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Theorem 1.9.1

Theorem 1.9.1. If X is a nonempty set and F = F(X) is the set of all
reduced words on X, then F is a group under the binary operation defined
in the previous definition. Also, F = (X) (where (X) represents the group
generated by set X). The group F = F(X) is called the free group on set
X.
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Theorem 1.9.1

Theorem 1.9.1. If X is a nonempty set and F = F(X) is the set of all
reduced words on X, then F is a group under the binary operation defined
in the previous definition. Also, F = (X) (where (X) represents the group

generated by set X). The group F = F(X) is called the free group on set
X.

Proof. 1 is the |dent|ty and word x1 x2 ---x% has inverse
é ..
X, 5"xn 7t ~x1 . We now show associativity.
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Theorem 1.9.1

Theorem 1.9.1. If X is a nonempty set and F = F(X) is the set of all
reduced words on X, then F is a group under the binary operation defined
in the previous definition. Also, F = (X) (where (X) represents the group
generated by set X). The group F = F(X) is called the free group on set
X.

Proof. 1 is the |dent|ty and word x1 x2 ---x% has inverse
é ..
X, 5"xn 1 --x1 . We now show associativity.

For x € X and § = %1, denote by |x%| the map from F to F given by the
mappings 1 — x% and

501,06 S if O —4
XX ' Xy e X if X% # x; ™

n
Xflxg2 X0 x‘szxg3 - x0n if x0 = xl_(sl, n>1
% and n=1.

1 ifx‘s:xf
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Theorem 1.9.1 (continued 1)

Proof (continued). So mapping |x’| just multiplies a word on the left by
x° and then reduces the word. So mapping |x|[x 7| = 1 = |x~!||x| and
more generally [x°||x 79| = 1¢ = |x%||x’|. Hence each mapping |x°| has a
two-sided inverse. By Corollary 0.3.B, |x°| is then a bijection on F, and
hence is a permutation of F.
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Theorem 1.9.1 (continued 1)

Proof (continued). So mapping |x’| just multiplies a word on the left by
x° and then reduces the word. So mapping |x|[x 7| = 1 = |x~!||x| and
more generally [x°||x 79| = 1¢ = |x%||x’|. Hence each mapping |x°| has a
two-sided inverse. By Corollary 0.3.B, |x°| is then a bijection on F, and
hence is a permutation of F. Let A(F) be the group of all permutations of
F and let Fy be the subgroup of A(F) generated by the set {|x| | x € X}.
Consider the map ¢ : F — Fy given by ¢(1) = 1f and

c,p(xflxg2 oox0n) = |xfll|xg2| -+ |x9| (so ¢ maps reduced words to
permutations of F).
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Theorem 1.9.1 (continued 1)

Proof (continued). So mapping |x’| just multiplies a word on the left by
x° and then reduces the word. So mapping |x|[x 7| = 1 = |x~!||x| and
more generally [x°||x 79| = 1¢ = |x%||x’|. Hence each mapping |x°| has a
two-sided inverse. By Corollary 0.3.B, |x°| is then a bijection on F, and
hence is a permutation of F. Let A(F) be the group of all permutations of
F and let Fy be the subgroup of A(F) generated by the set {|x| | x € X}.
Consider the map ¢ : F — Fy given by ¢(1) = 1f and

c,p(xflxg2 oox0n) = |xfll|xg2| -+ |x9| (so ¢ maps reduced words to
permutations of F). Since Fy is generated by {|x| | x € X}, then the
elements of Fy are of the form |xf1|\xg2| -+« |x%| for some x; € X and

0; = £1 by Theorem 1.2.8. So “clearly” ¢ is onto Fy (i.e., ¢ is a
surjection).
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Theorem 1.9.1 (continued 2)

