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Theorem 11.3.3

Theorem 11.3.3. If a group G satisfies either the ascending or descending
chain condition on normal subgroups, then G is isomorphic to the direct
product of a finite number of indecomposable subgroups.
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Theorem 11.3.3

Theorem 11.3.3

Theorem 11.3.3. If a group G satisfies either the ascending or descending

chain condition on normal subgroups, then G is isomorphic to the direct
product of a finite number of indecomposable subgroups.

Proof. ASSUME that G is not isomorphic to a finite direct product of
indecomposable subgroups.
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Theorem 11.3.3

Theorem 11.3.3

Theorem 11.3.3. If a group G satisfies either the ascending or descending
chain condition on normal subgroups, then G is isomorphic to the direct
product of a finite number of indecomposable subgroups.

Proof. ASSUME that G is not isomorphic to a finite direct product of
indecomposable subgroups. Let S be the set of all normal subgroups H of
G such that H is a (in the terminology of Exercise 1.8.12) direct factor of
G and H is not a finite direct product of indecomposable subgroups

S={H<G|G=Hx Ty for some Ty < G, and H is not isomorphic

to a finite direct product of indecomposable subgroups}.
Then G € Sso S # @.

Modern Algebra e Aty 3



Theorem 11.3.3

Theorem 11.3.3

Theorem 11.3.3. If a group G satisfies either the ascending or descending

chain condition on normal subgroups, then G is isomorphic to the direct
product of a finite number of indecomposable subgroups.

Proof. ASSUME that G is not isomorphic to a finite direct product of
indecomposable subgroups. Let S be the set of all normal subgroups H of
G such that H is a (in the terminology of Exercise 1.8.12) direct factor of
G and H is not a finite direct product of indecomposable subgroups

S={H<G|G=Hx Ty for some Ty < G, and H is not isomorphic

to a finite direct product of indecomposable subgroups}.

Then G € Sso S # @. If He S then H is not a finite direct product of
indecomposable subgroups (in particular, H is not a “product” of one
indecomposable group), so H is not indecomposable. That is, H can be

“"decomposed”; i.e., there exists proper subgroups Ky and Jy of H such
that H = Ky x Jy.
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Theorem 11.3.3 (continued 1)

Proof (continued). So H is a direct factor of G, and Ky and Jy are
direct factors of H, so by Exercise 1.8.12(a), Ky and Jy are normal in G.
Since H is not isomorphic to a finite direct product of indecomposable
subgroups, then either Ky or Jy (without loss of generality, say Ky) must
not be isomorphic to a finite direct product of indecomposable subgroups.
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Theorem 11.3.3 (continued 1)

Proof (continued). So H is a direct factor of G, and Ky and Jy are
direct factors of H, so by Exercise 1.8.12(a), Ky and Jy are normal in G.
Since H is not isomorphic to a finite direct product of indecomposable
subgroups, then either Ky or Jy (without loss of generality, say Ky) must
not be isomorphic to a finite direct product of indecomposable subgroups.
Since G 2 H x Ty = Ky x Jy x Ty, then G has a subgroup Jg,
isomorphic to Jy x Ty such that G = Ky x Jg, and so Ky € S (notice
that, by Exercise 1.8.12(a), Ky and Jg, are normal subgroups of G). That
is, for each H € S there is a proper subset Ky of H in S.
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Theorem 11.3.3 (continued 1)

Proof (continued). So H is a direct factor of G, and Ky and Jy are
direct factors of H, so by Exercise 1.8.12(a), Ky and Jy are normal in G.
Since H is not isomorphic to a finite direct product of indecomposable
subgroups, then either Ky or Jy (without loss of generality, say Ky) must
not be isomorphic to a finite direct product of indecomposable subgroups.
Since G 2 H x Ty = Ky x Jy x Ty, then G has a subgroup Jg,
isomorphic to Jy x Ty such that G = Ky x Jg, and so Ky € S (notice
that, by Exercise 1.8.12(a), Ky and Jg, are normal subgroups of G). That
is, for each H € S there is a proper subset Ky of H in S. Define

f:S— S as f(H)= Ky. Now we construct a chain of subgroups to get a
contradiction. Define ¢(NU{0}) — S as ¢(0) = G and

@(n+1) = f(p(n)) = Ky(n) for n € NU {0} (we are using the Recursion
Theorem, Theorem 0.6.2, here). Denote ¢(n) = Gp,.
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Theorem 11.3.3 (continued 1)

Proof (continued). So H is a direct factor of G, and Ky and Jy are
direct factors of H, so by Exercise 1.8.12(a), Ky and Jy are normal in G.
Since H is not isomorphic to a finite direct product of indecomposable
subgroups, then either Ky or Jy (without loss of generality, say Ky) must
not be isomorphic to a finite direct product of indecomposable subgroups.
Since G 2 H x Ty = Ky x Jy x Ty, then G has a subgroup Jg,
isomorphic to Jy x Ty such that G = Ky x Jg, and so Ky € S (notice
that, by Exercise 1.8.12(a), Ky and Jg, are normal subgroups of G). That
is, for each H € S there is a proper subset Ky of H in S. Define

f:S— S as f(H)= Ky. Now we construct a chain of subgroups to get a
contradiction. Define ¢(NU{0}) — S as ¢(0) = G and

@(n+1) = f(p(n)) = Ky(n) for n € NU {0} (we are using the Recursion
Theorem, Theorem 0.6.2, here). Denote ¢(n) = G,. Then each G, is
normal in G, Gp11 is a proper subgroup of G, and so we have that the
descending chain of normal subgroups G > G; > G, > Gy > -+ does not
satisfy the descending chain condition.
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Theorem 11.3.3 (continued 2)
Proof (continued). So we have a CONTRADICTION in the case that G

satisfies the descending chain condition. To complete the proof, we still
need a contradiction in the case that G satisfies the ascending chain

condition.

