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Theorem II.1.1

Theorem II.1.1

Theorem II.1.1. The following conditions on an abelian group F are
equivalent.

(i) F has a nonempty basis.

(ii) F is the (internal) direct sum of a family of infinite cyclic
subgroups.

(iii) F is (isomorphic to) a direct sum of copies of the additive
group Z of integers.

(iv) There exists a nonempty set X and a function ι : X → F
with the following property: Given an abelian group G and
function f : X → G , there exists a unique homomorphism of
groups f : F → G such that f ι = f . In other words, F is a
free object in the category of abelian groups.

Proof. (i) ⇒ (ii) If X is a basis of F , then for each x ∈ X , nx = 0 if and
only if n = 0.
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Theorem II.1.1

Theorem II.1.1 (continued 1)

Theorem II.1.1. The following conditions on an abelian group F are
equivalent.

(i) F has a nonempty basis.
(ii) F is the (internal) direct sum of a family of infinite cyclic

subgroups.

Proof (continued). Hence, each subgroup 〈x〉, where x ∈ X , is an
infinite cyclic group (and since F is abelian, therefore a normal subgroup
of F ). Since F is generated by X , F = 〈X 〉, then F = 〈∪x∈X 〈x〉〉 (since
∪x∈X 〈x〉 is simply the set of all “multiples” of x ∈ X ). ASSUME for some
z ∈ X , 〈z〉 ∩ (∪x∈X ,x 6=z〈x〉) 6= {0}, then for some nonzero n ∈ Z and some
distinct x1, x2, . . . , xk ∈ X we have nz = n1x1 + n2x2 + · · ·+ nkxk . But
then we have distinct z , x1, x2, . . . , xk ∈ X such that
n1x1 + n2x2 + · · ·+ nkxk + (−n)z = 0 where −n 6= 0, CONTRADICTING
the definition of basis.

So the assumption is false and it must be that
〈z〉 ∩ (∪x∈X ,x 6=z〈x〉) = {0}. By Definition I.8.8, F is the internal direct
sum F =

∑
x∈X 〈x〉. �
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Theorem II.1.1

Theorem II.1.1 (continued 2)

Theorem II.1.1. The following conditions on an abelian group F are
equivalent.

(ii) F is the (internal) direct sum of a family of infinite cyclic
subgroups.

(iii) F is (isomorphic to) a direct sum of copies of the additive
group Z of integers.

Proof (continued). (ii) ⇒ (iii) Suppose F is the (internal) direct sum of
a family of infinite cyclic subgroups. By Theorem I.3.2, an infinite cyclic
group is isomorphic to Z. Let I be the indexing set for the direct sum.
Then by the definition of internal direct sum (Definition I.8.8),
F ∼=

∑w
i∈I Ci (as given in Theorem I.8.6) where each Ci is an infinite cyclic

group. Since each Ci is isomorphic to Z then by Theorem I.8.10 F is
isomorphic to a direct sum of copies of Z. �
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Theorem II.1.1

Theorem II.1.1 (continued 3)

Theorem II.1.1. The following conditions on an abelian group F are
equivalent.

(i) F has a nonempty basis.

(iii) F is (isomorphic to) a direct sum of copies of the additive
group Z of integers.

Proof (continued). (iii) ⇒ (i) Suppose F ∼=
∑

x∈X Z. For each x ∈ X ,
let θx be the element of F , θx = {ui}, where ui = 0 for i 6= x and ui = 1
for i = x . Now for any z ∈

∑
Zx , since

∑
Z is abelian and so each Zx is

isomorphic to a normal subgroup of F , then by Theorem I.8.9 z is a
unique finite sum of (images under the isomorphism of) elements of the
Zx ’s and each element of Zx is a multiple of 1 ∈ Zx , so z can be written
as a finite sum of the θx ’s. So {θx | x ∈ X} is a generating set of

∑
Zx .
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Theorem II.1.1

Theorem II.1.1 (continued 4)

Theorem II.1.1. The following conditions on an abelian group F are
equivalent.

(i) F has a nonempty basis.

(iii) F is (isomorphic to) a direct sum of copies of the additive
group Z of integers.

