b \in H$. Then

$$
\varphi(ab) = {\varphi_i(ab)}_{i \in I}
$$

= ${\varphi_i(a)\varphi_i(b)}_{i \in I}$ since φ_i is a homomorphism
= $\varphi(a)\varphi(b)$.

Theorem 1.8.2. Let $\{G_i \mid i \in I\}$ be a family of groups, let H be a group, and let $\{ \varphi_i: \mathsf{H} \to \mathsf{G}_i \mid i \in I \}$ a family of group homomorphisms. Then there is a unique homomorphism $\varphi: H \to \prod \mathsf{G}_i$ such that $\pi_i \varphi = \varphi_i$ for all $i \in I$ and this property determines $\prod G_i$ uniquely up to isomorphism. (In other words, $\prod G_i$ is a product in the category of groups.)

Proof. By Theorem 0.5.2, the map of sets $\varphi : H \to \prod_{i \in I} \mathsf{G}_i$ given by $\varphi(\textsf{a})=\{\varphi_{i}(\textsf{a})\}_{i\in I}\in\prod_{i\in I}\textsf{G}_{i}$ is the unique function such that $\pi_{i}\varphi=\varphi_{i}$ for all $i \in I$. We now confirm that φ is a homomorphism. Let $a, b \in H$. Then

$$
\varphi(ab) = {\varphi_i(ab)}_{i \in I}
$$

= ${\varphi_i(a)\varphi_i(b)}_{i \in I}$ since φ_i is a homomorphism
= $\varphi(a)\varphi(b)$.

Proposition I.8.2 (continued)

Proof (continued). We now consider Definition I.7.2. With $P = \prod_{i \in I} G_i$ and $\{\pi_i\}_{i\in I}$ a family of morphisms (onto homomorphisms by Theorem 1.8.1(ii)), with $B = H$ any object (i.e., group) and $\{\varphi_i\}_{i \in I}$ a family of morphisms (group homomorphisms) mapping $B \to A_i$ (or $H \to G_i$ here), we have the unique morphism φ mapping $B \to P$ (i.e., unique homomorphism $\varphi: H \to \prod \mathsf{G_i})$ such that $\pi_i \circ \varphi = \varphi_i$ for all $i \in I.$ So $\prod_{i \in I} \mathsf{G}_i$ is a product in the categorical sense as defined in Definition I.7.2 and we can use properties of categories from Section I.7.

By Theorem I.7.3, any two products of $\{G_i\}_{i\in I}$ are equivalent. That is, there are morphisms (group homomorphisms) between the two products which compose to give an identity mapping and hence the products are isomorphic.

Proposition I.8.2 (continued)

Proof (continued). We now consider Definition I.7.2. With $P = \prod_{i \in I} G_i$ and $\{\pi_i\}_{i\in I}$ a family of morphisms (onto homomorphisms by Theorem 1.8.1(ii)), with $B = H$ any object (i.e., group) and $\{\varphi_i\}_{i \in I}$ a family of morphisms (group homomorphisms) mapping $B \to A_i$ (or $H \to G_i$ here), we have the unique morphism φ mapping $B \to P$ (i.e., unique homomorphism $\varphi: H \to \prod \mathsf{G_i})$ such that $\pi_i \circ \varphi = \varphi_i$ for all $i \in I.$ So $\prod_{i \in I} \mathsf{G}_i$ is a product in the categorical sense as defined in Definition I.7.2 and we can use properties of categories from Section I.7. By Theorem I.7.3, any two products of $\{G_i\}_{i\in I}$ are equivalent. That is, there are morphisms (group homomorphisms) between the two products which compose to give an identity mapping and hence the products are isomorphic.

Proposition I.8.4(i)

Theorem 1.8.4(i). If $\{G_i \mid i \in I\}$ is a family of groups, then: (i) $\prod_{i \in I}^{w} G_i$ is a normal subgroup of $\prod_{i \in I} G_i$.