5/ 28
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Theorem 11.3.3 (continued 2)

Proof (continued). So we have a CONTRADICTION in the case that G
satisfies the descending chain condition. To complete the proof, we still
need a contradiction in the case that G satisfies the ascending chain
condition. We now have by induction that for each n € N,

G = Gy xJg, , X Jg, , X+ xJg, where each Jg, is a proper subgroup of
G (notice that Jg, = Jy x Ty in the notation above and that

H= G, x Jg, x - xJg,).
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Theorem 11.3.3 (continued 2)

Proof (continued). So we have a CONTRADICTION in the case that G
satisfies the descending chain condition. To complete the proof, we still
need a contradiction in the case that G satisfies the ascending chain
condition. We now have by induction that for each n € N,

G = Gy xJg, , X Jg, , X+ xJg, where each Jg, is a proper subgroup of
G (notice that Jg, = Jy x Ty in the notation above and that

H= G, x Jg, x --- x Jg,). Now Jg, < G by Exercise 1.8.A as described
above and each Jg, < G for i € N since, by construction, Jg, € S. So we
then form the ascending chain of normal subgroups Jo < J1 < o < ---
where Jo = Jg,, 1 = Jg, X Jgy, J2 = Jg, X Jg, X gy, -+ -

Fn=Jg, x Jg, , X -+ x Jg,, ... Notice that Jpy1 # J, for all

n € NU {0}, so this ascending chain does not satisfy the ascending chain
condition.
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Theorem 11.3.3 (continued 2)

Proof (continued). So we have a CONTRADICTION in the case that G
satisfies the descending chain condition. To complete the proof, we still
need a contradiction in the case that G satisfies the ascending chain
condition. We now have by induction that for each n € N,

G = Gy xJg, , X Jg, , X+ xJg, where each Jg, is a proper subgroup of
G (notice that Jg, = Jy x Ty in the notation above and that

H= G, x Jg, x --- x Jg,). Now Jg, < G by Exercise 1.8.A as described
above and each Jg, < G for i € N since, by construction, Jg. € S. So we
then form the ascending chain of normal subgroups Jo < J1 < o < ---
where Jo = Jg,, 1 = Jg, X Jgy, J2 = Jg, X Jg, X gy, -+ -

Fn=Jg, x Jg, , X -+ x Jg,, ... Notice that Jpy1 # J, for all

n € NU {0}, so this ascending chain does not satisfy the ascending chain
condition. So we have a CONTRADICTION in the case that G satisfies
the ascending chain condition. Hence, the assumption that G is not
isomorphic to a finite direct product of indecomposable subgroups is false

and the claim follows. O
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Lemma 11.3.4

Lemma 11.3.4. Let G be a group that satisfies the ascending chain
condition on normal subgroups and let f be an endomorphism of G. Then
f is an automorphism if and only if f is an epimorphism (i.e., an onto
homomorphism). Let G be a group that satisfies the descending chain
condition on normal subgroups and let f be a normal endomorphism of G.
Then £ is an automorphism if and only if f is a monomorphism (i.e., a one
to one homomorphism).
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Lemma 11.3.4

Lemma 11.3.4. Let G be a group that satisfies the ascending chain
condition on normal subgroups and let f be an endomorphism of G. Then
f is an automorphism if and only if f is an epimorphism (i.e., an onto
homomorphism). Let G be a group that satisfies the descending chain
condition on normal subgroups and let f be a normal endomorphism of G.
Then £ is an automorphism if and only if f is a monomorphism (i.e., a one
to one homomorphism).

Proof. Suppose G satisfies the ascending chain condition and that f is an
epimorphism. Since a composition of onto functions is onto, then

fk = ff...f is also an epimorphism of G. Recall that if f : G — H is a
homomorphism, then Ker(f) is a subgroup of H by Exercise 1.2.9(a) and
Ker(f) <« G by Theorem 1.5.5.
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Lemma 11.3.4

Lemma 11.3.4. Let G be a group that satisfies the ascending chain
condition on normal subgroups and let f be an endomorphism of G. Then
f is an automorphism if and only if f is an epimorphism (i.e., an onto
homomorphism). Let G be a group that satisfies the descending chain
condition on normal subgroups and let f be a normal endomorphism of G.
Then £ is an automorphism if and only if f is a monomorphism (i.e., a one
to one homomorphism).

Proof. Suppose G satisfies the ascending chain condition and that f is an
epimorphism. Since a composition of onto functions is onto, then

fk = ff...f is also an epimorphism of G. Recall that if f : G — H is a
homomorphism, then Ker(f) is a subgroup of H by Exercise 1.2.9(a) and
Ker(f) < G by Theorem 1.5.5. So we have the ascending chain of normal
subgroups of G, (e) < Ker(f) < Ker(f2) < --- (where fk = ff ... f).
Since G satisfied the ascending chain condition, then Ker(f') = Ker(f")
for some n € N and for all / > n.
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Lemma 11.3.4

Lemma 11.3.4 (continued 1)

Proof (continued). If a € G and f(a) = e, then a = f"(b) for some
b € G since f" is onto, and e = f(a) = f(f"(b)) = F"+1(b).

Consequently, b € Ker(f"1) = Ker(f") which implies that a = f"(b) = e;

that is, f(a) = e implies a = e.
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Lemma 11.3.4

Lemma 11.3.4 (continued 1)

Proof (continued). If a € G and f(a) = e, then a = f"(b) for some

b € G since f" is onto, and e = f(a) = f(f"(b)) = F"+1(b).
Consequently, b € Ker(f"1) = Ker(f") which implies that a = f"(b) = e;
that is, f(a) = e implies a = e. So Ker(f) = {e} and by Theorem 1.2.3(i),
f is a monomorphism (one to one homomorphism). So f : G — G is a one
to one and onto homomorphism and hence is an automorphism of G.
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Lemma 11.3.4 (continued 1)

Proof (continued). If a € G and f(a) = e, then a = f"(b) for some

b € G since f" is onto, and e = f(a) = f(f"(b)) = F"+1(b).
Consequently, b € Ker(f"1) = Ker(f") which implies that a = f"(b) = e;
that is, f(a) = e implies a = e. So Ker(f) = {e} and by Theorem 1.2.3(i),
f is a monomorphism (one to one homomorphism). So f : G — G is a one
to one and onto homomorphism and hence is an automorphism of G.

Suppose G satisfies the descending chain condition and that f is a
monomorphism. Since f is a normal endomorphism, then for k > 1 and for
all a € G we have for any b € G that

afk(b)a*1 = af(fkfl(b))lf1 = f(afkil(b)afl)
= f(f(af*2(b)a 1)) = ... = fK(aba™1) € Im(f¥).
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Lemma 11.3.4 (continued 1)

Proof (continued). If a € G and f(a) = e, then a = f"(b) for some

b € G since f" is onto, and e = f(a) = f(f"(b)) = F"+1(b).
Consequently, b € Ker(f"1) = Ker(f") which implies that a = f"(b) = e;
that is, f(a) = e implies a = e. So Ker(f) = {e} and by Theorem 1.2.3(i),
f is a monomorphism (one to one homomorphism). So f : G — G is a one
to one and onto homomorphism and hence is an automorphism of G.

