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Theorem II.2.1

Theorem II.2.1

Theorem II.2.1. Every finitely generated abelian group G is isomorphic
to a finite direct sum of cyclic groups in which the finite cyclic summands
(if any) are of orders m1,m2, . . . ,mt where m1 > 1 and m1 | m2 | · · · | mt .

Proof. If G 6= {0} and G is generated by n elements then there is a free
abelian group F of rank n and an onto homomorphism (epimorphism)
π : F → G by Theorem II.1.4. If π is an isomorphism then
G ∼= F ∼= Z⊕Z⊕ · · · ⊕Z (n summands) by Theorem II.1.1(iii).

If π is not
an isomorphism then by Theorem II.1.6 there is a basis {x1, x2, . . . , xn} of
F and positive integers d1, d2, . . . , dr such that 1 ≤ r ≤ n, d1 | d2 | · · · | dr

and {d1x1, d2x2, . . . , drxr} is a basis of K = Ker(π) (here, G of Theorem
II.1.6 is Ker(π)). Now F =

∑n
i=1〈xi 〉 (direct sum) and K =

∑r
i=1〈dixi 〉,

where 〈xi 〉 ∼= Z by Theorem II.1.1(iii)) and under the same isomorphism
between 〈xi 〉 and Z we have 〈dixi 〉 ∼= diZ = {diu | u ∈ Z}.
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Theorem II.2.1

Theorem II.2.1 (continued 1)

Proof (continued). For i = r + 1, r + 2, . . . , n let di = 0 so that
K =

∑n
i=1〈dixi 〉. Then

G ∼= F/K by Corollary I.5.7 (First Isomorphism Theorem)

=
n∑

i=1

〈xi 〉

/
n∑

i=1

〈dixi 〉

∼=
n∑

i=1

〈xi 〉/〈dixi 〉 by Corollary I.8.11

∼=
n∑

i=1

Z/diZ by Corollary I.5.8.

If di = 1, then Z/diZ = Z/Z = {0}. If di > 1, then Z/diZ ∼= Zdi
. If

di = 0 then Z/diZ = Z/{0} ∼= Z.
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Theorem II.2.1

Theorem II.2.1 (continued 2)

Theorem II.2.1. Every finitely generated abelian group G is isomorphic
to a finite direct sum of cyclic groups in which the finite cyclic summands
(if any) are of orders m1,m2, . . . ,mt where m1 > 1 and m1 | m2 | · · · | mt .

Proof (continued). Let m1,m2, . . . ,mt be those di (in increasing order)
such that di 6∈ {0, 1} and let s be the number of di such that di = 0. Then

G ∼= Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmt ⊕ (Z⊕ Z⊕ · · · ⊕ Z)

where m1 > 1 (since values of 0 and 1 are omitted), m1 | m2 | · · · | mt

(since d1 | d2 | · · · | dr and the mi ’s are some of the dj ’s) and
Z⊕ Z⊕ · · · ⊕ Z has rank s (with the obvious basis).
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Lemma II.2.3

Lemma II.2.3

Lemma II.2.3. If m is a positive integer and m = pn1
1 pn2

2 · · · pnt
t

(pa, p2, . . . , pt distinct primes and each ni ∈ N), then

Zm
∼= Zp1

n1 ⊕ Zp2
n2 ⊕ · · · ⊕ Zpt

nt .

Proof. First, consider Zrn where r , n ∈ N are relatively prime. The
element n = n1 ∈ Zrn has order r by Theorem I.3.4(vii). Whence
Zr

∼= 〈n1〉 < Zrn and the map ψ1 : Zr → Zrn defined by k 7→ nk is a one
to one homomorphism (“monomorphism”). Similarly, ψ2 : Zn → Zrn given
by k 7→ rk is a one to one homomorphism.

As seen in the proof of
Theorem I.8.5, the map ψ : Zr ⊕ Zn → Zrn given by
(x , y) 7→ ψ1(x) + ψ2(y) = nx + ry is a well-defined homomorphism. Since
r and n are relatively prime then ra + nb = 1 for some a, b ∈ Z by
Theorem 0.6.5. Hence for k ∈ Zrn we have k = rak + nbk = ψ(bk, ak)
and ψ is onto. Since |Zr ⊕Zn| = rn = |Zrn| and so ψ is one to one. So the
lemma holds for t = 2. It now follows for general t ∈ N by induction.
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Lemma II.2.A

Lemma II.2.A

Lemma II.2.A. If m is a positive integer and m = nk where n and k are
not relatively prime, then Zm 6∼= Zn ⊕ Zk .