Proof. We use Theorem I.5.1(iv) and show for all $a \in \prod_{i \in I} G_i$ and $N = \prod_{i \in I}^{w} G_i$ that $aNa^{-1} \subseteq N$. Let $n \in \prod_{i \in I}^{w} G_i$. Then $n = \{n(i)\}_{i \in I}$ where $n(i) \in G_i$ and $n(i) = e_i$ for all but finitely many $i \in I$ (where e_i is the identity in G_i ; say $n(i) \neq e_i$ for $i \in I_0$). Let $a \in \prod_{i \in I} G_i$. Then $a = \{a(i)\}_{i \in I}$ where $a(i) \in G_i$. So $a^{-1} = \{(a(i))^{-1}\}_{i \in I}$.

Proposition I.8.4(i)

Theorem 1.8.4(i). If $\{G_i \mid i \in I\}$ is a family of groups, then: (i) $\prod_{i \in I}^{w} G_i$ is a normal subgroup of $\prod_{i \in I} G_i$.

Proof. We use Theorem I.5.1(iv) and show for all $a \in \prod_{i \in I} G_i$ and $N=\prod_{i\in I}^w G_i$ that $aNa^{-1}\subseteq N$. Let $n\in \prod_{i\in I}^w G_i$. Then $n=\{n(i)\}_{i\in I}$ where $n(i) \in G_i$ and $n(i) = e_i$ for all but finitely many $i \in I$ (where e_i is the identity in G_i ; say $n(i) \neq e_i$ for $i \in I_0$). Let $a \in \prod_{i \in I} G_i$. Then $a=\{a(i)\}_{i\in I}$ where $a(i)\in G_i$. So $a^{-1}=\{(a(i))^{-1}\}_{i\in I}$. Now ana $^{-1}=\{a(i)\}_{i\in I}\{n(i)\}_{i\in I}\{(a(i))^{-1}\}_{i\in I}=\{a(i)n(i)(a(i))^{-1}\}_{i\in I}$. Since $a(i), n(i), (a(i))^{-1} \in G_i$ for all $i \in I$, then $a(i)n(i)(a(i))^{-1} \in G_i$ for all $i \in I$. Since $n(i) = e_i$ for all $i \in I \setminus I_0$ then $a(i)n(i)(a(i))^{-1} = a(i)e_i(a(i))^{-1} = e_i$ for all $i \in I \setminus I_0.$ That is, $a(i)n(i)(a(i))^{-1} = e_i$ for all but finitely many $i \in I$, and so ana⁻¹ = {a(i)n(i)(a(i))⁻¹}_{i∈I} ∈ $\prod_{i\in I}^{w} G_i$. Since $n \in N$ is arbitrary, $aNa^{-1} = a\left(\prod_{i \in I}^{w} G_i\right)a^{-1} \subseteq N = \prod_{i \in I}^{w} G_i$. Therefore, by Theorem I.5.1(iv), $N = \prod_{i \in I}^{w} G_i$ is a normal subgroup of $\prod_{i \in I} G_i$.

Proposition I.8.4(i)

Theorem 1.8.4(i). If $\{G_i \mid i \in I\}$ is a family of groups, then: (i) $\prod_{i \in I}^{w} G_i$ is a normal subgroup of $\prod_{i \in I} G_i$.

