Modern Algebra

Chapter I. Groups

I.9. Free Groups, Free Products, Generators and Relations—Proofs of Theorems

Theorem I.9.1. If X is a nonempty set and $F = F(X)$ is the set of all reduced words on X , then F is a group under the binary operation defined in the previous definition. Also, $F = \langle X \rangle$ (where $\langle X \rangle$ represents the group generated by set X). The group $F = F(X)$ is called the free group on set X.

Proof. 1 is the identity and word $x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n}$ has inverse $x_n^{-\delta_n} x_{n-1}^{-\delta_{n-1}}$ $\frac{-\delta_{n-1}}{n-1} \cdots \frac{x-1}{1}$. We now show associativity.

Theorem I.9.1. If X is a nonempty set and $F = F(X)$ is the set of all reduced words on X , then F is a group under the binary operation defined in the previous definition. Also, $F = \langle X \rangle$ (where $\langle X \rangle$ represents the group generated by set X). The group $F = F(X)$ is called the free group on set X.

Proof. 1 is the identity and word $x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n}$ has inverse $x_n^{-\delta_n}x_{n-1}^{-\delta_{n-1}}$ $\frac{1}{n-1}$ \cdots $\chi_1^{-\delta_1}$. We now show associativity. For $x\in X$ and $\delta=\pm 1$, denote by $|x^\delta|$ the map from F to F given by the mappings $1 \mapsto x^{\delta}$ and

$$
x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n} \mapsto \begin{cases} x^{\delta} x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n} & \text{if } x^{\delta} \neq x_1^{-\delta_1} \\ x_2^{\delta_2} x_3^{\delta_3} \cdots x_n^{\delta_n} & \text{if } x^{\delta} = x_1^{-\delta_1}, n > 1 \\ 1 & \text{if } x^{\delta} = x_1^{-\delta_1} \text{ and } n = 1. \end{cases}
$$

Theorem 1.9.1. If X is a nonempty set and $F = F(X)$ is the set of all reduced words on X , then F is a group under the binary operation defined in the previous definition. Also, $F = \langle X \rangle$ (where $\langle X \rangle$ represents the group generated by set X). The group $F = F(X)$ is called the free group on set X.

Proof. 1 is the identity and word $x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n}$ has inverse $x_n^{-\delta_n}x_{n-1}^{-\delta_{n-1}}$ $\frac{1}{n-1}$ \cdots $\chi_1^{-\delta_1}$. We now show associativity. For $x\in X$ and $\delta=\pm 1$, denote by $|x^\delta|$ the map from F to F given by the mappings $1 \mapsto x^{\delta}$ and

$$
x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n} \mapsto \begin{cases} x^{\delta} x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n} & \text{if } x^{\delta} \neq x_1^{-\delta_1} \\ x_2^{\delta_2} x_3^{\delta_3} \cdots x_n^{\delta_n} & \text{if } x^{\delta} = x_1^{-\delta_1}, n > 1 \\ 1 & \text{if } x^{\delta} = x_1^{-\delta_1} \text{ and } n = 1. \end{cases}
$$

Theorem I.9.1 (continued 1)

Proof (continued). So mapping $|x^{\delta}|$ just multiplies a word on the left by x^{δ} and then reduces the word. So mapping $|x| |x^{-1}| = 1_{\mathcal{F}} = |x^{-1}| |x|$ and more generally $|x^\delta||x^{-\delta}|=1_{\mathcal{F}}=|x^{-\delta}||x^\delta|.$ Hence each mapping $|x^\delta|$ has a two-sided inverse. By Corollary 0.3.B, $|x^\delta|$ is then a bijection on \digamma , and **hence is a permutation of F.** Let $A(F)$ be the group of all permutations of F and let F_0 be the subgroup of $A(F)$ generated by the set $\{|x| \mid x \in X\}$. Consider the map $\varphi : F \to F_0$ given by $\varphi(1) = 1_F$ and $\varphi(x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n})=|x_1^{\delta_1}||x_2^{\delta_2}|\cdots|x_n^{\delta_n}|$ (so φ maps reduced words to permutations of F).