Proof (continued). Next, let wi, w» € F. Then we claim

e(wiwn) = p(wr)p(wz). To see this, notice that wyws is reduced and so

some terms on the right-hand end of wy; may have been cancelled with the
same number of terms on the left-hand end of wy (there are k such terms,
where k is as given in the definition of reduced word product above). Say

wy = x{\1x2Az oxM and wy = yflyg2 .- y%m_In the product wyws, say the
cancelled terms are

Ak Ak+1 An 01, 02 On—ky1 __
XX XY Y e = L
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Theorem 1.9.1 (continued 2)

Proof (continued). Next, let wi, w» € F. Then we claim

e(wiwn) = p(wr)p(wz). To see this, notice that wyws is reduced and so

some terms on the right-hand end of wy; may have been cancelled with the
same number of terms on the left-hand end of wy (there are k such terms,
where k is as given in the definition of reduced word product above). Say

wy = x{\1x2Az oxM and wy = yflyg2 .- y%m_In the product wyws, say the
cancelled terms are

Ak Ak+1 An 01, 02 On—ky1 __
XX XY Y e = L

Notice ¢(1) = 1f so that

Ak || LA K+1 Anll 011102 Op—k+1| __
I I n - Il 22 |- Ly Dl = 1Fe
Also
wiwy = xpixg? - xpryltyS? ... yOm before reducing
_ A1, A2 Ak—1_ On—k+2 s .
= X157 X Yoy after reducing.
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Theorem 1.9.1 (continued 3)

Proof (continued). So

plmwa) = b)) - Iyl
el o R e [ (A B I PR et )
Y] Ly
since (x| -~ P Iy - lyomit) = 1f
= (™17 - Dy 1y32] - - -yl since function

composmon is associative

= @(w1)p(wa).

Hence ¢ has the homomorphism property.
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Theorem 1.9.1 (continued 4)

Theorem 1.9.1. If X is a nonempty set and F = F(X) is the set of all
reduced words on X, then F is a group under the binary operation defined
in the previous definition. Also, F = (X) (where (X) represents the group
generated by set X). The group F = F(X) is called the free group on set
X.

Proof (contmued) Now suppose go(xl x§2 --x9) = 1¢. Then

|x11\|x2 |---|x37| = 1F. Since, in group Fo, the inverse of [x°| is [x 79|, it
follows that xf1x§2 ~-x% =1in F. So Ker(¢) = 1 and by Theorem
1.2.3(i), ¢ is one to one (injective). Since Fg is a group, then the binary
operation in Fy is associative.
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Theorem 1.9.1 (continued 4)

Theorem 1.9.1. If X is a nonempty set and F = F(X) is the set of all
reduced words on X, then F is a group under the binary operation defined
in the previous definition. Also, F = (X) (where (X) represents the group
generated by set X). The group F = F(X) is called the free group on set
X.

Proof (contmued) Now suppose go(xl x§2 --x9) = 1¢. Then

|x11\|x2 |---|x37| = 1F. Since, in group Fo, the inverse of [x°| is [x 79|, it
follows that xf1x§2 ~-x% =1in F. So Ker(¢) = 1 and by Theorem
1.2.3(i), ¢ is one to one (injective). Since Fg is a group, then the binary
operation in Fy is associative. Since ¢ is a one to one and onto mapping
with the homomorphism property, then ¢ is actually a group isomorphism
and so F is a group and hence associativity holds in F.

Of course, F is generated by X since the “alphabet” of group F (the
“letters” which make up the words) is determined by X as
XuX-tu{1}. O
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Theorem 1.9.2

Theorem 1.9.2. Let F be the free group on set X and ¢ : X — F the
inclusion map (see page 4). If G is a group and f : X — G is a map of
sets, then there exists a unique homomorphism of groups f : F — G such
that fo = f. In other words, F is a free object on the set X is the category
of groups.
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Theorem 1.9.2

Theorem 1.9.2. Let F be the free group on set X and ¢ : X — F the
inclusion map (see page 4). If G is a group and f : X — G is a map of
sets, then there exists a unique homomorphism of groups f : F — G such
that fo = f. In other words, F is a free object on the set X is the category
of groups.