Proof. We use Theorem I.5.1(iv) and show for all $a \in \prod_{i \in I} G_i$ and $N=\prod_{i\in I}^w G_i$ that $aNa^{-1}\subseteq N$. Let $n\in \prod_{i\in I}^w G_i$. Then $n=\{n(i)\}_{i\in I}$ where $n(i) \in G_i$ and $n(i) = e_i$ for all but finitely many $i \in I$ (where e_i is the identity in G_i ; say $n(i) \neq e_i$ for $i \in I_0$). Let $a \in \prod_{i \in I} G_i$. Then $a=\{a(i)\}_{i\in I}$ where $a(i)\in G_i$. So $a^{-1}=\{(a(i))^{-1}\}_{i\in I}$. Now ana $^{-1}=\{$ a $(i)\}_{i\in I}\{n(i)\}_{i\in I}\{ (a(i))^{-1}\}_{i\in I}=\{$ a (i) n $(i) ($ a $(i))^{-1}\}_{i\in I}$. Since $\mathsf{a}(i), \mathsf{n}(i), (\mathsf{a}(i))^{-1} \in \mathsf{G}_i$ for all $i \in I$, then $\mathsf{a}(i) \mathsf{n}(i) (\mathsf{a}(i))^{-1} \in \mathsf{G}_i$ for all $i \in I$. Since $n(i) = e_i$ for all $i \in I \setminus I_0$ then $\mathsf{a}(i) \mathsf{n}(i) (\mathsf{a}(i))^{-1} = \mathsf{a}(i) \mathsf{e}_i (\mathsf{a}(i))^{-1} = \mathsf{e}_i$ for all $i \in I \setminus \mathsf{l}_0.$ That is, $\mathsf{a}(i) \mathsf{n}(i) (\mathsf{a}(i))^{-1} = \mathsf{e}_i$ for all but finitely many $i \in I,$ and so ana $^{-1} = \{a(i)n(i)(a(i))^{-1}\}_{i \in I} \in \prod_{i \in I}^w G_i$. Since $n \in N$ is arbitrary, aNa^{−1} = a $(\prod_{i\in I}^{w} G_i)$ a^{−1} $\subseteq N = \prod_{i\in I}^{w} G_i$. Therefore, by Theorem I.5.1(iv), $N = \prod_{i \in I}^{w} G_i$ is a normal subgroup of $\prod_{i \in I} G_i$.

Theorem I.8.5. Let $\{A_i \mid i \in I\}$ be a family of (additive) abelian groups. If B is an abelian group and $\{\psi_i:A_i\to B\mid i\in I\}$ is a family of homomorphisms, then there is a unique homomorphism mapping the (external) direct sum $\sum A_i$ to B , ψ : $\sum_{i\in I}A_i\to B$ such that $\psi\iota_i=\psi_i$ for all $i \in I$ and this property determines $\sum_{i \in I} A_i$ uniquely up to isomorphism. That is, $\sum_{i\in I}A_i$ is a coproduct in the category of abelian groups.

Proof. If $\{a_i\} \in \sum A_i$ is nonzero (that is, if $a_i \neq 0$ for some $i \in I$), then only finitely many of the a_i are nonzero (see Definition 1.8.3), say $a_{i_1}, a_{i_2}, \ldots, a_{i_r}.$ Define $\psi: \sum A_i \to B$ as $\psi(0)=0$ and

$$
\psi(\{a_i\}) = \psi_{i_1}(a_{i_1}) + \psi_{i_2}(a_{i_2}) + \cdots + \psi_{i_r}(a_{i_r}) = \sum_{i \in I_0} \psi_i(a_i)
$$

where $I_0 = \{i_1, i_2, \ldots, i_r\} = \{i \in I \mid a_i \neq 0\}.$

Theorem I.8.5. Let $\{A_i \mid i \in I\}$ be a family of (additive) abelian groups. If B is an abelian group and $\{\psi_i:A_i\to B\mid i\in I\}$ is a family of homomorphisms, then there is a unique homomorphism mapping the (external) direct sum $\sum A_i$ to B , ψ : $\sum_{i\in I}A_i\to B$ such that $\psi\iota_i=\psi_i$ for all $i \in I$ and this property determines $\sum_{i \in I} A_i$ uniquely up to isomorphism. That is, $\sum_{i\in I}A_i$ is a coproduct in the category of abelian groups.

Proof. If $\{a_i\} \in \sum A_i$ is nonzero (that is, if $a_i \neq 0$ for some $i \in I$), then only finitely many of the a_i are nonzero (see Definition I.8.3), say $a_{i_1}, a_{i_2}, \ldots, a_{i_r}.$ Define $\psi: \sum A_i \rightarrow B$ as $\psi(0)=0$ and

$$
\psi(\{a_i\}) = \psi_{i_1}(a_{i_1}) + \psi_{i_2}(a_{i_2}) + \cdots + \psi_{i_r}(a_{i_r}) = \sum_{i \in I_0} \psi_i(a_i)
$$

where $I_0 = \{i_1, i_2, \ldots, i_r\} = \{i \in I \mid a_i \neq 0\}.$

We leave as homework the verification that ψ is a homomorphism and $\psi\iota_i=\psi_i$ for all $i\in I$ (this is where commutivity is required).