Proof (continued). Now if x1, x2, . . . , xk ∈ X are distinct and ni ∈ Z
then n1x1 + n2x2 + · · ·+ nkxk = 0 implies n1θx1 = n2θx2 = · · · = nkθxk

= 0
(since the xi are distinct and “0” represents {ui} ∈

∑
Zx with ui = 0 for

all x ∈ X ). That is, n1 = n2 = · · · = nk = 0. So in fact {θx | x ∈ X} is a
basis for

∑
Z. Since

∑
Z ∼= F , say with isomorphism f , then

{f (θx) | x ∈ X} is a basis for F . �
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Theorem II.1.1

Theorem II.1.1 (continued 5)

Theorem II.1.1. The following conditions on an abelian group F are
equivalent.

(i) F has a nonempty basis.

(iv) There exists a nonempty set X and a function ι : X → F
with the following property: Given an abelian group G and
function f : X → G , there exists a unique homomorphism of
groups f : F → G such that f ι = f . In other words, F is a
free object in the category of abelian groups.

Proof (continued). (i) ⇒ (iv) Let X be a basis of F and ι : X → F be
the inclusion map. Suppose we are given a map f : X → G . If u ∈ F then
u = n1x1 + n2x2 + · · ·+ nkxk for some ni ∈ Z and xi ∈ X since X is a
basis of F . If u = m1x1 + m2x2 + · · ·+ mkxk also (with mi ∈ Z), then∑k

i=1(ni −mi )xi = 0 and so ni = mi since X is a basis of F .
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Theorem II.1.1

Theorem II.1.1 (continued 6)

Proof (continued). Define the map f : F → G as

f (u) = f

(
k∑

i=1

nixi

)
= n1f (x1) + n2f (x2) + · · ·+ nk f (xk).

Then f is well-defined (i.e., independent of the representation of u in
terms of elements of X , since this representation is unique). Also,
f ι : X → G is the same as f : X → G . Since G is abelian then for
u, v ∈ F with u =

∑
nixi and v =

∑
mixi for ni ,mi ∈ Z (some of the

ni ,mi may have to be 0 to get “common” xi ’s)

f (u + v) = f
(∑

nixi +
∑

mixi

)
= f

(∑
(ni + mi )xi

)
since F is abelian

=
∑

(ni + mi )f (xi )

=
∑

ni f (xi ) +
∑

mi f (xi ) since G is abelian
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Theorem II.1.1

Theorem II.1.1 (continued 7)

Proof (continued).

f (u + v) =
∑

ni f (xi ) +
∑

mi f (xi ) since G is abelian

= f (u) + f (v),

so f is a homomorphism. Since X generates F , any homomorphism
F → G is completely determined by its action on X . Thus if g : F → G is
a homomorphism such that g ι = f (so g ι is defined on X ) then for any
x ∈ X we have g(x) = g(ι(x)) = f (x) = f (x) “whence” g = f on X (and
ergo on F ) and f is a unique homomorphism such that f ι = f , as claimed.
That is, F is a free object on the set X (see Definition I.7.7) in the
category of abelian groups. �
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Theorem II.1.1

Theorem II.1.1 (continued 8)

Theorem II.1.1. The following conditions on an abelian group F are
equivalent.

(iii) F is (isomorphic to) a direct sum of copies of the additive
group Z of integers.

(iv) There exists a nonempty set X and a function ι : X → F
with the following property: Given an abelian group G and
function f : X → G , there exists a unique homomorphism of
groups f : F → G such that f ι = f . In other words, F is a
free object in the category of abelian groups.

Proof (continued). (iv) ⇒ (iii) Given ι : X → F , construct the direct
sum

∑
Z with the copies of Z indexed by X . Let Y = {θx | x ∈ X} be

the basis of
∑

Z as in the proof of (iii) ⇒ (i) (the “standard basis”). The
proof of (iii) ⇒ (i) ⇒ (iv) (with F =

∑
Z) shows that

∑
Z is a free

object on set Y . Since Y is indexed by set X then |X | = |Y | and so by
Theorem I.7.8 F is equivalent to F ′. The category is abelian groups, so
equivalence is group isomorphism. So F ∼=

∑
Z.
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Theorem II.1.2

Theorem II.1.2

Theorem II.1.2. Any two bases of a free abelian group F have the same
cardinality.