Theorem I.9.1 (continued 1)

Proof (continued). So mapping $|x^{\delta}|$ just multiplies a word on the left by x^{δ} and then reduces the word. So mapping $|x| |x^{-1}| = 1_{\mathcal{F}} = |x^{-1}| |x|$ and more generally $|x^\delta||x^{-\delta}|=1_{\mathcal{F}}=|x^{-\delta}||x^\delta|.$ Hence each mapping $|x^\delta|$ has a two-sided inverse. By Corollary 0.3.B, $|x^\delta|$ is then a bijection on \digamma , and hence is a permutation of F. Let $A(F)$ be the group of all permutations of F and let F_0 be the subgroup of $A(F)$ generated by the set $\{|x| | x \in X\}$. Consider the map $\varphi : F \to F_0$ given by $\varphi(1) = 1_F$ and $\varphi(x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n})=|x_1^{\delta_1}||x_2^{\delta_2}|\cdots|x_n^{\delta_n}| \text{ (so φ maps reduced words to }$ **permutations of F).** Since F_0 is generated by $\{|x| | x \in X\}$, then the elements of F_0 are of the form $|x_1^{\delta_1}||x_2^{\delta_2}|\cdots|x_n^{\delta_n}|$ for some $x_i\in X$ and $\delta_i = \pm 1$ by Theorem I.2.8. So "clearly" φ is onto F_0 (i.e., φ is a surjection).

Theorem I.9.1 (continued 1)

Proof (continued). So mapping $|x^{\delta}|$ just multiplies a word on the left by x^{δ} and then reduces the word. So mapping $|x| |x^{-1}| = 1_{\mathcal{F}} = |x^{-1}| |x|$ and more generally $|x^\delta||x^{-\delta}|=1_{\mathcal{F}}=|x^{-\delta}||x^\delta|.$ Hence each mapping $|x^\delta|$ has a two-sided inverse. By Corollary 0.3.B, $|x^\delta|$ is then a bijection on \digamma , and hence is a permutation of F. Let $A(F)$ be the group of all permutations of F and let F_0 be the subgroup of $A(F)$ generated by the set $\{|x| | x \in X\}$. Consider the map $\varphi : F \to F_0$ given by $\varphi(1) = 1_F$ and $\varphi(x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n})=|x_1^{\delta_1}||x_2^{\delta_2}|\cdots|x_n^{\delta_n}| \text{ (so φ maps reduced words to }$ permutations of F). Since F_0 is generated by $\{|x| | x \in X\}$, then the elements of F_0 are of the form $|x_1^{\delta_1}||x_2^{\delta_2}|\cdots|x_n^{\delta_n}|$ for some $x_i\in X$ and $\delta_i = \pm 1$ by Theorem I.2.8. So "clearly" φ is onto F_0 (i.e., φ is a surjection).

Theorem I.9.1 (continued 2)

Proof (continued). Next, let $w_1, w_2 \in F$. Then we claim $\varphi(w_1w_2) = \varphi(w_1)\varphi(w_2)$. To see this, notice that w_1w_2 is reduced and so some terms on the right-hand end of w_1 may have been cancelled with the same number of terms on the left-hand end of w_2 (there are k such terms, where k is as given in the definition of reduced word product above). Say $w_1=x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n}$ and $w_2=y_1^{\delta_1}y_2^{\delta_2}\cdots y_m^{\delta_m}$. In the product w_1w_2 , say the cancelled terms are

$$
x_k^{\lambda_k}x_{k+1}^{\lambda_{k+1}}\cdots x_n^{\lambda_n}y_1^{\delta_1}y_2^{\delta_2}\cdots y_{n-k+1}^{\delta_{n-k+1}}=1.
$$

Notice $\varphi(1) = 1_F$ so that

$$
|x_k^{\lambda_k}||x_{k+1}^{\lambda_{k+1}}|\cdots|x_n^{\lambda_n}||y_1^{\delta_1}||y_2^{\delta_2}|\cdots|y_{n-k+1}^{\delta_{n-k+1}}|=1_F.
$$

Also

$$
w_1 w_2 = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n} y_1^{\delta_1} y_2^{\delta_2} \cdots y_m^{\delta_m}
$$
 before reducing
= $x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_{k-1}^{\lambda_{k-1}} y_{n-k+2}^{\delta_{n-k+2}} \cdots y_m^{\delta_m}$ after reducing.