Theorem I.8.5. Let $\{A_i \mid i \in I\}$ be a family of (additive) abelian groups. If B is an abelian group and $\{\psi_i:A_i\to B\mid i\in I\}$ is a family of homomorphisms, then there is a unique homomorphism mapping the (external) direct sum $\sum A_i$ to B , ψ : $\sum_{i\in I}A_i\to B$ such that $\psi\iota_i=\psi_i$ for all $i \in I$ and this property determines $\sum_{i \in I} A_i$ uniquely up to isomorphism. That is, $\sum_{i\in I}A_i$ is a coproduct in the category of abelian groups.

Proof. If $\{a_i\} \in \sum A_i$ is nonzero (that is, if $a_i \neq 0$ for some $i \in I$), then only finitely many of the a_i are nonzero (see Definition I.8.3), say $a_{i_1}, a_{i_2}, \ldots, a_{i_r}.$ Define $\psi: \sum A_i \rightarrow B$ as $\psi(0)=0$ and

$$
\psi(\{a_i\}) = \psi_{i_1}(a_{i_1}) + \psi_{i_2}(a_{i_2}) + \cdots + \psi_{i_r}(a_{i_r}) = \sum_{i \in I_0} \psi_i(a_i)
$$

where $I_0 = \{i_1, i_2, \ldots, i_r\} = \{i \in I \mid a_i \neq 0\}.$ We leave as homework the verification that ψ is a homomorphism and $\psi\iota_i=\psi_i$ for all $i\in I$ (this is where commutivity is required).

Proposition I.8.5 (continued 1)

Proof (continued). For each $\{a_i\} \in \sum A_i$ with only finitely many nonzero a_i we have $\{a_i\} = \sum_{i \in I_0} \iota_i(a_i)$ where I_0 (a finite set, as required in the definition of external direct sum) is as above (since ι_i "embeds" each a_i into an $|I|$ -tuple with only finitely many nonzero entries). Now for the uniqueness of $\psi.$ If $\xi:\sum A_{i}\rightarrow B$ is a homomorphism such that $\xi \iota_i = \psi_i$ for all $i \in I$ then

$$
\xi({a_i}) = \xi \left(\sum_{i \in I_0} \iota_i(a_i) \right)
$$
 by the observation above
\n
$$
= \sum_{i \in I_0} \xi \iota_i(a_i)
$$
 since ξ is a homomorphism
\n
$$
= \sum_{i \in I_0} \psi_i(a_i)
$$
 by hypothesis of equality of $\xi \iota_i = \psi_i$ for all $i \in I$
\n
$$
= \sum_{i \in I_0} \psi_i(a_i)
$$
 by above ("homework")

i∈I⁰

Proposition I.8.5 (continued 1)

Proof (continued). For each $\{a_i\} \in \sum A_i$ with only finitely many nonzero a_i we have $\{a_i\} = \sum_{i \in I_0} \iota_i(a_i)$ where I_0 (a finite set, as required in the definition of external direct sum) is as above (since ι_i "embeds" each \boldsymbol{a}_i into an $|I|$ -tuple with only finitely many nonzero entries). Now for the uniqueness of $\psi.$ If $\xi:\sum A_i\to B$ is a homomorphism such that $\xi \iota_i = \psi_i$ for all $i \in I$ then

$$
\xi(\{a_i\}) = \xi\left(\sum_{i \in I_0} \iota_i(a_i)\right)
$$
 by the observation above
\n
$$
= \sum_{i \in I_0} \xi \iota_i(a_i) \text{ since } \xi \text{ is a homomorphism}
$$
\n
$$
= \sum_{i \in I_0} \psi_i(a_i) \text{ by hypothesis of equality of } \xi \iota_i = \psi_i \text{ for all } i \in I
$$
\n
$$
= \sum_{i \in I_0} \psi \iota_i(a_i) \text{ by above ("homework")}
$$