Proof. Let d = gcd(n, k). By hypothesis, d > 1. So nk/d is divisible by
both n and k, and nk/d < nk. If (r , s) ∈ Zn ⊕ Zk then
(nk/d)(r , s) = (0, 0) by Theorem I.3.4(iv). So the order of (r , s) is at
most nk/d (by Theorem I.3.4(iii)). But nk/d < nk = |Zn ⊕ Zk |. So no
element of Zn ⊕ Zk generates Zn ⊕ Zk and hence Zn ⊕ Zk is not cyclic.
So Zm 6∼= Zn ⊕ Zk .
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Theorem II.2.2

Theorem II.2.2

Theorem II.2.2. Every finitely generated abelian group G is isomorphic
to a finite direct sum of cyclic groups, each of which is either infinite or of
order a power of a prime.

Proof. By Theorem II.2.1 (see the proof)

G ∼= Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmt ⊕ (Z⊕ Z⊕ · · · ⊕ Z).

By Lemma II.2.3, each Zmi can be written as a direct sum of cyclic groups
each of order a power of a prime (the primes here may not be distinct in
the representation of G ).
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Corollary II.2.4

Corollary II.2.4

Corollary II.2.4. If G is a finite abelian group of order n, then G has a
subgroup of order m for every positive integer m that divides n.

Proof. First, for some p and ` ∈ N, consider the cyclic group Zp` . For all

k ∈ N with 1 ≤ k < `, consider the subgroup of Zp` generated by pk1,

〈pk1〉. Since the order of pk1 is p`−k :

Pk1 + pk1 + · · ·+ pk1︸ ︷︷ ︸
p`−k times

= p`1 = 0.

So 〈pk1〉 is a cyclic group of order p`−k and hence is isomorphic to Zp`−k .
Hence

Zp` has a subgroup isomorphic to Zpk for k = 1, 2, . . . , `− 1 (∗)

(replacing `− k with k here).
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Corollary II.2.4

Corollary II.2.4 (continued 1)

Proof (continued). This also follows from Theorem
I.3.4(vii)—Hungerford uses Lemma II.2.5(v) which has not yet been shown
but is next and is based on Theorem I.3.4(vii).
By Theorem II.2.2, G =

∑k
i=1 Gi where each Gi is a finite cyclic group

and so by Lemma II.2.3 is of the form

Zm′ ∼= Z
p

m′
1

1

⊕ Z
p

m′
2

2

⊕ · · · ⊕ Z
p

m′t
t

for distinct primes p1, p2, . . . , pt .
Now for any m dividing n, we have that for n = pn1

1 pn2
2 · · · pnj

j (distinct

primes) then m must be of the form m = pm1
1 pm2

2 · · · pmj

j (some of the

exponents here may be 0). Now |G | = |G1||G2| · · · |Gk | so for any pmi
i | n,

some of the Gr ’s must have subgroups of order some positive power of pi ;
the totality of these subgroups yields a subgroup of G of the form

Z
p

n′
1

i

⊕ Z
p

n′
2

i

⊕ · · · ⊕ Z
p

n′r
i

.
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Corollary II.2.4

Corollary II.2.4 (continued 2)

Corollary II.2.4. If G is a finite abelian group of order n, then G has a
subgroup of order m for every positive integer m that divides n.

Proof (continued). By taking a sufficient number of these Zpn
i
’s along

with an appropriate sized subgroup of one of the Zpn
i
’s (as necessary; this

can be done by (∗) above), we get the subgroup of G of the form

Z
p

n′′
1

i

⊕ Z
p

n′′
2

i

⊕ · · · ⊕ Z
p

n′′α
i

where n′′1 + n′′2 + · · ·+ n′′α = mi . Do this for each mi (i = 1, 2, . . . , j) and
distinct prime pi to produce a family of subgroups of G of each desired
prime power order (notice that each of these intersects only at the
identity) and take the direct sum of these (see Definition I.8.8). This is a
subgroup of the desired order m.
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Lemma II.2.5

Lemma II.2.5

Lemma II.2.5. Let G be an abelian group, m an integer, and p a prime
integer. There are the following isomorphism relationships

(v) Zpn [p] ∼= Zp and pmZpn ∼= Zpn−m (m < n).