Theorem I.9.1 (continued 2)

Proof (continued). Next, let $w_1, w_2 \in F$. Then we claim $\varphi(w_1w_2) = \varphi(w_1)\varphi(w_2)$. To see this, notice that w_1w_2 is reduced and so some terms on the right-hand end of w_1 may have been cancelled with the same number of terms on the left-hand end of w_2 (there are k such terms, where k is as given in the definition of reduced word product above). Say $w_1=x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n}$ and $w_2=y_1^{\delta_1}y_2^{\delta_2}\cdots y_m^{\delta_m}$. In the product w_1w_2 , say the cancelled terms are

$$
x_k^{\lambda_k} x_{k+1}^{\lambda_{k+1}} \cdots x_n^{\lambda_n} y_1^{\delta_1} y_2^{\delta_2} \cdots y_{n-k+1}^{\delta_{n-k+1}} = 1.
$$

Notice $\varphi(1) = 1_F$ so that

$$
|x_k^{\lambda_k}||x_{k+1}^{\lambda_{k+1}}|\cdots|x_n^{\lambda_n}||y_1^{\delta_1}||y_2^{\delta_2}|\cdots|y_{n-k+1}^{\delta_{n-k+1}}|=1_{\mathsf{F}}.
$$

Also

$$
w_1 w_2 = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n} y_1^{\delta_1} y_2^{\delta_2} \cdots y_m^{\delta_m}
$$
 before reducing
= $x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_{k-1}^{\lambda_{k-1}} y_{n-k+2}^{\delta_{n-k+2}} \cdots y_m^{\delta_m}$ after reducing.

Theorem I.9.1 (continued 3)

Proof (continued). So

$$
\varphi(w_1 w_2) = |x_1^{\lambda_1}||x_2^{\lambda_2}|\cdots|x_{k-1}^{\lambda_{k-1}}||y_{n-k+2}^{\delta_{n-k+2}}|\cdots|y_m^{\delta_m}|
$$

\n
$$
= |x_1^{\lambda_1}||x_2^{\lambda_2}|\cdots|x_{k-1}^{\lambda_{k-1}}|(|x_k^{\lambda_k}|\cdots|x_n^{\lambda_n}||y_1^{\delta_1}|\cdots|y_{n-k+1}^{\delta_{n-k+1}}|)
$$

\n
$$
|y_{n-k+2}^{\delta_{n-k+2}}|\cdots|y_m^{\delta_m}|
$$

\nsince $(|x_k^{\lambda_k}|\cdots|x_n^{\lambda_n}||y_1^{\delta_1}|\cdots|y_{n-k+1}^{\delta_{n-k+1}}) = 1_F$
\n
$$
= (|x_1^{\lambda_1}||x_2^{\lambda_2}|\cdots|x_n^{\lambda_n}|)(|y_1^{\delta_1}||y_2^{\delta_2}|\cdots|y_m^{\delta_m}|)
$$
 since function composition is associative
\n
$$
= \varphi(w_1)\varphi(w_2).
$$

Hence φ has the homomorphism property.

Theorem I.9.1 (continued 4)

Theorem 1.9.1. If X is a nonempty set and $F = F(X)$ is the set of all reduced words on X , then F is a group under the binary operation defined in the previous definition. Also, $F = \langle X \rangle$ (where $\langle X \rangle$ represents the group generated by set X). The group $F = F(X)$ is called the free group on set X.

Proof (continued). Now suppose $\varphi(x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n})=1_F$. Then $|x_1^{\delta_1}||x_2^{\delta_2}|\cdots|x_n^{\delta_n}|=1$ r. Since, in group F_0 , the inverse of $|x^\delta|$ is $|x^{-\delta}|$, it follows that $x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n}=1$ in $\mathcal F.$ So Ker $(\varphi)=1$ and by Theorem I.2.3(i), φ is one to one (injective). Since F_0 is a group, then the binary **operation in** F_0 **is associative.** Since φ is a one to one and onto mapping with the homomorphism property, then φ is actually a group isomorphism and so F is a group and hence associativity holds in F . Of course, F is generated by X since the "alphabet" of group F (the "letters" which make up the words) is determined by X as $X \cup X^{-1} \cup \{1\}.$

Theorem I.9.1 (continued 4)

Theorem 1.9.1. If X is a nonempty set and $F = F(X)$ is the set of all reduced words on X , then F is a group under the binary operation defined in the previous definition. Also, $F = \langle X \rangle$ (where $\langle X \rangle$ represents the group generated by set X). The group $F = F(X)$ is called the free group on set X.