Suppose G satisfies the descending chain condition and that f is a
monomorphism. Since f is a normal endomorphism, then for k > 1 and for
all a € G we have for any b € G that

aff(b)a! = af(f*"1(b))17! = f(af*(b)a™})
= f(f(af*2(b)a ') = -+ = f¥(aba~t) € Im(f¥).
So Im(f%)a=t C Im(f¥) for all a € G, and by Theorem 1.5.1(iv),
Im(f¥) < G. So we have the descending chain G > Im(f) > Im(f2) > - --
and by hypothesis, G; = G, for some n € N and for all i > n, which
implies that Im(f") = Im(f"*+1).
Modern Algebra January 4, 2017 7 /28



Lemma 11.3.4 (continued 2)

Lemma 11.3.4. Let G be a group that satisfies the ascending chain
condition on normal subgroups and let f be an endomorphism of G. Then
f is an automorphism if and only if f is an epimorphism (i.e., an onto
homomorphism). Let G be a group that satisfies the descending chain
condition on normal subgroups and let f be a normal endomorphism of G.
Then f is an automorphism if and only if f is a monomorphism (i.e., a one
to one homomorphism).

Proof (continued). Then for any a € G, we have f"(a) = f"+1(b) for
some b € G (since the images of " and f"*1 are the same). A
composition of one to one maps is one to one, so that the fact that f is a
monomomorphism implies that " is also a monomorphism, so

f1(a) = f"1(b) = f"(f(b)) implies a = f(b).
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Lemma 11.3.4 (continued 2)

Lemma 11.3.4. Let G be a group that satisfies the ascending chain
condition on normal subgroups and let f be an endomorphism of G. Then
f is an automorphism if and only if f is an epimorphism (i.e., an onto
homomorphism). Let G be a group that satisfies the descending chain
condition on normal subgroups and let f be a normal endomorphism of G.
Then f is an automorphism if and only if f is a monomorphism (i.e., a one
to one homomorphism).

Proof (continued). Then for any a € G, we have f"(a) = f"+1(b) for
some b € G (since the images of " and f"*1 are the same). A
composition of one to one maps is one to one, so that the fact that f is a
monomomorphism implies that " is also a monomorphism, so

f1(a) = f"TL(b) = f"(f(b)) implies a = f(b). That is, any a € G is the
image under f of some b € G and so f is onto. Therefore, f : G — G is a
one to one and onto homomorphism and hence is an automorphism of

G. O
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Lemma 11.3.5

Lemma 11.3.5

Lemma 11.3.5. If G is a group that satisfies both the ascending and
descending chain conditions on normal subgroups an df is a normal
endomorphism of G, then for some n > 1, we have G = Ker(f") x Im(f").
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Lemma 11.3.5

Lemma 11.3.5

Lemma 11.3.5. If G is a group that satisfies both the ascending and
descending chain conditions on normal subgroups an df is a normal
endomorphism of G, then for some n > 1, we have G = Ker(f") x Im(f").

Proof. As shown in the second part of the proof of Lemma 11.3.4, since f
is a normal endomorphism, then for all k > 1 we have Im(f¥) < G. Also as
in the proof of Lemma 11.3.4, we have two chains of normal subgroups,

G > Im(f) > Imf2 > --- and (e) < Ker(f) < Ker(f2) < ---.
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Lemma 11.3.5

Lemma 11.3.5. If G is a group that satisfies both the ascending and
descending chain conditions on normal subgroups an df is a normal
endomorphism of G, then for some n > 1, we have G = Ker(f") x Im(f").

Proof. As shown in the second part of the proof of Lemma 11.3.4, since f
is a normal endomorphism, then for all k > 1 we have Im(f¥) < G. Also as
in the proof of Lemma 11.3.4, we have two chains of normal subgroups,

G > Im(f) > Imf2 > ... and (e) < Ker(f) < Ker(f2) < ---. Since G
satisfies both the ascending chain condition and the descending chain
condition then Im(f¥) = Im(f") and Ker(f/) = Ker(f") for all k > n, for
some n € N.
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Lemma 11.3.5

Lemma 11.3.5. If G is a group that satisfies both the ascending and
descending chain conditions on normal subgroups an df is a normal
endomorphism of G, then for some n > 1, we have G = Ker(f") x Im(f").

Proof. As shown in the second part of the proof of Lemma 11.3.4, since f
is a normal endomorphism, then for all k > 1 we have Im(f¥) < G. Also as
in the proof of Lemma 11.3.4, we have two chains of normal subgroups,

G > Im(f) > Imf2 > ... and (e) < Ker(f) < Ker(f2) < ---. Since G
satisfies both the ascending chain condition and the descending chain
condition then Im(f¥) = Im(f") and Ker(f/) = Ker(f") for all k > n, for
some n € N.

Suppose a € Ker(f") N Im(f"). Then a = f"(b) for some b € G (since

a € Im(f")) and so f27(b) = f"(f"(b)) = f"(a) = e (since a € Ker(f")).
Consequently, b € Ker(f2") = Ker(f") and so a = f"(b) = e. Therefore
Ker(f") N Im(f™) = (e).
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Lemma 11.3.5 (continued)

Lemma 11.3.5. If G is a group that satisfies both the ascending and
descending chain conditions on normal subgroups an df is a normal
endomorphism of G, then for some n > 1, we have G = Ker(f") x Im(f").

Proof (continued). For any c € G with f"(c) € Im(f") = Im(f2") we
have f"(c) = f27(d) for some d € G. Thus

Fr(cf(d 1)) = F()F(F7(d 1)) — F7(c)F27(d L) = F7(c)(F27(d)) ) =
f7(c)(f"(c))~! = e and hence ¢ = f"(d~1) € Ker(f").
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Lemma 11.3.5

Lemma 11.3.5 (continued)

Lemma 11.3.5. If G is a group that satisfies both the ascending and
descending chain conditions on normal subgroups an df is a normal
endomorphism of G, then for some n > 1, we have G = Ker(f") x Im(f").

