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Theorem 1.9.1 (continued 1)

Proof (continued). So mapping |x°| just multiplies a word on the left by
x? and then reduces the word. So mapping |x||x | = 1 = |x~!||x| and
more generally |x°||x~%| = 1r = |x°||x®|. Hence each mapping |x°| has a
two-sided inverse. By Corollary 0.3.B, |x°| is then a bijection on F, and
hence is a permutation of F. Let A(F) be the group of all permutations of
F and let Fy be the subgroup of A(F) generated by the set {|x| | x € X}.
Consider the map ¢ : F — Fq given by (1) = 1f and

@(xf1x§2 ooxOn) = |xf1||x§2] -+ |x%| (so ¢ maps reduced words to
permutations of F). Since Fy is generated by {|x| | x € X}, then the
elements of Fy are of the form |x:‘f1||x§2| -+« |x%| for some x; € X and

d; = £1 by Theorem 1.2.8. So “clearly” ¢ is onto Fy (i.e., ¢ is a
surjection).
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Theorem 1.9.1

Theorem 1.9.1

Theorem 1.9.1. If X is a nonempty set and F = F(X) is the set of all
reduced words on X, then F is a group under the binary operation defined
in the previous definition. Also, F = (X) (where (X) represents the group
generated by set X). The group F = F(X) is called the free group on set
X.

Proof. 1 is the identity and word xflx§2 - x9 has inverse

x;0nx 01 %7 We now show associativity.
For x € X and § = +1, denote by |x’| the map from F to F given by the

mappings 1 — x° and

§ 0102 Sn i LO —01
XOx' X% e xpr i XO # X

Xflxgz"'x,?"H X§2X§53...Xgn ifX5:xl_zl,n>1
1 ifx‘sle_landnzl.
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Theorem 1.9.1

Theorem 1.9.1 (continued 2)

Proof (continued). Next, let wi, ws € F. Then we claim

p(wiwa) = p(wy)p(ws). To see this, notice that wyws is reduced and so

some terms on the right-hand end of wy; may have been cancelled with the
same number of terms on the left-hand end of wy (there are k such terms,
where k is as given in the definition of reduced word product above). Say

wy = xf‘lxz)‘2 ooxM and wy = yflySQ --y9m_In the product wywy, say the
cancelled terms are

Ak JAk+1 An 01,02 On—k+1 __
XX XYL Y Y = L

Notice p(1) = 1 so that

Ak || A k41 A 5111, .62 Sn_kil| _
It Bl a2 Iy, = e
Also
wiw, = x{\1x§\2 . -x,;\”yf1y§2 o -y,‘;’" before reducing
_ )\1 )\2 )\k—l 6n—k+2 1) H
= X317 X Yoy after reducing.
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Theorem 1.9.1

Theorem 1.9.1 (continued 3)

Proof (continued). So

plmws) = blba2] - T3l - 1y
= o] Pt ] eIy - o)
o e ERR 17l
since (x| -+~ [x7[ly3t] - [yorkit) = 1g
= (1™ 1x0] - "Dy 1ys?] - - - Lyl since function

composition is associative
= p(wi)p(ws).

Hence ¢ has the homomorphism property.
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Theorem 1.9.2

Theorem 1.9.2

Theorem 1.9.2. Let F be the free group on set X and ¢ : X — F the
inclusion map (see page 4). If G is a group and f : X — G is a map of
sets, then there exists a unique homomorphism of groups f : F — G such
that f. = f. In other words, F is a free object on the set X is the category
of groups.

Proof. Define 7( ) — e and for x;'x)? - - - x27 a nonempty reduced word
on X define F(x{x32 - - - x) = F(x1)MF(x2)*2 - - - £(x,)*. Now f is a set
function but G is a group and \; = %1, so f(x))Mf(x)*2 - - - f(x,)* is
well-defined. Now to show that f satisfies the homomorphism property.
Let wy = xflx2 ooxM and wy = yf1y§2 - y%m be reduced words and, as
in the proof of Theorem 1.9.1, let

Ai JAit1 91,02 Sn—it1
X; X/+1 ’ X yl Yor Yo i+1

be the cancelled terms in the product of these two words.
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Theorem 1.9.1

Theorem 1.9.1 (continued 4)

Theorem 1.9.1. If X is a nonempty set and F = F(X) is the set of all
reduced words on X, then F is a group under the binary operation defined
in the previous definition. Also, F = (X) (where (X) represents the group
generated by set X). The group F = F(X) is called the free group on set
X.

Proof (continued) Now suppose np(x1 x§2 -..x%) = 1f. Then

|x11||x2 |---|x3"| = 1£. Since, in group Fo, the inverse of |x°| is [x |, it
follows that xflx2 -..x% =1in F. So Ker(p) =1 and by Theorem
1.2.3(i), ¢ is one to one (injective). Since Fy is a group, then the binary
operation in Fy is associative. Since  is a one to one and onto mapping
with the homomorphism property, then ¢ is actually a group isomorphism
and so F is a group and hence associativity holds in F.