Proof (continued). Now suppose $\varphi(x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n})=1_F$. Then $|x_1^{\delta_1}||x_2^{\delta_2}|\cdots|x_n^{\delta_n}|=1$ r. Since, in group F_0 , the inverse of $|x^\delta|$ is $|x^{-\delta}|$, it follows that $x_1^{\delta_1}x_2^{\delta_2}\cdots x_n^{\delta_n}=1$ in $\mathcal F.$ So Ker $(\varphi)=1$ and by Theorem I.2.3(i), φ is one to one (injective). Since F_0 is a group, then the binary operation in F_0 is associative. Since φ is a one to one and onto mapping with the homomorphism property, then φ is actually a group isomorphism and so F is a group and hence associativity holds in F . Of course, F is generated by X since the "alphabet" of group F (the "letters" which make up the words) is determined by X as $X \cup X^{-1} \cup \{1\}.$

Theorem 1.9.2. Let F be the free group on set X and $\iota: X \to F$ the inclusion map (see page 4). If G is a group and $f : X \to G$ is a map of sets, then there exists a unique homomorphism of groups $\overline{f}: F \to G$ such that $\overline{f}_l = f$. In other words, F is a free object on the set X is the category of groups.

Proof. Define $\overline{f}(1) = e$ and for $x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n}$ a nonempty reduced word on X define $\overline{f}(x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n})=f(x_1)^{\lambda_1}f(x_2)^{\lambda_2}\cdots f(x_n)^{\lambda_n}$. Now f is a set function but G is a group and $\lambda_i=\pm 1$, so $f(x_1)^{\lambda_1}f(x_2)^{\lambda_2}\cdots f(x_n)^{\lambda_n}$ is well-defined.

Theorem 1.9.2. Let F be the free group on set X and $\iota: X \to F$ the inclusion map (see page 4). If G is a group and $f: X \rightarrow G$ is a map of sets, then there exists a unique homomorphism of groups $\overline{f}: F \to G$ such that $\overline{f}_l = f$. In other words, F is a free object on the set X is the category of groups.

Proof. Define $\overline{f}(1) = e$ and for $x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n}$ a nonempty reduced word on X define $\overline{f}(x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n})=f(x_1)^{\lambda_1}f(x_2)^{\lambda_2}\cdots f(x_n)^{\lambda_n}.$ Now f is a set $1 \lambda_2 \cdots \lambda_n$ function but G is a group and $\lambda_i=\pm 1$, so $f(x_1)^{\lambda_1}f(x_2)^{\lambda_2}\cdots f(x_n)^{\lambda_n}$ is well-defined. Now to show that \overline{f} satisfies the homomorphism property. Let $w_1 = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n}$ and $w_2 = y_1^{\delta_1} y_2^{\delta_2} \cdots y_m^{\delta_m}$ be reduced words and, as in the proof of Theorem I.9.1, let

$$
x_i^{\lambda_i} x_{i+1}^{\lambda_{i+1}} \cdots x_n^{\lambda_n} y_1^{\delta_1} y_2^{\delta_2} \cdots y_{n-i+1}^{\delta_{n-i+1}}
$$

be the cancelled terms in the product of these two words.

Theorem 1.9.2. Let F be the free group on set X and $\iota: X \to F$ the inclusion map (see page 4). If G is a group and $f: X \rightarrow G$ is a map of sets, then there exists a unique homomorphism of groups $\overline{f}: F \to G$ such that $\overline{f}_l = f$. In other words, F is a free object on the set X is the category of groups.

Proof. Define $\overline{f}(1) = e$ and for $x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n}$ a nonempty reduced word on X define $\overline{f}(x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n})=f(x_1)^{\lambda_1}f(x_2)^{\lambda_2}\cdots f(x_n)^{\lambda_n}.$ Now f is a set function but G is a group and $\lambda_i=\pm 1$, so $f(x_1)^{\lambda_1}f(x_2)^{\lambda_2}\cdots f(x_n)^{\lambda_n}$ is well-defined. Now to show that \bar{f} satisfies the homomorphism property. Let $w_1=x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n}$ and $w_2=y_1^{\delta_1}y_2^{\delta_2}\cdots y_m^{\delta_m}$ be reduced words and, as in the proof of Theorem I.9.1, let

$$
x_i^{\lambda_i} x_{i+1}^{\lambda_{i+1}} \cdots x_n^{\lambda_n} y_1^{\delta_1} y_2^{\delta_2} \cdots y_{n-i+1}^{\delta_{n-i+1}}
$$

be the cancelled terms in the product of these two words.