Proof (continued). For any c € G with f(c) € Im(f") = Im(f2") we
have f"(c) = f2"(d) for some d € G. Thus

Fr(cfn(d 1)) = F()F(F7(d 1)) — F7(C)F2n(d ) = F(c)(F2(d))E =
f7(c)(f"(c))! = e and hence ¢ = f"(d~!) € Ker(f"). Since

c = (cf"(d71))(f"(d)) and c is any element of G, then

G = Ker(f")Im(f"™). By Corollary 1.8.7, G = Ker(f") x Im(f"). O
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Corollary 11.3.6

Corollary 11.3.6

Corollary 11.3.6. If G is an indecomposable group that satisfies both the
ascending and descending chain conditions on normal subgroups and f is a

normal endomorphism of G, then either f is nilpotent of f is an
automorphism.
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Corollary 11.3.6

Corollary 11.3.6

Corollary 11.3.6. If G is an indecomposable group that satisfies both the
ascending and descending chain conditions on normal subgroups and f is a
normal endomorphism of G, then either f is nilpotent of f is an
automorphism.

Proof. By Lemma 11.3.5, there is n € N such that G = Ker(f") x Im(f").
Since G is indecomposable then either Ker(f") = (e) or Im(f") = (e).
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Corollary 11.3.6

Corollary 11.3.6. If G is an indecomposable group that satisfies both the
ascending and descending chain conditions on normal subgroups and f is a
normal endomorphism of G, then either f is nilpotent of f is an
automorphism.

Proof. By Lemma 11.3.5, there is n € N such that G = Ker(f") x Im(f").
Since G is indecomposable then either Ker(f") = (e) or Im(f") = (e). If
Im(f") = (e) then (by definition) f is nilpotent. If Ker(f") = (e) then
Ker(f) = (e) (since (e) < Ker(f) < Ker(f?) < ---). So by Theorem
1.2.3(i), f is a monomorphism (one to one) and by Lemma 11.2.4 (the
second claim) f is an automorphism. O
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Corollary 11.3.7

Corollary 11.3.7

Corollary 11.3.7. Let G (where G # (e)) be an indecomposable group
that satisfies both the ascending and descending chain conditions on
normal subgroups. If f1, f>,..., f, are normal nilpotent epimorphisms of G
such that f, +f, +---+f;, (Wwhere1 <jj <ib <---<i. <n)isan
epimorphism, then f; + f» + - - - + f, is nilpotent.
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Corollary 11.3.7

Corollary 11.3.7. Let G (where G # (e)) be an indecomposable group
that satisfies both the ascending and descending chain conditions on
normal subgroups. If f1, f>,..., f, are normal nilpotent epimorphisms of G
such that f, +f, +---+f;, (Wwhere1 <jj <ib <---<i. <n)isan
epimorphism, then f; + f» + - - - + f, is nilpotent.

Proof. By Exercise 111.3.8(c), if the sum of two normal endomorphisms is
itself an endormorphism, then the sum is normal. Induction implies that
this holds for any finite sum of normal endormorphisms. Since each

fy +fi, +---+ f; is an endomorphisms by hypothesis, then Exercise
11.3.8(c) implies that f; + f;, +--- + f; is a normal endomorphism. So we
prove the corollary for n = 2 and then the general result will follow by
induction.
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Corollary 11.3.7

Corollary 11.3.7. Let G (where G # (e)) be an indecomposable group
that satisfies both the ascending and descending chain conditions on
normal subgroups. If f1, f>,..., f, are normal nilpotent epimorphisms of G
such that f, +f, +---+f;, (Wwhere1 <jj <ib <---<i. <n)isan
epimorphism, then f; + f» + - - - + f, is nilpotent.

Proof. By Exercise 111.3.8(c), if the sum of two normal endomorphisms is
itself an endormorphism, then the sum is normal. Induction implies that
this holds for any finite sum of normal endormorphisms. Since each

fy +fi, +---+ f; is an endomorphisms by hypothesis, then Exercise
11.3.8(c) implies that f; + f;, +--- + f; is a normal endomorphism. So we
prove the corollary for n = 2 and then the general result will follow by
induction.

Consider f; + f, a normal endomorphism of G. ASSUME f; + £, is not
nilpotent, then by Corollary 11.3.6 it is an automorphism of G.
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Corollary 11.3.7 (continued 1)

Proof (continued). So fi + f, : G — G has an inverse g which is also an
automorphism of G (by Exercise 1.2.15(a), the set of automorphisms of G
form a group Aut(G)). Then g7 = f; + £, and for all a,b € G we have

g(aba_l) = g(ag_l(bl)a_l) since bl = g(b) for some unique b/ c G
= glg '(abla™") since g1 = fi + f5 is normal
ab/afl = ag(b)afl

and so g is normal.
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Corollary 11.3.7 (continued 1)

Proof (continued). So fi + f, : G — G has an inverse g which is also an
automorphism of G (by Exercise 1.2.15(a), the set of automorphisms of G
form a group Aut(G)). Then g7 = f; + £, and for all a,b € G we have

g(aba™) = g(ag l(b')a™?) since b’ = g(b) for some unique b’ € G

1

= glg '(abla™") since g1 = fi + f5 is normal

ab'a™! = ag(b)a~?
and so g is normal. If we define gy = ffog=figand o = fhog = hg
then g1 + &2 = fig + hg = (A + f)g = 1 (because for any a € G, let
b= g(a) so a= g~ 1(b), we have
(g1 +&2)(a) = gi(a)gz(a) by the definition of g — 1+ g — 2
(fiog)(a) (20 g)(a) = fi(g(a))f2(g(a))
fi(b)f —2(b) = (i + £2)(b) by the definition of f; + £
= g (b)g '(g(a)) = a)
Modern Algebra January 4, 2017 13 /28



Corollary 11.3.7 (continued 2)

Proof (continued). So for all x € G,
x 1= (g1 + gz)(xfl) = gl(xfl)gg(xfl) (by the definition of g1 + g2).
Hence

x = (alx et = (7)) Hak )
= g(x)g1(x) by Exercise 1.2.1
= (g — 2+ g1)(x) by the definition of g» + g1,
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Corollary 11.3.7 (continued 2)