Proposition I.8.5 (continued 2)

Proof (continued).

$$
\xi({a_i}) = \sum_{i \in I_0} \psi_{i}(a_i) \text{ by above}
$$

= $\psi \left(\sum_{i \in I_0} \iota_i(a_i) \right)$ since ψ is a homomorphism
= $\psi({a_i})$ since ${a_i} = \sum_{i \in I_0} \iota_i(a_i)$.

So $\xi=\psi$ and ψ is unique. This uniqueness implies that $\sum A_i$ is a coproduct in the category of abelian groups (see Definition I.7.4). By Theorem I.7.5, any two coproducts of $\{A_i\}_{i\in I}$ are equivalent. That is, there are morphisms (i.e., group homomorphisms) between the two coproducts which compose to give an identity mapping and hence the coproducts are isomorphic.

Proposition I.8.5 (continued 2)

Proof (continued).

$$
\xi({a_i}) = \sum_{i \in I_0} \psi_{i}(a_i) \text{ by above}
$$

= $\psi \left(\sum_{i \in I_0} \iota_i(a_i) \right)$ since ψ is a homomorphism
= $\psi({a_i})$ since ${a_i} = \sum_{i \in I_0} \iota_i(a_i)$.

So $\xi=\psi$ and ψ is unique. This uniqueness implies that $\sum A_i$ is a coproduct in the category of abelian groups (see Definition I.7.4). By Theorem I.7.5, any two coproducts of $\{A_i\}_{i\in I}$ are equivalent. That is, there are morphisms (i.e., group homomorphisms) between the two coproducts which compose to give an identity mapping and hence the coproducts are isomorphic.

Theorem I.8.6

Theorem 1.8.6. Let $\{N_i \mid i \in I\}$ be a family of normal subgroups of a group G such that

(i) $G = \langle \cup_{i \in I} N_i \rangle$; (ii) for each $k \in I$, we have $N_k \cap \langle \cup_{i\neq k} N_i \rangle = \langle e \rangle$. Then $G \cong \prod^w N_i$. i∈I

Proof. If $\{a_i\} \in \prod^w N_i$ then (by Definition I.8.3) $a_i = e$ for all but a finite number of $i \in I$. Let I_0 be the finite set $\{i \in I \mid a_i \neq e\}$. Then $\prod_{i \in I_0} a_i$ is a well-defined element of G (i.e., independent of the order of the product) since for $a \in N_i$ and $b \in N_i$ (with $i \neq j$), $ab = ba$ by Theorem I.5.3(iv). Define $\varphi : \prod^w N_i \to G$ as $\varphi(\{a_i\}) = \prod_{i \in I_0} a_i$ (and $\varphi(\{e\}) = e$).

Theorem I.8.6

Theorem 1.8.6. Let $\{N_i \mid i \in I\}$ be a family of normal subgroups of a group G such that

(i)
$$
G = \langle \bigcup_{i \in I} N_i \rangle
$$
;
\n(ii) for each $k \in I$, we have $N_k \cap \langle \bigcup_{i \neq k} N_i \rangle = \langle e \rangle$.
\nThen $G \cong \prod_{i \in I}^{w} N_i$.

Proof. If $\{a_i\} \in \prod^w N_i$ then (by Definition I.8.3) $a_i = e$ for all but a finite number of $i \in I$. Let I_0 be the finite set $\{i \in I \mid a_i \neq e\}$. Then $\prod_{i \in I_0} a_i$ is a well-defined element of G (i.e., independent of the order of the product) since for $a \in N_i$ and $b \in N_i$ (with $i \neq j$), $ab = ba$ by Theorem I.5.3(iv). Define $\varphi: \prod^w N_i \to G$ as $\varphi(\{a_i\}) = \prod_{i \in I_0} a_i$ (and $\varphi(\{e\}) = e$).