Proof of (v). The element pn−11 = pn−1 ∈ Zpn has order p by Theorem

I.3.4(vii), whence 〈pn−1〉 ∼= Zp (by Theorem I.3.2) and 〈pn−1〉 < Zpn [p]. If
u ∈ Zpn [p] then pu = 0 in Zpn (by definition of Zpn [p]) so that pu ≡ 0
(mod p) in Z. But pn | pu implies pn−1 | u. Therefore in Zpn we have

u ∈ 〈pn−1〉 and Zpn [p] < 〈pn−1〉. So we have that Zpn [p] = 〈pn−1〉 ∼= Zp

and the first claim holds.

For the second statement, note that pm ∈ Zpn has order pn−m by Theorem
I.3.4(viii). Therefore pmZpn = {pmu | u ∈ Zpn} = 〈pm〉 ∼= Zpn−m by
Theorem I.3.2.
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Lemma II.2.5

Lemma II.2.5 (continued 1)

Lemma II.2.5. Let G be an abelian group, m an integer, and p a prime
integer. Let H and G be abelian groups.

(vii) If f : G → H is an isomorphism then the restrictions of f to
Gt and G (p) respectively are isomorphisms giving

Gt
∼= Ht and G (p) ∼= H(p).

Proof of (vii). If f : G → H is a homomorphism and
x ∈ G (p) = {u ∈ G | |u| = pn for some n ≥ 0} then x is of order pn and
pnf (x) = f (pnx) = f (0) = 0. Therefore
f (x) ∈ H(p) = {u ∈ H | |u| = pn for some n > 0}. Hence
f : G (p) → H(p). If f is an isomorphism and
y ∈ H(p) = {u ∈ H | |u| = pn for some n > 0} then y is of order pn and
pnx = pnf −1(y) = f −1(pny) (since f −1 is an isomorphism to; where
y = f (x)) and pny = 0 so pnx = f −1(0) = 0, so x ∈ G (P) and
f −1 : H(p) → G (p).
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Lemma II.2.5 (continued 1)
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Lemma II.2.5

Lemma II.2.5 (continued 2)

Lemma II.2.5. Let G be an abelian group, m an integer, and p a prime
integer. Let H and G be abelian groups.

(vii) If f : G → H is an isomorphism then the restrictions of f to
Gt and G (p) respectively are isomorphisms giving

Gt
∼= Ht and G (p) ∼= H(p).

Proof of (vii), continued.
Since ff −1 = 1H(p) and f −1f = 1G(P), then f is bijective from G (p) to
H(p) and hence is an isomorphism. That is, G (p) ∼= H(p).
The proof that Gt

∼= Ht is similar to the above argument, but “pn for
some n” is simply replaced with some (finite) n ∈ N.
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Theorem II.2.6. Fund. Thm Finitely Generated Abelian Groups

Theorem II.2.6

Theorem II.2.6. Fundamental Theorem of Finitely Generated
Abelian Groups.
Let G be a finitely generated abelian group.

(i) There is a unique nonnegative integer s such that the
number of infinite cyclic summands in any decomposition of
G as a direct sum of cyclic groups is precisely s.

Proof of (i). Any decomposition of G as a direct sum of cyclic groups (at
least one of which exists by Theorem II.2.1) yields an isomorphism
G ∼= H ⊕ F where H is a direct sum of finite cyclic groups (possibly {0})
and F is a free abelian group whose rank is precisely the number s of
infinite cyclic summands in the decomposition (see the end of the proof of
Theorem II.2.1). We need to show that s is unique and that it does not
depend on the decomposition of G .
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G ∼= H ⊕ F where H is a direct sum of finite cyclic groups (possibly {0})
and F is a free abelian group whose rank is precisely the number s of
infinite cyclic summands in the decomposition (see the end of the proof of
Theorem II.2.1). We need to show that s is unique and that it does not
depend on the decomposition of G .
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Theorem II.2.6 (continued 1)

Proof (continued). If ι : H → H ⊕ F is the canonical injection
(h 7→ (h, 0)) then ι(H) is the torsion subgroup (that is, the subgroup of all
elements of finite order) of H ⊕ F . By Lemma II.2.5(vii), Gt

∼= ι(H) under
the isomorphism between G and H ⊕ F . Of course all subgroups are
normal, so by Corollary I.5.8 G/Gt

∼= H ⊕ F/ι(H) ∼= F . So G/Gt
∼= F ,

where F is free abelian group of rank s, and this isomorphism is
independent of the decomposition G ∼= H ⊕ F . The rank of G/Gt is an
invariant by Theorem II.1.2, so this rank s is uniquely determined.
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Theorem II.2.6 (continued 2)

Theorem II.2.6. Fundamental Theorem of Finitely Generated
Abelian Groups.
Let G be a finitely generated abelian group.