Proof (continued). So for all x € G,
x 1= (g1 + gz)(xfl) = gl(xfl)gg(xfl) (by the definition of g1 + g2).
Hence

x = (alx et = (7)) Hak )
= g(x)g1(x) by Exercise 1.2.1
= (g — 2+ g1)(x) by the definition of g» + g1,

so g» + g1 = 1. Therefore g1 + g0 =g>+ g1 = 1 and so

gi(g1 + &) =g —11g =181 = (g1 + &2)g1 and so0 g182 = g281
(because for any a € G, since gj is a homomorphism, we have

g1(g1 + g2)g1(a) = g1(g1(a)g2(a)) = g1(g1(a))ga(g2(a)) and

(g1 + g2)g1(a) = g1(g1(a))g2(g1(a)) by the definition of g1 + g2, and so
g1(g1(a))g1(g2(a)) = g1(g1(a))g2(g1(a)) and multiplying both sides of this
by g1(g1(a)) ™" we have gi(g2(a)) — g2(g1(a)), hence gig> = g261).
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Corollary 11.3.7 (continued 3)

Proof (continued). In Exercise I1.3.C it is shown by induction that
(61 +8&)" Z cigigy

where ¢; € N are the binomial coefficients ¢; = (7) = I,(m 77 to be
encountered in Section I1.1 in Theorem I11.1.6 in the setting of rings.
Here, cih means h+ h+ --- + h (¢; summands).
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Corollary 11.3.7 (continued 3)

Proof (continued). In Exercise I1.3.C it is shown by induction that
(61 +8&)" Z cigigy

where ¢; € N are the binomial coefficients ¢; = (7) = m, to be
encountered in Section I1.1 in Theorem I11.1.6 in the setting of rings.
Here, cih means h+ h+ .-+ h (¢; summands). Since each f; is nilpotent
by hypothesis then Ker(f;) ;é {e} (or else Ker(f") = {e} for all n € N and
f is not nilpotent), so for g; = fj o g = fig, where i € {1,2}, we have
Ker(gi) = Ker(fig) # {e} and so by Theorem 1.2.3(i), g; is not a
monomorphism (not one to one) and hence g; is not an automorphism as
shown above and f; is a normal endomorphism by hypothesis, then by
Exercise 11.3.8(a), gi = fig is normal.
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Corollary 11.3.7 (continued 3)

Proof (continued). In Exercise I1.3.C it is shown by induction that
(61 +8&)" Z cigigy

where ¢; € N are the binomial coefficients ¢; = (7) = m, to be
encountered in Section I1.1 in Theorem I11.1.6 in the setting of rings.
Here, cih means h+ h+ .-+ h (¢; summands). Since each f; is nilpotent
by hypothesis then Ker(f;) ;é {e} (or else Ker(f") = {e} for all n € N and
f is not nilpotent), so for g; = fj o g = fig, where i € {1,2}, we have
Ker(gi) = Ker(fig) # {e} and so by Theorem 1.2.3(i), g; is not a
monomorphism (not one to one) and hence g; is not an automorphism as
shown above and f; is a normal endomorphism by hypothesis, then by
Exercise 11.3.8(a), gi = fig is normal. Therefore by Corollary 11.3.6, since
gi is not an automorphism then g; is nilpotent. So let ny, n, € N such that
for all a € G, gi"(a) = gy*(a) = e.
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Corollary 11.3.7 (continued 4)

Proof (continued). Define n = max{ny, n} and choose m large enough
that m/2 > n. Then for i = 0,1,..., m, either i or m — i is greater than
or equal to m/2 > n. For such m we have
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Corollary 11.3.7 (continued 4)

Proof (continued). Define n = max{ny, n} and choose m large enough
that m/2 > n. Then for i = 0,1,..., m, either i or m — i is greater than
or equal to m/2 > n. For such m we have

m—i

m
(g1 +82)"(a) = Z cigigs ) (a) the sums are in
i=0

the group of functions from G to G

m

= H(g{(gz’"_i(a)))cf by the definition of function sum
i=0
in the group of functions mapping G — G of
Exercise 11.3.B and the notation for ¢;h and

the product of functions means composition

m
= H e since either for m—iis > n
i=0

= e. (%)
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Corollary 11.3.7 (continued 5)

Corollary 11.3.7. Let G (where G # (e)) be an indecomposable group
that satisfies both the ascending and descending chain conditions on
normal subgroups. If f1, f,..., f, are normal nilpotent epimorphisms of G
such that fi, +f, +---+f;, (Wwhere 1 <ijj <ip <---<i. <n)isan
epimorphism, then f; + fo + - - - 4 f, is nilpotent.

Proof (continued). But since we showed above that g; + g2 = 1 then
we must have for all m € N that

(&1 +&)"=1¢ ()

(since the exponent means function composition).
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Corollary 11.3.7 (continued 5)

Corollary 11.3.7. Let G (where G # (e)) be an indecomposable group
that satisfies both the ascending and descending chain conditions on
normal subgroups. If f1, f,..., f, are normal nilpotent epimorphisms of G
such that fi, +f, +---+f;, (Wwhere 1 <ijj <ip <---<i. <n)isan
epimorphism, then f; + fo + - - - 4 f, is nilpotent.

Proof (continued). But since we showed above that g; + g2 = 1 then
we must have for all m € N that

(&1 +&)"=1¢ ()

(since the exponent means function composition). By hypothesis G # (e),
so there is a € G with a # e. We now have (g1 + g2)™(a) = e by (x) and
(g1 + &2)™(a) = a by (xx), a CONTRADICTION. So the assumption that
fi + f> is not nilpotent is false, and hence f; + f; is nilpotent. The general
result now holds by induction, as described above. O
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Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. (The Krull-Schmidt Theorem)

Let G be a group that satisfies both the ascending and descending chain
conditions on normal subgroups. If G = G; X' Gp x'--- X' G5 and

G = Hy x' Hy x" -+ x' Hy with each G;, H; indecomposable, then s =t
and after reindexing, G; = H; for every i and for each r < t,

G:G;[ XiGQ ><i'~><iGr X"Hr_;,_l XiHr+2 ><i~-'><th
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Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. (The Krull-Schmidt Theorem)

Let G be a group that satisfies both the ascending and descending chain
conditions on normal subgroups. If G = G X' Gy x'- x! Gg and

G = Hy x' Hy x" -+ x' Hy with each G;, H; indecomposable, then s =t
and after reindexing, G; = H; for every i and for each r < t,

C=G x" Gy x"---x" G x"Hyy1 X" Hyp x' -+ x" H,.