Proof. Define 7( ) = e and for x; xz)‘2 -~ x2 a nonempty reduced word
on X define F(x;xp2 - - xn) = f(x1)MF(x2)*2 - - - f(x,)". Now f is a set
function but G is a group and \; = £1, so f(x1)MFf(xx)?2 -+ F(x) M is
well-defined.
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Theorem 1.9.2

Theorem 1.9.2. Let F be the free group on set X and ¢ : X — F the
inclusion map (see page 4). If G is a group and f : X — G is a map of
sets, then there exists a unique homomorphism of groups f : F — G such
that fo = f. In other words, F is a free object on the set X is the category
of groups.

Proof. Define f(1) = e and for xl)‘lxz)‘2 -+~ x a nonempty reduced word

on X define F(x;xp2 - - xn) = f(x1)MF(x2)*2 - - - f(x,)". Now f is a set

function but G is a group and \; = £1, so f(x1)Mf(x)*? - - f(x,)* is

WeII-defined/\. N/\ow to show that f satisfies the homomorphism property.
1,22 An

Let wiy = x{1x52---x2 and wy = 91y02 .. y0m he reduced words and, as
1 X2 n iye Ym

in the proof of Theorem 1.9.1, let

Ai i+l

An. 01, .02 On—it1
X Xy Xy "Y1 Yo Y

be the cancelled terms in the product of these two words.

Modern Algebra March 25, 2021 8/ 14



Theorem 1.9.2 (continued 1)

Proof (continued) Then the product of these cancelled terms equals the
word 1 and so in group G

?(1) = f(xi)A;f(Xi+1)Ai+1 - f(Xn)/\n f(y1)61 f(y2)52 .. f(}/n—i+1)6"_i+1 — e
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Theorem 1.9.2 (continued 1)

Proof (continued) Then the product of these cancelled terms equals the

word 1 and so in group G

F(1) = F(a) Fxia) Vo

So

z Tz Aic1 On—iv2 On—i

f(Wl W2) = f(X]?\IXé\z X llyn I-:; n—i-:; e
= )M FR)? - Fxg)h

f(yn— l+2)6n "2 f(Yn I+3)6n_i+3 T

= Fa)MF(e) - fa) e

f()’n I+2)5n '+2f()/n l+3)6" Bk

= )M ()
(

fy1) f(y2)™

Modern Algebra

(%) F (y1)  F (y2)

cF(Ynmip1) o = e

A
(- 1)'1( () -+ £ )™

(yn 1+)n i+1

(yn l+2) itz f()/m)é’"
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Theorem 1.9.2 (continued 2)

Proof (continued)

Flwmawa) = )M F(x) - Fxim )1 ()N - )
f(y1)™ f(y2)> ‘f(yn71+i)6"”’“f(ynfi+2)5””‘+2"'f()/m)5m
= f(w)f(wo)

and so f has the homomorphism property.
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Theorem 1.9.2 (continued 2)

Proof (continued)

Flwmawa) = )M F(x) - Fxim )1 ()N - )
f(y1)™ f(y2)> ‘f(yn71+i)6"”’“f(ynfi+2)5””‘+2"'f()/m)5m
= f(w)f(wo)

and so f has the homomorphism property.

Now the inclusion map ¢ simply “embeds” the set of “letters” X into the
set of reduced words F. f maps the reduced words to group G, so ft
maps X to G and has the homomorphism property. Also, by definition,
fu=f on set X.

Modern Algebra March 25, 2021 10/ 14



Theorem 1.9.2 (continued 3)

Theorem 1.9.2. Let F be the free group on set X and ¢ : X — F the
inclusion map (see page 4). If G is a group and f : X — G is a map of
sets, then there exists a unique homomorphism of groups f : F — G such
that fo = f. In other words, F is a free object on the set X is the category
of groups.