Proof. First suppose F has a basis X of finite cardinality n so that
F ∼= Z⊕ Z⊕ · · · ⊕ Z (n summands; by the proof of Theorem II.1.1 where
{θx | x ∈ X} = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 0, . . . , 0, 1)}). For any
subgroup G of F we have that 2G = {2u | u ∈ G} is a subgroup of G (we
just need to show closure of 2G which is fairly clear).

Now the restriction
of the isomorphism between F and Z⊕ Z⊕ · · · ⊕ Z to 2F is an
isomorphism between 2F and 2Z⊕ 2Z⊕ · · · ⊕ 2Z (since, say,
π(2f1) = π(f1 + f1) = π(f1) + π(f1) = 2π(f1)). Since all groups are
abelian, then all subgroups are normal and by Corollary I.8.11 we have
F/2F ∼= (Z/2Z)⊕ (Z/2Z)⊕ · · · ⊕ (Z/2Z) ∼= Z2 ⊕ Z2 ⊕ · · · ⊕ Z2 (with n
summands). Therefore |F/2F | = |Z2 ⊕ Z2 ⊕ · · · ⊕ Z2| = 2n.
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Theorem II.1.2

Theorem II.1.2 (continued 1)

Theorem II.1.2. Any two bases of a free abelian group F have the same
cardinality.

Proof (continued). If Y is another basis of F and r ∈ Z such that
|Y | ≥ r , then we can repeat the argument above to show that (again
using the basis from the proof of Theorem II.1.1) |F/2F | ≥ 2r , whence
2r ≤ 2n and so r ≤ n. It follows that |Y | = m ≤ n and (as above)
|F/2F | = 2m. Therefore 2m = 2n and |X | = n = m = |Y |. (And similarly
if |Y | ≤ r we get |X | = |Y |.) So the result holds for finite bases.
If one basis of F is infinite, then all bases are infinite by the previous
paragraph (we have shown that if one basis if finite then another is finite,
so we are quoting the contrapositive here). So if we can show that
|X | = |F | for any infinite basis, then this suffices. Since X ⊆ F then
|X | ≤ |F | (see Definition 0.8.4).
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2r ≤ 2n and so r ≤ n. It follows that |Y | = m ≤ n and (as above)
|F/2F | = 2m. Therefore 2m = 2n and |X | = n = m = |Y |. (And similarly
if |Y | ≤ r we get |X | = |Y |.) So the result holds for finite bases.
If one basis of F is infinite, then all bases are infinite by the previous
paragraph (we have shown that if one basis if finite then another is finite,
so we are quoting the contrapositive here). So if we can show that
|X | = |F | for any infinite basis, then this suffices. Since X ⊆ F then
|X | ≤ |F | (see Definition 0.8.4).
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Theorem II.1.2

Theorem II.1.2 (continued 2)

Theorem II.1.2. Any two bases of a free abelian group F have the same
cardinality.

Proof (continued). Let S = ∪n∈NX n where X n = X × X × · · · × X (n
factors). For each s = (x1, x2, . . . , xn) ∈ S , let Gs be the subgroup
〈x1, x2, . . . , xn〉. Then Gs

∼= Zy1 ⊕ Zy2 ⊕ · · · ⊕ Zyt (see the note after
Theorem II.1.1; 〈x〉 is denoted Zx) where y1, y2, . . . yt are the distinct
elements of {x1, x2, . . . , xn}. Therefore in terms of cardinality,
|G2| = |Zt | = |Z| = ℵ0 by Theorem 0.8.12. Since X is a basis of F then
F = ∪s∈SGs and so |F | = | ∪s∈S Gs | ≤ |S |ℵ0 by Exercise 0.8.12. But by
Theorem 0.8.11, |S |ℵ0 = |S | (since |S | ≥ ℵ0) and by Theorem 0.8.12(ii)
|S | = | ∪n∈N X n| = ℵ0|X | = |X |. So |F | ≤ |S |ℵ0 = |S | = |X |. So we have
|X | ≤ |F | by above and hence by the Schroeder-Bernstein Theorem
(Theorem 0.8.6), |F | = |X |. So the result holds for any infinite basis as
well.
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Proposition II.1.3

Proposition II.1.3

Proposition II.1.3. Let F1 be the free abelian group on the set X1 and F2

the free abelian group on the set X2. Then F1
∼= F2 if and only if F1 and

F2 have the same rank (that is, |X1| = |X2|).