Theorem I.9.2 (continued 1)

Proof (continued) Then the product of these cancelled terms equals the word 1 and so in group G

$$
\overline{f}(1) = f(x_i)^{\lambda_i} f(x_{i+1})^{\lambda_{i+1}} \cdots f(x_n)^{\lambda_n} f(y_1)^{\delta_1} f(y_2)^{\delta_2} \cdots f(y_{n-i+1})^{\delta_{n-i+1}} = e.
$$

\nSo
\n
$$
\overline{f}(w_1 w_2) = \overline{f}(x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_{i-1}^{\lambda_{i-1}} y_{n-i+2}^{\delta_{n-i+2}} y_{n-i+3}^{\delta_{n-i+3}} \cdots y_m^{\delta_m})
$$

\n
$$
= f(x_1)^{\lambda_1} f(x_2)^{\lambda_2} \cdots f(x_{i-1})^{\lambda_{i-1}}
$$

\n
$$
f(y_{n-i+2})^{\delta_{n-i+2}} f(y_{n-i+3})^{\delta_{n-i+3}} \cdots f(y_m)^{\delta_m}
$$

\n
$$
= f(x_1)^{\lambda_1} f(x_2)^{\lambda_2} \cdots f(x_{i-1})^{\lambda_{i-1}} e
$$

\n
$$
f(y_{n-i+2})^{\delta_{n-i+2}} f(y_{n-i+3})^{\delta_{n-i+3}} \cdots f(y_m)^{\delta_m}
$$

\n
$$
= f(x_1)^{\lambda_1} f(x_2)^{\lambda_2} \cdots f(x_{i-1})^{\lambda_{i-1}} (f(x_i)^{\lambda_i} \cdots f(x_n)^{\lambda_n}
$$

\n
$$
f(y_1)^{\delta_1} f(y_2)^{\delta_2} \cdots f(y_{n-1+i})^{\delta_{n-i+1}} f(y_{n-i+2})^{\delta_{n-i+2}} \cdots f(y_m)^{\delta_m}
$$

Theorem I.9.2 (continued 1)

Proof (continued) Then the product of these cancelled terms equals the word 1 and so in group G

$$
\overline{f}(1)=f(x_i)^{\lambda_i}f(x_{i+1})^{\lambda_{i+1}}\cdots f(x_n)^{\lambda_n}f(y_1)^{\delta_1}f(y_2)^{\delta_2}\cdots f(y_{n-i+1})^{\delta_{n-i+1}}=e.
$$

So

$$
\overline{f}(w_1 w_2) = \overline{f}(x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_{i-1}^{\lambda_{i-1}} y_{n-i+2}^{\delta_{n-i+2}} y_{n-i+3}^{\delta_{n-i+3}} \cdots y_m^{\delta_m})
$$
\n
$$
= f(x_1)^{\lambda_1} f(x_2)^{\lambda_2} \cdots f(x_{i-1})^{\lambda_{i-1}}
$$
\n
$$
f(y_{n-i+2})^{\delta_{n-i+2}} f(y_{n-i+3})^{\delta_{n-i+3}} \cdots f(y_m)^{\delta_m}
$$
\n
$$
= f(x_1)^{\lambda_1} f(x_2)^{\lambda_2} \cdots f(x_{i-1})^{\lambda_{i-1}} e
$$
\n
$$
f(y_{n-i+2})^{\delta_{n-i+2}} f(y_{n-i+3})^{\delta_{n-i+3}} \cdots f(y_m)^{\delta_m}
$$
\n
$$
= f(x_1)^{\lambda_1} f(x_2)^{\lambda_2} \cdots f(x_{i-1})^{\lambda_{i-1}} \left(f(x_i)^{\lambda_i} \cdots f(x_n)^{\lambda_n} f(y_1)^{\delta_1} f(y_2)^{\delta_2} \cdots f(y_{n-1+i})^{\delta_{n-i+1}} \right) f(y_{n-i+2})^{\delta_{n-i+2}} \cdots f(y_m)^{\delta_m}
$$