Proof. We start with the hypothesis that G = G; x' Gy x' -+ x' G.
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Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. (The Krull-Schmidt Theorem)

Let G be a group that satisfies both the ascending and descending chain
conditions on normal subgroups. If G = G X' Gy x'- x! Gg and

G = Hy x' Hy x" -+ x' Hy with each G;, H; indecomposable, then s =t
and after reindexing, G; = H; for every i and for each r < t,

C=G x" Gy x"---x" G x"Hyy1 X" Hyp x' -+ x" H,.

Proof. We start with the hypothesis that G = G; x' Gy x' -+ x' G.

Let P(0) be the statement: “G = Hy x' Hp x' -+ x' H,."
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Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. (The Krull-Schmidt Theorem)

Let G be a group that satisfies both the ascending and descending chain
conditions on normal subgroups. If G = G X' Gy x'- x! Gg and

G = Hy x' Hy x" -+ x' Hy with each G;, H; indecomposable, then s =t
and after reindexing, G; = H; for every i and for each r < t,

C=G x" Gy x"---x" G x"Hyy1 X" Hyp x' -+ x" H,.

Proof. We start with the hypothesis that G = G; x' Gy x' -+ x' G.

Let P(0) be the statement: “G = Hy x' Hp x'--- x' H,." For

1 <r < min{s,t}, let P(r) be the statement: “There is a reindexing of
Hi, Ho, ..., H; such that G; 2 H, for i =1,2,...,r and

G=0G x Gy x'--x" G x"Hpy1 x" Hyo x' -+ x' Hy (or

G =Gy x' Gy x'---x" Gy if r=1t)." We use induction to prove that P(r)
holds for all r such that 0 < r < min{s, t}.

Modern Algebra January 4, 2017 18 / 28



Theorem 11.3.8. The Krull-Schmidt Theorem (continued 1)

Proof(continued). P(0) is true by hypothesis. Suppose P(r — 1) is true;
that is, “After some reindexing G; = H; for i =1,2,...,r — 1 and
CG=G x' G x'--x'G_1 x"Hy x" Hi_1 x" -+ x' H;." Let

w1, T2, ..., s be the canonical epimorphism associated with the internal
direct product G = Gy X' Gp X' --- x' G, (so that 7; : G — G;j). Let
T, Th, ..., T be the canonical epimorphism associated with the internal

direct product G = Gy x' Gy x' -+~ x/ G,_1 x' H, x'--- x' H; (so that
mi:G— Giforl1<i<r—1landm:G— H,forr<i<t).
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 1)

Proof(continued). P(0) is true by hypothesis. Suppose P(r — 1) is true;
that is, “After some reindexing G; = H; for i =1,2,...,r — 1 and
CG=G x' G x'--x'G_1 x"Hy x" Hi_1 x" -+ x' H;." Let

w1, T2, ..., s be the canonical epimorphism associated with the internal
direct product G = Gy X' Gp X' --- x' G, (so that 7; : G — G;j). Let
T, Th, ..., T be the canonical epimorphism associated with the internal

direct product G = Gy x' Gy x' -+~ x/ G,_1 x' H, x'--- x' H; (so that
mi:G— Giforl1<i<r—1landm:G — H,forr<i<t). Let \; be
the inclusion map sending G; into G and let A’ be the inclusion map
sending the ith factor of Gy x/ Gy x/ -+ x/ G,_1 x" H, x' Hy.y X'+ x H;
into G. For each i let p; = \jmi : G — G and let ¢; = Nl : G — G (i.e,
@i and 1); are compositions; notice that the A;'s and \}'s are necessary
since 7m; maps G to Gj, not G).
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 2)

Proof(continued). We claim that we have the following nine identities:

vile, = 1g Pipi = Qi pipj = 0¢g for i # j
Y1+t + e =1g Y = ;i Yihj =0 for i #j
Im(¢i) = G; Im(v;) = Gj for i < r Im(x;) = H; for i > r.

We leave the proofs of these claims to Exercise 11.3.D.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 2)

Proof(continued). We claim that we have the following nine identities:

vile, = 1g Pipi = Qi pipj = 0¢g for i # j
Y1+t + e =1g Y = ;i Yihj =0 for i #j
Im(¢i) = G; Im(v;) = Gj for i < r Im(x;) = H; for i > r.

We leave the proofs of these claims to Exercise 11.3.D. Now for i < r we
have for any x € G that

eri = r(¥i(x))
= (1 (%i(x))) since Im(¢p;) = Fj for i < r
= @r(pi(vi(x))) since Im(v);) = G; for i < r and pj|g, — 1g,
= (¢rpi)(¥i(x)) since function composition is associative
= 0c(¢i(x)) since pip; = 0g for i # j
= e

Therefore, ¢,1); = 0g for i < r.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 3)

Proof(continued). These identities give

©r = SOr]-G
= o1+ +--- ) since hr +hp + -+ Y =1
= @1+ e + -+ ory
with the last inequality holding because for
g1g & € G=G x' Gy x"--- X" Gy X" Hyy1 X" Hpyp X'+ oo X! Hy we
have
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 3)

Proof(continued). These identities give

©r = SOr]-G
= o1+ +--- ) since hr +hp + -+ Y =1
= @1+ e + -+ ory
with the last inequality holding because for
g1g & € G=G x' Gy x"--- X" Gy X" Hyy1 X" Hpyp X'+ oo X! Hy we
have

or(1+ o+ + ) (g182 - - &t)

= or(Y1(grg - ge)2(g182 - - 8t) - - Ve(g182 - - - &t))
by the definition of 91 + 9o + - - - + 1
= pr(V1(g1g — 2 gt))pr(V2(g182 - &) - pr(Ve(g182 - - 8t))

since ¢, is a homomorphism
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 4)

Proof(continued).

or(P1+ Y2+ + ) (g182- - &)
= ee---ep(Y)r(gig- - &t))eri1(8182- - 8t)) - or(Ve(g182- - &t))
since p,1; = 0g as shown in the previous paragraph

= (p2tr + orre1 + - + o) (8182 8t)
by the definition of o), + @r1hri1 + - - 4+ ©rtby.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 4)

Proof(continued).

or(1+ 2+ + i) (8182 - &)
= ee---ep(Y)r(gig- - &t))eri1(8182- - 8t)) - or(Ve(g182- - &t))
since p,1; = 0g as shown in the previous paragraph
= (p2¥r + @rbrir+ -+ o) (8182 8t)
by the definition of o), + @r1hri1 + - - 4+ ©rtby.