Theorem I.8.6 (continued 1)

Proof (continued). First, for $\{a_i\}$, $\{b_i\} \in \prod^w N_i$ where I_0 is as above and $I_1 = \{i \in I \mid b_i \neq e\}$, we have

$$
\varphi(\{a_i\}\{b_i\}) = \varphi(\{a_i b_i\}) = \prod_{b_0 \cup I_1} (a_i b_i)
$$

\n
$$
= \left(\prod_{b_0 \cup I_1} a_i\right) \left(\prod_{b_0 \cup I_1} b_i\right) \text{ by the commutivity} \text{observation above}
$$

\n
$$
= \left(\prod_{l_0} a_i\right) \left(\prod_{l_1} b_i\right) \text{ since } a_i = e \text{ for } i \notin I_0,
$$

\n
$$
= \varphi(\{a_i\})\varphi(\{b_i\})
$$

so φ is a homomorphism.

Theorem I.8.6 (continued 2)

Proof (continued). For $a_k \in N_k$ we have

$$
\varphi \iota_k(a_k) = \varphi(\{a_i\}_{i \in I}) \text{ where } a_i = e \text{ for } i \neq k
$$

=
$$
\prod_{i=1}^k a_k \text{ since } a_k \text{ is the only non-e element}
$$

=
$$
a_k.
$$

That is (in terms of *i*), $\varphi\iota_i(a_i)=a_i$ for all $a_i\in\mathcal{N}_i$.

Next, to show φ is onto. Since G is generated by the subgroups N_i , every element a of G is a finite product of elements from various N_i (see Theorem I.2.8). Since elements of N_i and N_i commute (for $i \neq j$) as mentioned above, a can be written as a product

$$
a = \prod_{i \in I_0} a_i \text{ where } a_i \in N_i \tag{*}
$$

and I_0 is some finite subset of I.

Theorem I.8.6 (continued 2)

Proof (continued). For $a_k \in N_k$ we have

$$
\varphi \iota_k(a_k) = \varphi(\{a_i\}_{i \in I}) \text{ where } a_i = e \text{ for } i \neq k
$$

=
$$
\prod_{i=1}^k a_k \text{ since } a_k \text{ is the only non-e element}
$$

=
$$
a_k.
$$

That is (in terms of *i*), $\varphi\iota_i(a_i)=a_i$ for all $a_i\in\mathcal{N}_i$. Next, to show φ is onto. Since G is generated by the subgroups N_i , every element a of G is a finite product of elements from various N_i (see Theorem I.2.8). Since elements of N_i and N_i commute (for $i \neq j$) as mentioned above, a can be written as a product

$$
a = \prod_{i \in I_0} a_i \text{ where } a_i \in N_i \tag{*}
$$

and I_0 is some finite subset of I .

Theorem I.8.6 (continued 3)

Proof (continued). Hence $\prod_{i\in I_0}\iota_i(a_i)\in \prod_{i\in I}^w N_i$ and

$$
\varphi\left(\prod_{i\in I_0} \iota_i(a_i)\right) = \prod_{i\in I_0} \varphi \iota_i(a_i) \text{ since } \varphi \text{ is a homomorphism}
$$

=
$$
\prod_{i\in I_0} a_i \text{ since } \varphi \iota_i(a_i) = a_i \text{ as shown above}
$$

=
$$
a \text{ by } (*).
$$

So φ is onto.

Now to show that φ is one to one. Suppose $\varphi(\{a_i\}) = \prod_{i \in I_0} a_i = e \in G$. WLOG we take $I_0 = \{1, 2, \ldots, n\}$. Then $\prod_{i \in I_0} a_i = a_1 a_2 \cdots a_n = e$ with $a_i\in N_i.$ Hence $a_1^{-1}=a_2a_3\cdots a_n\in N_1\cap\langle\cup_{i=2}^nN_i\rangle=\langle e\rangle$ and therefore $a_1^{-1} = e$ and $a_1 = e$. Similarly $a_i = e$ for all $i \in I_0$ (and also for all $i \in I$). So Ker(φ) = {e} and by Theorem I.2.3(i) φ is one to one. Hence, φ is an isomorphism and $G \cong \prod_{i=1}^w N_i$.