Proof. Suppose F1
∼= F2 and let α : F1 → F2 be the isomorphism. Since

F1 is a free abelian group on X1, then X1 is a basis of F1 as seen in the
proof of Theorem II.1.1. So α(X1) is a basis of F2 and
|X1| = |α(X1)| = |X2| by Theorem II.1.2.

Suppose F1 and F2 have the same rank. Then |X1| = |X2| and by
Theorem I.7.8, F1 and F2 are equivalent. Since the category is the
category of abelian groups, then the equivalence is group isomorphism and
so F1

∼= F2.
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Theorem II.1.4

Theorem II.1.4

Theorem II.1.4. Every abelian group G is the homomorphic image of a
free abelian group of rank |X |, where X is a set of generators of G .

Proof. Let F be the free abelian group on the set X . Then F =
∑

x∈X Zx
and the rank of F is |X | (see Note 2.1.B). By Theorem II.1.1.(iv) the
inclusion map ι : X → G induces a homomorphism f : F → G such that
f ι = f where f : x 7→ 1x (since f : X → G can be any function). So
f : 1x 7→ x .

Whence X ⊆ Im(f ). Since f : F → G and X generates G , we
must have Im(f ) = G and G is the image of free group F under
homomorphism f .
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Lemma II.1.5

Lemma II.1.5

Lemma II.1.5. If {x1, x2, . . . , xn} is a basis of a free abelian group F and
a ∈ Z, then for all i 6= j , {x1, x2, . . . , xj−1, xj + axi , xj+1, xj+2, . . . , xn} is
also a basis of F .

Proof. Since xj = −axi + (xj + axi ), it follows that
F = 〈x1, x2, . . . , xj−1, xj + axi , xj+1, . . . , xn〉. If

k1x1 + k2x2 + · · ·+ kj(xj + axi ) + · · ·+ knxn = 0

(where ki ∈ Z) then

k1x1 + k2x2 + · · ·+ (ki + kja)xi + · · ·+ kjxj + · · ·+ knxn = 0

and so each coefficient and hence each kt equals 0 for all t. So the set is
also a basis, as claimed.
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Theorem II.1.6

Theorem II.1.6

Theorem II.1.6. If F is a free abelian group of finite rank n and G is a
nonzero subgroup of F , then there exists a basis {x1, x2, . . . , xn} of F , an
integer r (where 1 ≤ r ≤ n) and positive integers d1, d2, . . . , dr such that
d1 | d2 | · · · | dr (that is, d1 | d2, d2 | d3, . . . , dr−1 | dr ) and G is free
abelian with basis {d1x1, d2x2, . . . , drxr}.

Proof. If n = 1, then F = 〈x1〉 ∼= Z and G = 〈d1x1〉 ∼= Z by Theorems
I.3.5, I.3.1, and I.3.2. We apply induction and assume the theorem is true
for all free abelian groups of rank less than n.

Let S be the set of all those
integers s such that there exists a basis {y1, y2, . . . , yn} of F and an
element in G of the form sy1 + k2y2 + · · ·+ knyn (where ki ∈ Z). Now
{y2, y1, . . . , yn} is also a basis of F and so G has an element of the form
k2y2 + sy1 + · · · knyn; hence k2 ∈ S . Similarly k3, k4, . . . , kn ∈ S (by
treating each in turn as the “first” element of the finite basis). We have
{k2, k3, . . . , kn} ⊂ S . Since G 6= {0} by hypothesis, we have S 6= ∅ (since
{y1, y2, . . . , yn} is a basis and S < G ).