Theorem I.9.2 (continued 2)

Proof (continued)

$$
\overline{f}(w_1w_2) = f(x_1)^{\lambda_1} f(x_2)^{\lambda_2} \cdots f(x_{i-1})^{\lambda_{i-1}} f(x_i)^{\lambda_i} \cdots f(x_n)^{\lambda_n} \n f(y_1)^{\delta_1} f(y_2)^{\delta_2} \cdots f(y_{n-1+i})^{\delta_{n-i+1}} f(y_{n-i+2})^{\delta_{n-i+2}} \cdots f(y_m)^{\delta_m} \n = \overline{f}(w_1) \overline{f}(w_2)
$$

and so \overline{f} has the homomorphism property.

Now the inclusion map ι simply "embeds" the set of "letters" X into the set of reduced words F. \overline{f} maps the reduced words to group G, so \overline{f} *ι* maps X to G and has the homomorphism property. Also, by definition, $\overline{f} \iota = f$ on set X.

Theorem I.9.2 (continued 2)

Proof (continued)

$$
\overline{f}(w_1w_2) = f(x_1)^{\lambda_1} f(x_2)^{\lambda_2} \cdots f(x_{i-1})^{\lambda_{i-1}} f(x_i)^{\lambda_i} \cdots f(x_n)^{\lambda_n} \n f(y_1)^{\delta_1} f(y_2)^{\delta_2} \cdots f(y_{n-1+i})^{\delta_{n-i+1}} f(y_{n-i+2})^{\delta_{n-i+2}} \cdots f(y_m)^{\delta_m} \n = \overline{f}(w_1) \overline{f}(w_2)
$$

and so \overline{f} has the homomorphism property.

Now the inclusion map ι simply "embeds" the set of "letters" X into the set of reduced words F. \bar{f} maps the reduced words to group G, so \bar{f}_l maps X to G and has the homomorphism property. Also, by definition, $\overline{f}_L = f$ on set X.

Theorem I.9.2 (continued 3)

Theorem 1.9.2. Let F be the free group on set X and $\iota: X \to F$ the inclusion map (see page 4). If G is a group and $f : X \to G$ is a map of sets, then there exists a unique homomorphism of groups $\overline{f}: F \to G$ such that $f_i = f$. In other words, F is a free object on the set X is the category of groups.

Proof (continued) If g is any homomorphism mapping set of reduced words F to group G such that $g_l = f$ on set X, then

$$
g(x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n}) = g(x_1)^{\lambda_1}g(x_2)^{\lambda_2}\cdots g(x_n)^{\lambda_n}
$$
 since g is
\na homomorphism
\n
$$
= g\iota(x_1)^{\lambda_1}g\iota(x_2)^{\lambda_2}\cdots g\iota(x_n)^{\lambda_n}
$$
 since $g\iota = g$ on X
\n
$$
= f(x_1)^{\lambda_1}f(x_2)^{\lambda_2}\cdots f(x_n)^{\lambda_n}
$$
 by assumption
\n
$$
= \overline{f}(x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n})
$$
 by the definition of \overline{f} .

So the homomorphism $\overline{f} = F \rightarrow G$ is unique.

Corollary I.9.3. Every group G is the homomorphic image of a free group.

Proof. Let X be a set of generators of G (such a set exists since G itself generates G). Let F be the free group on the set X. The inclusion map $\iota: X \to G$ is such that $x \in X$ is mapped to $x \in G$. By Theorem 1.9.2, there is homomorphism $\overline{f} : F \to G$ which maps $x \in X$ as $x \mapsto x \in G$. Since $G = \langle X \rangle$ (by the choice of set X) then \overline{f} is onto G (i.e., \overline{f} is an epimorphism). So \overline{f} maps free group F onto group G (that is, $Im(\overline{f}) = G$) and \overline{f} is a homomorphism.

Corollary I.9.3. Every group G is the homomorphic image of a free group.

Proof. Let X be a set of generators of G (such a set exists since G itself generates G). Let F be the free group on the set X. The inclusion map $\iota: X \to G$ is such that $x \in X$ is mapped to $x \in G$. By Theorem 1.9.2, there is homomorphism $\overline{f}: F \to G$ which maps $x \in X$ as $x \mapsto x \in G$. Since $G = \langle X \rangle$ (by the choice of set X) then \overline{f} is onto G (i.e., \overline{f} is an epimorphism). So \overline{f} maps free group F onto group G (that is, $Im(\overline{f}) = G$) and \overline{f} is a homomorphism.