(iii) Either G is free abelian or there is a list of positive integers
ps1
1 , p

s2
2 , . . . , p

sk
k which is unique except for the order of its

members, such that p1, p2, . . . , pk are (not necessarily
distinct) primes, s1, s2, . . . , sk are (not necessarily distinct)
positive integers and

G ∼= Zp1
s1 ⊕ Zp2

s2 ⊕ · · · ⊕ Zpk
sk ⊕ F

with F free abelian.

Proof (continued). Suppose G has two decompositions, say
G ∼=

∑r
i=1 Zni ⊕ F and G ∼=

∑α
j=1 Zkj

⊕ F ′, with each ni , kj a power of a
prime (the primes may be repeated) and F ,F ′ are free abelian (there is at
least one such decomposition by Theorem II.2.).
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Theorem II.2.6 (continued 3)

Proof (continued). We must show that (1) r = d and (2) (after
reordering) ni = ki for every i . The torsion subgroup of

∑
Zni ⊕ F is

isomorphic to
∑

Zni and the torsion subgroup of
∑

Zkj
⊕ F ′ is

∑
Zkj

.

Hence, Gt
∼=

∑r
i=1 Zni

∼=
∑d

j=1 Zkj
. For each prime p,(∑

Zni

)
(p) =

{
u ∈

∑
Zni

∣∣∣ the order |u| = pn for some n ≥ 0
}

is isomorphic to the direct sum of these Zni such that ni is a power of p,
and similarly (

∑
Zkj

)(p) is isomorphic to the direct sum of those Zkj
such

that kj is a power of p. By Lemma II.2.5(vii), (
∑

Zni ) (p) ∼=
(∑

Zkj

)
(p)

for each power p and by part (i) and Theorem II.1.1(iii) we have that
F ∼= F ′ ∼=

∑
Z (s summands), so we can assume WLOG that G = Gt and

that each ni , kj is a power of a fixed prime p (or else we repeat the process
for each prime p1, p2, . . . , pk and then conclude the claimed isomorphism).
So we now assume G = G (p).
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Theorem II.2.6. Fund. Thm Finitely Generated Abelian Groups

Theorem II.2.6 (continued 4)

Proof (continued). Hence we have
∑r

i=1 Zpai
∼= G ∼=∼=

∑d
j=1 Zp

cj where
1 ≤ a1 ≤ a2 ≤ · · · ≤ ar and a ≤ c1 ≤ c2 ≤ · · · ≤ cd .
(1) Lemma II.2.5(v) and the decomposition of G using the ai ’s gives that
G [p] ∼=

∑r
i=1 Zpai [p] ∼= Zp ⊕ Zp ⊕ · · · ⊕ Zp (r summands) whence

|G [p]| = pr . Similarly, applying this argument to the representation of G
using the cj ’s give |G [p]| = pd . Therefore pr = pd and r = d .

(2) ASSUME there exists v (1 ≤ v ≤ r) the first integer such that ai = ci

for all 1 ≤ i < v and an 6= cv . We may assume that av < cv (or else we
can interchange the ai ’s and ci ’s). Since

panZpai = {panu | u ∈ Zpai }
= {(pav−ai )(pai u) | u ∈ Zp1i }
= pav−ai (pai Zpai )
∼= pav−ai Zpai−ai (by Lemma II.2.5(v)) ∼= {0}
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Theorem II.2.6. Fund. Thm Finitely Generated Abelian Groups

Theorem II.2.6 (continued 5)

Proof (continued). for all ai ≤ av , the decomposition of G in terms of
the ai ’s implies that

pαv G ∼= pαv

r∑
i=1

Zpαi
∼=

r∑
i=v

Zpai−av

(by Lemma II.2.5(v)) with av+1 − av ≤ av+2 − av ≤ · · · ≤ ar − av . So
there are at most r − v nonzero summands. Similarly, since ai = ci for
i < v and av < cv then the decomposition of G in terms of the ci ’s implies
that pav G ∼=

∑r
i=v Zpci−av with a ≤ cv − av ≤ cv+1 − av ≤ · · · ≤ cr − ar .