Proof (continued) If g is any homomorphism mapping set of reduced
words F to group G such that g¢ = f on set X, then

My
n

g1 = gla)Mg(x) - g(xn)™ since g is

a homomorphism
= gulx)Mgu(x2)*? - gi(x,) since gL = g on X
= fx)MF(x2)*2 - f(x,)* by assumption
= F(x{"x2---x)") by the definition of 7.
So the homomorphism f = F — G is unique. O
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Corollary 1.9.3

Corollary 1.9.3. Every group G is the homomorphic image of a free group.
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Corollary 1.9.3

Corollary 1.9.3. Every group G is the homomorphic image of a free group.

Proof. Let X be a set of generators of G (such a set exists since G itself
generates G). Let F be the free group on the set X. The inclusion map
t: X — G is such that x € X is mapped to x € G. By Theorem 1.9.2,
there is homomorphism f : F — G which maps x € X as x — x € G.
Since G = (X) (by the choice of set X) then f is onto G (i.e., f is an
epimorphism). So f maps free group F onto group G (that is, Im(f) = G)
and f is a homomorphism. O

Modern Algebra March 25, 2021 12/ 14



Theorem 1.9.5

Theorem 1.9.5. von Dyck’s Theorem.

Let X be a set, Y a set of reduced words on X and G the group defined
by the generators x € X and relations w = e for w € Y. If H is any group
such that H = (X) and H satisfies all the relations w = e for w € Y, then
there is an epimorphism mapping G — H.
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Theorem 1.9.5

Theorem 1.9.5. von Dyck’s Theorem.

Let X be a set, Y a set of reduced words on X and G the group defined
by the generators x € X and relations w = e for w € Y. If H is any group
such that H = (X) and H satisfies all the relations w = e for w € Y, then
there is an epimorphism mapping G — H.

Proof. If F is the free group on X then, as in the proof of Corollary 1.9.3,
the inclusion map ¢ : X — H induces an epimorphism ¢ : F — H.
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Theorem 1.9.5

Theorem 1.9.5. von Dyck’s Theorem.

Let X be a set, Y a set of reduced words on X and G the group defined
by the generators x € X and relations w = e for w € Y. If H is any group
such that H = (X) and H satisfies all the relations w = e for w € Y, then
there is an epimorphism mapping G — H.

Proof. If F is the free group on X then, as in the proof of Corollary 1.9.3,
the inclusion map ¢ : X — H induces an epimorphism ¢ : F — H. Since
the relations w = e hold for all w € Y, then by Note 1.9.3 w € Ker(yp)
and so Y C Ker(p) (here the elements of Y are interpreted both as words
on X and products in group H, as Hungerford remarks on page 67). So
the normal subgroup N generated by Y in F is contained in Ker(y); that
is, N C Ker(p) or equivalently o(N) < {0} where 0 is the identity of
group H. Now ¢ : F — H is an epimorphism, N < F, {0} < H, and

©(N) < {0}. So by Corollary 1.5.8, ¢ induces a homomorphism 1) mapping
F/N — H/{0} 2 H.
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Theorem 1.9.5 (continued)

Theorem 1.9.5. von Dyck’s Theorem.

Let X be a set, Y a set of reduced words on X and G the group defined
by the generators x € X and relations w = e for w € Y. If H is any group
such that H = (X) and H satisfies all the relations w = e for w € Y, then
there is an epimorphism mapping G — H.

Proof (continued). Now for aN € F/N we have (again by Corollary
1.5.8) that ¢(aN) = (a){0}. Since ¢ is onto group H then ¢ is onto
group H/{0} = H. Thatis, ¢ : G — H is an epimorphism. (Recall

G = F/N. Technically, ¥ has to be composed with an isomorphism
mapping G — F/N and an isomorphism mapping H/{0} — H.) O]
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