() Modern Algebra November 29, 2023 18 / 22



Theorem II.1.6

Theorem II.1.6

Theorem II.1.6. If F is a free abelian group of finite rank n and G is a
nonzero subgroup of F , then there exists a basis {x1, x2, . . . , xn} of F , an
integer r (where 1 ≤ r ≤ n) and positive integers d1, d2, . . . , dr such that
d1 | d2 | · · · | dr (that is, d1 | d2, d2 | d3, . . . , dr−1 | dr ) and G is free
abelian with basis {d1x1, d2x2, . . . , drxr}.

Proof. If n = 1, then F = 〈x1〉 ∼= Z and G = 〈d1x1〉 ∼= Z by Theorems
I.3.5, I.3.1, and I.3.2. We apply induction and assume the theorem is true
for all free abelian groups of rank less than n. Let S be the set of all those
integers s such that there exists a basis {y1, y2, . . . , yn} of F and an
element in G of the form sy1 + k2y2 + · · ·+ knyn (where ki ∈ Z). Now
{y2, y1, . . . , yn} is also a basis of F and so G has an element of the form
k2y2 + sy1 + · · · knyn; hence k2 ∈ S .

Similarly k3, k4, . . . , kn ∈ S (by
treating each in turn as the “first” element of the finite basis). We have
{k2, k3, . . . , kn} ⊂ S . Since G 6= {0} by hypothesis, we have S 6= ∅ (since
{y1, y2, . . . , yn} is a basis and S < G ).

() Modern Algebra November 29, 2023 18 / 22



Theorem II.1.6

Theorem II.1.6

Theorem II.1.6. If F is a free abelian group of finite rank n and G is a
nonzero subgroup of F , then there exists a basis {x1, x2, . . . , xn} of F , an
integer r (where 1 ≤ r ≤ n) and positive integers d1, d2, . . . , dr such that
d1 | d2 | · · · | dr (that is, d1 | d2, d2 | d3, . . . , dr−1 | dr ) and G is free
abelian with basis {d1x1, d2x2, . . . , drxr}.

Proof. If n = 1, then F = 〈x1〉 ∼= Z and G = 〈d1x1〉 ∼= Z by Theorems
I.3.5, I.3.1, and I.3.2. We apply induction and assume the theorem is true
for all free abelian groups of rank less than n. Let S be the set of all those
integers s such that there exists a basis {y1, y2, . . . , yn} of F and an
element in G of the form sy1 + k2y2 + · · ·+ knyn (where ki ∈ Z). Now
{y2, y1, . . . , yn} is also a basis of F and so G has an element of the form
k2y2 + sy1 + · · · knyn; hence k2 ∈ S . Similarly k3, k4, . . . , kn ∈ S (by
treating each in turn as the “first” element of the finite basis). We have
{k2, k3, . . . , kn} ⊂ S . Since G 6= {0} by hypothesis, we have S 6= ∅ (since
{y1, y2, . . . , yn} is a basis and S < G ).

() Modern Algebra November 29, 2023 18 / 22



Theorem II.1.6

Theorem II.1.6

Theorem II.1.6. If F is a free abelian group of finite rank n and G is a
nonzero subgroup of F , then there exists a basis {x1, x2, . . . , xn} of F , an
integer r (where 1 ≤ r ≤ n) and positive integers d1, d2, . . . , dr such that
d1 | d2 | · · · | dr (that is, d1 | d2, d2 | d3, . . . , dr−1 | dr ) and G is free
abelian with basis {d1x1, d2x2, . . . , drxr}.

Proof. If n = 1, then F = 〈x1〉 ∼= Z and G = 〈d1x1〉 ∼= Z by Theorems
I.3.5, I.3.1, and I.3.2. We apply induction and assume the theorem is true
for all free abelian groups of rank less than n. Let S be the set of all those
integers s such that there exists a basis {y1, y2, . . . , yn} of F and an
element in G of the form sy1 + k2y2 + · · ·+ knyn (where ki ∈ Z). Now
{y2, y1, . . . , yn} is also a basis of F and so G has an element of the form
k2y2 + sy1 + · · · knyn; hence k2 ∈ S . Similarly k3, k4, . . . , kn ∈ S (by
treating each in turn as the “first” element of the finite basis). We have
{k2, k3, . . . , kn} ⊂ S . Since G 6= {0} by hypothesis, we have S 6= ∅ (since
{y1, y2, . . . , yn} is a basis and S < G ).