Of course, F is generated by X since the “alphabet” of group F (the
“letters” which make up the words) is determined by X as
XUX-tu{1}. O
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Theorem 1.9.2

Theorem 1.9.2 (continued 1)

Proof (continued) Then the product of these cancelled terms equals the
word 1 and so in group G

F(1) = FONF (i) F () F (y1) " (12) - F(Ynmina) 7 = e

So
T T i 5n i 6n i
f(wmiwy) = f(X1)\1X2)\2-"X,)\ 11yn ,J:Sy,, ,_S 'y,im)
= f(Xl))‘l f(X2)>\2 .. f(X,'_l))\’_1
f(yn_i+2)0n—i+2 f(yn_i+3)6n—i+3 . f(ym)ém
= f(Xl))\lf(X2))‘2 f(X,' 1)>"'—1e

-

Vnei2) =2 (Ynoig3) "4 - £ (Yim) "
= ) o) i O”*(ﬂmf“~f&0“
(

F(y1) F(y2)2 - F(Yno14i )5"*"“) F(Yneit2) 2 o £ (ym)om
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Theorem 1.9.2

Theorem 1.9.2 (continued 2)

Proof (continued)

fwmiwp) = ;"'(xl)’\li‘"(XZ)A2 e f(x;_l)’\"—lf(x;)A" . f(x,,)’\"
F(y1) ™ F(y2) -+ F(Yno140) 2 (Vi) 72 o F (ym)

= f(wi)f(w)
and so f has the homomorphism property.

Now the inclusion map ¢ simply “embeds” the set of “letters” X into the
set of reduced words F. f maps the reduced words to group G, so ft
maps X to G and has the homomorphism property. Also, by definition,
fu=f on set X.
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Corollary 1.9.3

Corollary 1.9.3

Corollary 1.9.3. Every group G is the homomorphic image of a free group.

Proof. Let X be a set of generators of G (such a set exists since G itself
generates G). Let F be the free group on the set X. The inclusion map
t: X — G is such that x € X is mapped to x € G. By Theorem 1.9.2,
there is homomorphism f : F — G which maps x € X as x — x € G.
Since G = (X) (by the choice of set X) then f is onto G (i.e., f is an
epimorphism). So f maps free group F onto group G (that is, Im(f) = G)
and f is a homomorphism. ]
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Theorem 1.9.2

Theorem 1.9.2 (continued 3)

Theorem 1.9.2. Let F be the free group on set X and ¢ : X — F the
inclusion map (see page 4). If G is a group and f : X — G is a map of
sets, then there exists a unique homomorphism of groups f : F — G such
that fu = f. In other words, F is a free object on the set X is the category
of groups.

Proof (continued) If g is any homomorphism mapping set of reduced
words F to group G such that g¢ = f on set X, then

g(X£\1X2>\2"'X£\") = g(x)Mg(x)

a homomorphism

= gulx)Mgu(x)? - gi(x,) since gr = g on X

A1 A2,

g(x,)*" since g is

= ()M F(x2) - f(x2) by assumption
= F(x{1x32 - - x)") by the definition of .
So the homomorphism f = F — G is unique. O
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Theorem 1.9.5. von Dyck's Theorem

Theorem 1.9.5

Theorem 1.9.5. von Dyck’s Theorem.

Let X be a set, Y a set of reduced words on X and G the group defined
by the generators x € X and relations w = e for w € Y. If H is any group
such that H = (X) and H satisfies all the relations w = e for w € Y, then
there is an epimorphism mapping G — H.

Proof. If F is the free group on X then, as in the proof of Corollary 1.9.3,
the inclusion map ¢ : X — H induces an epimorphism ¢ : F — H. Since
the relations w = e hold for all w € Y, then by Note 1.9.3 w € Ker(y)
and so Y C Ker(y) (here the elements of Y are interpreted both as words
on X and products in group H, as Hungerford remarks on page 67). So
the normal subgroup N generated by Y in F is contained in Ker(yp); that
is, N C Ker(p) or equivalently o(N) < {0} where 0 is the identity of
group H. Now ¢ : F — H is an epimorphism, N< F, {0} < H, and

©(N) < {0}. So by Corollary 1.5.8, ¢ induces a homomorphism ) mapping
F/N — H/{0} = H.
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Theorem 1.9.5 (continued)

Theorem 1.9.5. von Dyck’s Theorem.

Let X be a set, Y a set of reduced words on X and G the group defined
by the generators x € X and relations w = e for w € Y. If H is any group
such that H = (X) and H satisfies all the relations w = e for w € Y, then
there is an epimorphism mapping G — H.

Proof (continued). Now for aN € F/N we have (again by Corollary
1.5.8) that ¢(aN) = ¢(a){0}. Since ¢ is onto group H then 1 is onto
group H/{0} = H. Thatis, ¢ : G — H is an epimorphism. (Recall

G = F/N. Technically, ¥ has to be composed with an isomorphism
mapping G — F/N and an isomorphism mapping H/{0} — H.) O