Since ¢, and v; are normal endomorphisms (since Im(y,) = G, < G,
Im(¢;) = Gi< G if i <r, and Im(¢);) = H;j < G is i > r) then by Exercise
11.3.8(a,) ¢, is a normal endomorphism. By Exercise 11.3.9, every sum of
distinct ,1); is a normal endomorphism.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 4)

Proof(continued).

or(1 + o + -+ ) (g182 - - &t)

= ee---ep(Y)r(gig- - &t))eri1(8182- - 8t)) - or(Ve(g182- - &t))
since p,1; = 0g as shown in the previous paragraph

= (p2tr + orre1 + - + o) (8182 8t)
by the definition of o), + @r1hri1 + - - 4+ ©rtby.

Since ¢, and v; are normal endomorphisms (since Im(¢,) = G, < G,
Im(¢);) = Gi< G if i < r, and Im(¢);) = H; < G is i > r) then by Exercise
11.3.8(a,) ¢, is a normal endomorphism. By Exercise 11.3.9, every sum of
distinct ¢,1; is a normal endomorphism. Now ¢,|¢, is a (normal)
automorphism of G, and by Exercise 11.3.6(b), since G satisfies both the
ACC and the DCC then G, < G also does. ASSUME that normal
endomorphism ¢,1)j|¢, are nilpotent for all j with r < j < t.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 5)

Proof(continued). Since every sum of distinct ¢,1j|g, is a normal
endomorphism, then by Corollary 11.3.7 the sum

(orthr + ©rthry1 + -+ @rbt)|6, = ©rlc, is nilpotent, a
CONTRADICTION to the fact hat ¢/|g, = 1g,.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 5)

Proof(continued). Since every sum of distinct ¢,1j|g, is a normal
endomorphism, then by Corollary 11.3.7 the sum

(orthr + @rhri1 + -+ 9rPt)|6, = ¢rlc, is nilpotent, a
CONTRADICTION to the fact hat ¢,|g, = 1g,. So the assumption that
©rj|, is nilpotent for all j with r < j <'t. So for some j with r <j <'t
we have ¢,1j|g, is not nilpotent. By Corollary 11.3.6, ¢,1)j|c, is therefore
an automorphism of G,. So for every n € N, (¢,1;)"+1|g, is also an
automorphism of G,.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 5)

Proof(continued). Since every sum of distinct ¢,1j|g, is a normal
endomorphism, then by Corollary 11.3.7 the sum

(orthr + @rhri1 + -+ 9rPt)|6, = ¢rlc, is nilpotent, a
CONTRADICTION to the fact hat ¢,|g, = 1g,. So the assumption that
©rj|, is nilpotent for all j with r < j <'t. So for some j with r <j <'t
we have ¢,1j|g, is not nilpotent. By Corollary 11.3.6, ¢,1)j|c, is therefore
an automorphism of G,. So for every n € N, (¢,1;)"+1|g, is also an
automorphism of G,. Now for all n € N,

(@rwj)m_l = (Sord]j)(@rd’j) S (‘Pﬂ/}j)

n+1 “factors”

= ¥r (¢r¢j)(¢r1/’j) T (g0,1/1j) Y= @r(¢r¢j)nwj'

n “factors”
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 5)

Proof(continued). Since every sum of distinct ¢,1j|g, is a normal
endomorphism, then by Corollary 11.3.7 the sum

(orthr + @rhri1 + -+ 9rPt)|6, = ¢rlc, is nilpotent, a
CONTRADICTION to the fact hat ¢,|g, = 1g,. So the assumption that
©rj|, is nilpotent for all j with r < j <'t. So for some j with r <j <'t
we have ¢,1j|g, is not nilpotent. By Corollary 11.3.6, ¢,1)j|c, is therefore
an automorphism of G,. So for every n € N, (¢,1;)"+1|g, is also an
automorphism of G,. Now for all n € N,

(@rwj)m_l = (@r@bj)(@r%') S (‘Pﬂ/}j)
n+1 “factors”

= ¥r (‘Pﬂ/’j)(‘Prl/’j) T (gOﬂ/Jj) Y= @r(¢r¢j)nwj'

n “factors”
Next, 1jo, : G — G is a normal endomorphism (by Exercise 11.3.8(a)) and
Yjpr|Hj : Hi — H; (both 1; and ¢, are defined on all of G and
Im(1);) = H; since j > r).
0
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 6)

Proof(continued). ASSUME v¢,|y; is nilpotent, say (1p,)"(h) = e for
all h € H;. Since G, # (e) (because G, is indecomposable by hypothesis
and so G, # (e) by the definition of “indecomposable”), then there is

some g € G, with g # e.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 6)

Proof(continued). ASSUME v¢,|y; is nilpotent, say (1p,)"(h) = e for
all h € H;. Since G, # (e) (because G, is indecomposable by hypothesis
and so G, # (e) by the definition of “indecomposable”), then there is
some g € G, with g # e. By the induction hypothesis,

G=G x' G x"-- Gy x" Hy x" Hry 1 x" -+ x" Hy, so

g =818 &—1hrhry1--- h and

(¢r¢j)n+1(g) = pr(Yier)"i(g) = or(Wjr)"hi = ¢r(e) = e.

But then g € Ker((,¢;)"!) and so Ker((,1;)") # {e} and hence
(¢r1;)" |G, is not a monomorphism (one to one) by Theorem 1.2.3(i),
and so (p,9;)"|c, is not an automorphism of G,, a CONTRADICTION.
So the assumption that ZZJjSOr\Hj is nilpotent is false.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 6)

Proof(continued). ASSUME v¢,|y; is nilpotent, say (1p,)"(h) = e for
all h € H;. Since G, # (e) (because G, is indecomposable by hypothesis
and so G, # (e) by the definition of “indecomposable”), then there is
some g € G, with g # e. By the induction hypothesis,

G=G x' G x"-- Gy x" Hy x" Hry 1 x" -+ x" Hy, so

g =818 &g—1hrhri1--- ht and

(‘Prd)j)n+1(g) = pr(Yier)"i(g) = or(Wjr)"hi = ¢r(e) = e.