() Modern Algebra November 29, 2023 18 / 22



Theorem II.1.6

Theorem II.1.6 (continued 1)

Proof (continued). So S contains a least positive integer d1 and for
some basis {y1, y2, . . . , yn} of F there exists v ∈ G such that
v = d1y1 + k2y2 + · · · |knyn (by the definition of set S). By the Division
Algorithm (Theorem 0.6.3), for each i = 1, 2, . . . , n we have ki = d1qi + ri
with 0 ≤ ri < d1. So

v = d1(y1 + q2y2 + · · ·+ qnyn) + (r2y2 + r3y3 + · · ·+ rnyn).

Let x1 = y1 + q2y2 + · · ·+ qnyn. Then by Lemma II.1.5 (and induction),
W = {x1, y2, . . . , yn} is a basis for F . Now by the choice of d1 (as the
smallest coefficient of the first basis element that gives an element of G ;
since bases can be rearranged, d1 is the smallest coefficient of any basis
element that gives an element of G ).

Since v ∈ G (with v given above in
terms of the yi ’s, qi ’s, and ri ’s) and each ri < d1 then we have that
0 = r2 = r3 + · · · = rn (or else v is written in terms of x1, y2, . . . , yn with
the coefficients of y2, y3, . . . , yn are less than d1, a contradiction).
Therefore d1x2 = v ∈ G .
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Theorem II.1.6

Theorem II.1.6 (continued 2)

Proof (continued). Let H = 〈y2, y3, . . . , yn〉. Then H is a free abelian
group of rank n − 1 (since y2, y3, . . . , yn are “linearly independent”
because {x1, y2, . . . , yn} is a basis for F ) such that F = 〈x〉 ⊕ H. Since
{x1, y2, . . . , yn} is a basis of F then x1 6∈ 〈y2, y3, . . . , yn〉 = H, so d1x1 6∈ H
and 〈v〉 = 〈d1x〉 ∩ H = {0}, which implies 〈v〉 ∩ (G ∩ H) = {0}. If
u = t1x1 + t2x2 + · · ·+ tnyn ∈ G (where ti ∈ Z) then by the Division
Algorithm (Theorem 0.6.3) t1 = d1q1 + r1 where 0 ≤ r1 < d1. Thus G
contains u − q1v = r1x1 + t2y2 + · · ·+ tnyn. The minimality of d1 in S
implies that r0 = 0, whence t2y2 + t3y3 + · · ·+ tnyn ∈ G ∩ H and
u = q1v + (t2y2 + t3y3 + · · ·+ tnyn).

Since u was an arbitrary element of
G , then

G = 〈v〉 ⊕ (G ∩ H) see Definition I.8.8

= 〈d1x1〉 ⊕ (G ∩ H).

Either G ∩ H = {0} in which case G = 〈d1x1〉 and the theorem is true
(and n = 1), or G ∩ H 6= {0}.

() Modern Algebra November 29, 2023 20 / 22



Theorem II.1.6

Theorem II.1.6 (continued 2)

Proof (continued). Let H = 〈y2, y3, . . . , yn〉. Then H is a free abelian
group of rank n − 1 (since y2, y3, . . . , yn are “linearly independent”
because {x1, y2, . . . , yn} is a basis for F ) such that F = 〈x〉 ⊕ H. Since
{x1, y2, . . . , yn} is a basis of F then x1 6∈ 〈y2, y3, . . . , yn〉 = H, so d1x1 6∈ H
and 〈v〉 = 〈d1x〉 ∩ H = {0}, which implies 〈v〉 ∩ (G ∩ H) = {0}. If
u = t1x1 + t2x2 + · · ·+ tnyn ∈ G (where ti ∈ Z) then by the Division
Algorithm (Theorem 0.6.3) t1 = d1q1 + r1 where 0 ≤ r1 < d1. Thus G
contains u − q1v = r1x1 + t2y2 + · · ·+ tnyn. The minimality of d1 in S
implies that r0 = 0, whence t2y2 + t3y3 + · · ·+ tnyn ∈ G ∩ H and
u = q1v + (t2y2 + t3y3 + · · ·+ tnyn). Since u was an arbitrary element of
G , then

G = 〈v〉 ⊕ (G ∩ H) see Definition I.8.8

= 〈d1x1〉 ⊕ (G ∩ H).