Theorem I.8.6 (continued 3)

Proof (continued). Hence $\prod_{i\in I_0}\iota_i(a_i)\in \prod_{i\in I}^w N_i$ and

$$
\varphi\left(\prod_{i\in I_0} \iota_i(a_i)\right) = \prod_{i\in I_0} \varphi \iota_i(a_i) \text{ since } \varphi \text{ is a homomorphism}
$$

=
$$
\prod_{i\in I_0} a_i \text{ since } \varphi \iota_i(a_i) = a_i \text{ as shown above}
$$

=
$$
a \text{ by } (*).
$$

So φ is onto.

Now to show that φ is one to one. Suppose $\varphi(\{a_i\}) = \prod_{i \in I_0} a_i = e \in G$. WLOG we take $I_0 = \{1, 2, \ldots, n\}$. Then $\prod_{i \in I_0} a_i = a_1 a_2 \cdots a_n = e$ with $a_i\in\mathcal{N}_i$. Hence $a_1^{-1}=a_2a_3\cdots a_n\in\mathcal{N}_1\cap\langle\cup_{i=2}^n\mathcal{N}_i\rangle=\langle e\rangle$ and therefore $a_1^{-1} = e$ and $a_1 = e$. Similarly $a_i = e$ for all $i \in I_0$ (and also for all $i \in I$). So Ker(φ) = {e} and by Theorem I.2.3(i) φ is one to one. Hence, φ is an isomorphism and $G \cong \prod_{i=1}^{\omega} N_i$.

Corollary I.8.11

Corollary 1.8.11. Let $\{G_i \mid i \in I\}$ and $\{N_i \mid i \in I\}$ be families of groups such that N_i is a normal subgroup of G_i for each $i \in I.$

- (i) $\prod N_i$ is a normal subgroup of $\prod G_i$ and $\prod G_i/\prod N_i \cong \prod G_i/N_i.$
- (ii) $\prod^w N_i$ is a normal subgroup of $\prod^w G_i$ and $\prod^w G_i / \prod^w N_i \cong \prod^w G_i / N_i$.

Proof of (i). For each $i \in I$, let $\pi_i : G_i \rightarrow G_i/N_i$ be the canonical epimorphism (see Theorem I.5.5). By Theorem I.8.10, the map $\prod \pi_i : \prod G_i \rightarrow \prod G_i/N_i$ is an epimorphism with kernel $\prod N_i.$ Then $\prod G_i/\prod N_i \cong \prod G_i/N_i$ by the First Isomorphism Theorem (Corollary 1.5.7) since lm $(\prod \pi_i) = \prod \mathsf{G_i}/\mathsf{N_i}$ because $\prod \pi_i$ is onto.

Corollary I.8.11

Corollary 1.8.11. Let $\{G_i \mid i \in I\}$ and $\{N_i \mid i \in I\}$ be families of groups such that N_i is a normal subgroup of G_i for each $i \in I.$

- (i) $\prod N_i$ is a normal subgroup of $\prod G_i$ and $\prod G_i/\prod N_i \cong \prod G_i/N_i.$
- (ii) $\prod^w N_i$ is a normal subgroup of $\prod^w G_i$ and $\prod^w G_i / \prod^w N_i \cong \prod^w G_i / N_i$.

Proof of (i). For each $i \in I$, let $\pi_i : G_i \rightarrow G_i/N_i$ be the canonical epimorphism (see Theorem I.5.5). By Theorem I.8.10, the map $\prod \pi_i : \prod G_i \rightarrow \prod G_i/N_i$ is an epimorphism with kernel $\prod N_i.$ Then $\prod G_i/\prod N_i \cong \prod G_i/N_i$ by the First Isomorphism Theorem (Corollary 1.5.7) since Im $(\prod \pi_i) = \prod \mathsf{G}_i/\mathsf{N}_i$ because $\prod \pi_i$ is onto.