But then g € Ker((,¢;)"!) and so Ker((,1;)") # {e} and hence
(¢r1;)" |G, is not a monomorphism (one to one) by Theorem 1.2.3(i),
and so (p,9;)"|c, is not an automorphism of G,, a CONTRADICTION.
So the assumption that 9;p,|4; is nilpotent is false. Now H; < G satisfies
both the ACC and the DCC (by Exercise 11.3.6(b), since G satisfies both)
and v¥j¢,|g, is a normal endomorphism (because ¢, is a normal
endomorphism on G as shown above), then by Corollary 11.3.6, 9;p;|p; is
an automorphism of H;.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 7)

Proof(continued). Now ¢,(H;) C G and Im(¢;¢,|H;) = H; so that

YjlG, : G- — Hj is an isomorphism (and similarly ¢, |y, : H; — G, is an
isomorphism). Reindex the H's such that H; "moves into the rth slot” and
becomes H, so that G, = H,. Then G; = H; for i = 1,2,...,r and the
first half of claim P(r) holds.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 7)

Proof(continued). Now ¢,(H;) C G and Im(¢;¢,|H;) = H; so that

YjlG, : G- — Hj is an isomorphism (and similarly ¢, |y, : H; — G, is an
isomorphism). Reindex the H's such that H; "moves into the rth slot” and
becomes H, so that G, = H,. Then G; = H; for i = 1,2,...,r and the
first half of claim P(r) holds.

We now need to show that
G=G x' G x"-- - x" G x"Hyy1 x" Hoyo x'--- x" Hy and s = t By the
induction hypothesis
G=G x' G x'- - x"Gr_y x" Hy x' Hyyq x"--- x' H;. We have the
subgroup of G
(G1,Gpy ..., Gr—1, Hrp1, Hrg1,y oo He)
= GG+ Gro1HrpaHrpr - He
by “an easily proved generalization of Theorem 1.5.3" (see page 61)
= G1 ><i G2 ><i s ><i G,_l Xi Hr+1 ><i Hr+1 ><i Xi Ht

by the definition of internal direct product (Definition 1.8.8).
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Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. The Krull-Schmidt Theorem (continued 8)

Proof(continued). Observe that for j < r,

Ui(G) = wty(G) since Im(ty) = G; for j < r
= {e} since ¢,1); = 0g for j # r

and for j > r,

Ur(Hj) = rj(G) since Im(vy) = H; for j > r
= {e} since ¢,9); = 0g for j # r.
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 8)

Proof(continued). Observe that for j < r,

Ui(G) = wty(G) since Im(ty) = G; for j < r
= {e} since ¢,1); = 0g for j # r

and for j > r,

Yr(H;)) = rpj(G) since Im(z);) = Hj for j > r
= {e} since ¢,9); = 0g for j # r.

So Y, (G1Gy -+ Gr—1H;11H, 42 - - - Hy) = {e} because each element of the
group is mapped to ee-- - e. Since i,|g, = 1¢, is an isomorphism it is one

tt
to one (injective) on G,, then applying v, to
G, N(G1Gy- - Gr—1H,+1H, 12 - - - Hy) yields only {e} and so the only
element of this intersection must be e (otherwise, 1,|g, would not be
injective).
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Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. The Krull-Schmidt Theorem (continued 9)

Proof(continued). So by the definition of internal direct product
(Definition 1.8.8) we have
G* - <G17627--'7Gr—laGraHr+17-‘-7Ht>
= G1Gy--- G Hyy1Hpyp - - - Hy by “an easily proved
generalization of Theorem 1.5.3" (see page 61)

= G X'Gyx'"-+-x"G x"Hpp1 X" Hpgo X' -+ X" Hy

(notice that the order does not matter by Theorem 1.5.2(iv)).
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Theorem 11.3.8. The Krull-Schmidt Theorem (continued 9)

Proof(continued). So by the definition of internal direct product
(Definition 1.8.8) we have

G* = (G1,G,...,G-1,Gr, Hrya, ..., Hy)
= G1Gy--- G Hyy1Hpyp - - - Hy by “an easily proved
generalization of Theorem 1.5.3" (see page 61)

= G X'Gyx'"-+-x"G x"Hpp1 X" Hpgo X' -+ X" Hy

(notice that the order does not matter by Theorem 1.5.2(iv)).

Every element of G may be written g = g1g>-- - gr—1h hpy1 - - - hy where
ge€Gfor1<i<r—1and hj € Hj forr <j < t (by Theorem 1.8.9; by
the induction hypothesis

G = Gl ><i GQ Xi v ><i Gr—l ><i Hr Xi Hr+1 ><i ><i Ht). Define
0:G— Gasb(g)=g1g - g—-1¢r(h)hry1hri2- - he. As observes
above (in a "similar" statement) @[, : H; — G, (where j = r) is an
isomorphism, so Im(H,) = G;, and hence Im(0) = G*.
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Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. The Krull-Schmidt Theorem (continued
10)

Proof(continued). By Theorem 1.8.10, since we consider

16,165 -+-516,_1,9r, 1H,.1, LH, .5, 1H, are each monomorphisms so ¢ is a
monomorphism. By Exercise 11.3.E, # is normal.
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Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. The Krull-Schmidt Theorem (continued
10)

Proof(continued). By Theorem 1.8.10, since we consider

16,165 -+-516,_1,9r, 1H,.1, LH, .5, 1H, are each monomorphisms so ¢ is a
monomorphism. By Exercise I1.3.E, 8 is normal. Therefore by Lemma
[1.3.4, 6 is an automorphism so that

G=Im0)=G*" =G x"Gyx'- - x"G_1 x' Gy x"Hypy1 X" Hpypx' - x"Hy
and the second part of the inductive claim P(r) holds, completing the
inductive argument.
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Theorem 11.3.8. The Krull-Schmidt Theorem

Theorem 11.3.8. The Krull-Schmidt Theorem (continued
10)

Proof(continued). By Theorem 1.8.10, since we consider

16,165 -+-516,_1,9r, 1H,.1, LH, .5, 1H, are each monomorphisms so ¢ is a
monomorphism. By Exercise I1.3.E, 8 is normal. Therefore by Lemma
[1.3.4, 6 is an automorphism so that

G=Im0)=G*" =G x"Gyx'- - x"G_1 x' Gy x"Hypy1 X" Hpypx' - x"Hy
and the second part of the inductive claim P(r) holds, completing the
inductive argument.

We now must just show that s = t. After reindexing, G; = H; for

0 < i< min{s,t}. If s=min{s, t} then

G=G X Gx"  xX'Gs=Gy x' Gyx' x"Gsx"Hspyx"---x' Hy. But
none of the G;, H; are the trivial group (e), so s = t. If t = min{s, t} then
CG=G x'"Gx'- - x"Gs= G, x' Gy x'--- x" Gy and again s = t. O
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