There are at least r − v + 1 nonzero summands (since 1 is a lower bound
for these parameters). Therefore we have two decompositions of group
pav G as a direct sum of cyclic groups of prime power order and the
number of summands in the first decomposition is strictly less than the
number of summands in the second.
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Theorem II.2.6. Fund. Thm Finitely Generated Abelian Groups

Theorem II.2.6 (continued 6)

Proof (continued). However, this CONTRADICTS the previous
paragraph (part (1)) in which we showed that with the two
decompositions (with the ai ’s and si ’s) the number of (nonzero) terms are
the same (r = d); notice that each ai and ci is greater than or equal to 1.
This contradiction shows that the assumption that such a v exists and so
we must have ai = ci for all i and hence the representations of G in terms
of the ai ’s is the same as the representation in terms of the ci ’s.
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Theorem II.2.6. Fund. Thm Finitely Generated Abelian Groups

Theorem II.2.6 (continued 7)

Theorem II.2.6. Fundamental Theorem of Finitely Generated
Abelian Groups.
Let G be a finitely generated abelian group.

(ii) Either G is free abelian or there is a unique list of (not
necessarily distinct) positive integers m1,m2, . . . ,mt such
that m1 > 1, m1 | m2 | · · · | mt and
G ∼= Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmt ⊕ F with F free abelian.

Proof (continued). (ii) Suppose G has two decompositions, say
G ∼= Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmt ⊕ F and G ∼= Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkkd

⊕ F ′

where m1 > 1, m1 | m2 | · · · | mt and k1 > 1, k1 | k2 | · · · | kd ; and F , F ′

are free abelian groups. Such a decomposition exists by Theorem II.2.1.
We now decompose the mi ’s and ki ’s into primes and insert factors of the
form p0 so that all parameters are written in terms of the same distinct
primes p1, p2, . . . , pr :
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Theorem II.2.6. Fund. Thm Finitely Generated Abelian Groups

Theorem II.2.6 (continued 8)

Proof (continued).

m1 = pa11
1 pa12

2 · · · pa1r
r k1 = pc11

1 pc12
2 · · · pc1r

r

m2 = pa21
1 pa22

2 · · · pa2r
r k2 = pc21

1 pc22
2 · · · pc2r

r
...

...
mt = pat1

1 pat2
2 · · · patr

r kd = pcd1
1 pcd2

2 · · · pcdr
r .

Since m1 | m2 | · · · | mt , we must have for each j that
0 ≤ a1j ≤ a2j ≤ · · · ≤ atj and similarly for each j that
0 ≤ c1j ≤ c2j ≤ · · · ≤ cdj . We have

∑
i ,j

Z
p

aij
k

∼=
t∑

i=1

Zmi by Lemma II.2.3 since the primes are distinct

∼= Gt since these are the elements of finite order,

a group by Lemma II.2.5(iv)
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Theorem II.2.6. Fund. Thm Finitely Generated Abelian Groups

Theorem II.2.6 (continued 9)

Proof (continued).∑
i ,j

Z
p

aij
k

∼= Zki

∼=
∑
i ,j

Z
p

cij
j

by Lemma II.2.3

where some summands may be 0 (although Lemma II.2.3 is stated for
nonzero summands). Since G (pj) = {u ∈ G | |u| = pn

j for some n ≥ 0}
then for each j = 1, 2, . . . , r we have

t∑
i=1

Z
p

aij
j

∼= G (pj) ∼=
d∑

i=1

Z
p

cij
j

. (∗)

Since m1 > 1, there is some pj such that 1 ≤ a1j ≤ a2j ≤ · · · ≤ atj ,
whence

∑t
i=1 Z

p
aij
j

has t nonzero summands.
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Theorem II.2.6 (continued 10)

Proof (continued). By (iii)
∑d

i=1 Z
p

cij
j

has t nonzero summands as well

(since this is another decomposition of G (pj)—it’s the r = d part). So
t ≤ d . Similarly, k1 > 1 implies that d ≤ t and so d = t and there are the
same number of mi ’s as ki ’s. So we have from (∗) that for each j ,∑t

i=1 Z
p

aij
j

∼=
∑t

i=1 Z
p

cij
j

and by (2) of (iii) we have aij = cij for all i . This

holds for all j , so aij = cij for all i , j . That is mi = ki for all i . So the two
decompositions are in fact the same and the representation is unique.
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