Theorem I.9.5. von Dyck's Theorem.

Let X be a set, Y a set of reduced words on X and G the group defined by the generators $x \in X$ and relations $w = e$ for $w \in Y$. If H is any group such that $H = \langle X \rangle$ and H satisfies all the relations $w = e$ for $w \in Y$, then there is an epimorphism mapping $G \rightarrow H$.

Proof. If F is the free group on X then, as in the proof of Corollary 1.9.3, the inclusion map $\iota: X \to H$ induces an epimorphism $\varphi: F \to H$.

Theorem I.9.5. von Dyck's Theorem.

Let X be a set, Y a set of reduced words on X and G the group defined by the generators $x \in X$ and relations $w = e$ for $w \in Y$. If H is any group such that $H = \langle X \rangle$ and H satisfies all the relations $w = e$ for $w \in Y$, then there is an epimorphism mapping $G \rightarrow H$.

Proof. If F is the free group on X then, as in the proof of Corollary 1.9.3, the inclusion map $\iota : X \to H$ induces an epimorphism $\varphi : F \to H$. Since the relations $w = e$ hold for all $w \in Y$, then by Note I.9.3 $w \in \text{Ker}(\varphi)$ and so Y \subset Ker(φ) (here the elements of Y are interpreted both as words on X and products in group H, as Hungerford remarks on page 67). So the normal subgroup N generated by Y in F is contained in Ker(φ); that is, $N \subseteq \text{Ker}(\varphi)$ or equivalently $\varphi(N) < \{0\}$ where 0 is the identity of group H. Now φ : $F \to H$ is an epimorphism, $N \triangleleft F$, $\{0\} \triangleleft H$, and $\varphi(N) < \{0\}$. So by Corollary I.5.8, φ induces a homomorphism ψ mapping $F/N \rightarrow H/\{0\} \cong H$.

Theorem I.9.5. von Dyck's Theorem.

Let X be a set, Y a set of reduced words on X and G the group defined by the generators $x \in X$ and relations $w = e$ for $w \in Y$. If H is any group such that $H = \langle X \rangle$ and H satisfies all the relations $w = e$ for $w \in Y$, then there is an epimorphism mapping $G \rightarrow H$.

Proof. If F is the free group on X then, as in the proof of Corollary 1.9.3, the inclusion map $\iota : X \to H$ induces an epimorphism $\varphi : F \to H$. Since the relations $w = e$ hold for all $w \in Y$, then by Note I.9.3 $w \in \text{Ker}(\varphi)$ and so $Y \subseteq \text{Ker}(\varphi)$ (here the elements of Y are interpreted both as words on X and products in group H, as Hungerford remarks on page 67). So the normal subgroup N generated by Y in F is contained in Ker(φ); that is, $N \subseteq \text{Ker}(\varphi)$ or equivalently $\varphi(N) < \{0\}$ where 0 is the identity of group H. Now $\varphi : F \to H$ is an epimorphism, $N \triangleleft F$, $\{0\} \triangleleft H$, and $\varphi(N) < \{0\}$. So by Corollary I.5.8, φ induces a homomorphism ψ mapping $F/N \rightarrow H/\{0\} \cong H$.

Theorem I.9.5 (continued)

Theorem I.9.5. von Dyck's Theorem.

Let X be a set. Y a set of reduced words on X and G the group defined by the generators $x \in X$ and relations $w = e$ for $w \in Y$. If H is any group such that $H = \langle X \rangle$ and H satisfies all the relations $w = e$ for $w \in Y$, then there is an epimorphism mapping $G \rightarrow H$.

Proof (continued). Now for $aN \in F/N$ we have (again by Corollary 1.5.8) that $\psi(aN) = \varphi(a)\{0\}$. Since φ is onto group H then ψ is onto group $H/\{0\} \cong H$. That is, $\psi : G \to H$ is an epimorphism. (Recall $G \cong F/N$. Technically, ψ has to be composed with an isomorphism mapping $G \to F/N$ and an isomorphism mapping $H/\{0\} \to H$.)