Either G ∩ H = {0} in which case G = 〈d1x1〉 and the theorem is true
(and n = 1), or G ∩ H 6= {0}.

() Modern Algebra November 29, 2023 20 / 22



Theorem II.1.6

Theorem II.1.6 (continued 2)

Proof (continued). Let H = 〈y2, y3, . . . , yn〉. Then H is a free abelian
group of rank n − 1 (since y2, y3, . . . , yn are “linearly independent”
because {x1, y2, . . . , yn} is a basis for F ) such that F = 〈x〉 ⊕ H. Since
{x1, y2, . . . , yn} is a basis of F then x1 6∈ 〈y2, y3, . . . , yn〉 = H, so d1x1 6∈ H
and 〈v〉 = 〈d1x〉 ∩ H = {0}, which implies 〈v〉 ∩ (G ∩ H) = {0}. If
u = t1x1 + t2x2 + · · ·+ tnyn ∈ G (where ti ∈ Z) then by the Division
Algorithm (Theorem 0.6.3) t1 = d1q1 + r1 where 0 ≤ r1 < d1. Thus G
contains u − q1v = r1x1 + t2y2 + · · ·+ tnyn. The minimality of d1 in S
implies that r0 = 0, whence t2y2 + t3y3 + · · ·+ tnyn ∈ G ∩ H and
u = q1v + (t2y2 + t3y3 + · · ·+ tnyn). Since u was an arbitrary element of
G , then

G = 〈v〉 ⊕ (G ∩ H) see Definition I.8.8

= 〈d1x1〉 ⊕ (G ∩ H).

Either G ∩ H = {0} in which case G = 〈d1x1〉 and the theorem is true
(and n = 1), or G ∩ H 6= {0}.

() Modern Algebra November 29, 2023 20 / 22



Theorem II.1.6

Theorem II.1.6 (continued 3)

Proof (continued). Then by the induction hypothesis (that the result
holds for all free abelian groups of rank less than n), there is a basis
{x1, x2, . . . , xn} of H and positive integers r , d2, d3, . . . , dr such that
d2 | d3 | · · · | dr and G ∩H is free abelian with basis {d2x2, d2x3, . . . , drxr}
(here F and G in the statement of the theorem are replaced with H and
G ∩ H, respectively). Since F = 〈x1〉 ⊕ H and G = 〈d1x1〉 ⊕ (G ∩ H) by
the previous paragraph, it follows that {x1, x2, . . . , xn} is a basis of F
(since {x2, x3, . . . , xn} is a basis of H by the induction hypothesis) and
{d1x1, d2x2, . . . , drxr} is a basis of G . So to complete the induction step
we only need to show that d1 | d2.

By the minimality of d1, d1 ≤ d2. By
the Division Algorithm, d2 = qd1 + r0 with 0 ≤ r0 < d1. Since
{x2, x1 + qx2, x3, . . . , xn} is a basis of F by Lemma II.1.5 and
r0x2 + d1(x1 + qx2) = d1x2 + d2x2 ∈ G . Since r0 is a coefficient of a basis
element which gives an element of G and d1 is a minimal such positive
coefficient, then r0 = 0. Hence d2 = qd1 and d1 | d2, completing the
induction step.
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Corollary II.1.7

Corollary II.1.7

Corollary II.1.7. If G is a finitely generated abelian group generated by n
elements, then every subgroup H of G may be generated by m elements
with m ≤ n.

Proof. By Theorem II.1.4 there is a free abelian group F of rank n and an
onto homomorphism (“epimorphism”) π : F → G . Now π−1(H) is a
subgroup of F by Exercise I.2.9(a), and is by Theorem II.1.6 (with m of
this theorem being r from there) of rank m ≤ n.

The image under π of any
basis of π−1(H) is a set of at most m elements (π may not be one to one)
that generates π(π−1(H)) = H. So H is generated by ≤ n elements.
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