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Theorem II.3.3

Theorem II.3.3

Theorem II.3.3. If a group G satisfies either the ascending or descending
chain condition on normal subgroups, then G is isomorphic to the direct
product of a finite number of indecomposable subgroups.

Proof. ASSUME that G is not isomorphic to a finite direct product of
indecomposable subgroups.

Let S be the set of all normal subgroups H of
G such that H is a (in the terminology of Exercise I.8.12) direct factor of
G and H is not a finite direct product of indecomposable subgroups

S = {H / G | G ∼= H × TH for some TH < G , and H is not isomorphic

to a finite direct product of indecomposable subgroups}.

Then G ∈ S so S 6= ∅. If H ∈ S then H is not a finite direct product of
indecomposable subgroups (in particular, H is not a “product” of one
indecomposable group), so H is not indecomposable. That is, H can be
“decomposed”; i.e., there exists proper subgroups KH and JH of H such
that H ∼= KH × JH .
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Theorem II.3.3

Theorem II.3.3 (continued 1)

Proof (continued). So H is a direct factor of G , and KH and JH are
direct factors of H, so by Exercise I.8.12(a), KH and JH are normal in G .
Since H is not isomorphic to a finite direct product of indecomposable
subgroups, then either KH or JH (without loss of generality, say KH) must
not be isomorphic to a finite direct product of indecomposable subgroups.
Since G ∼= H × TH

∼= KH × JH × TH , then G has a subgroup JG0

isomorphic to JH × TH such that G ∼= KH × JG0 and so KH ∈ S (notice
that, by Exercise I.8.12(a), KH and JG0 are normal subgroups of G ). That
is, for each H ∈ S there is a proper subset KH of H in S .

Define
f : S → S as f (H) = KH . Now we construct a chain of subgroups to get a
contradiction. Define ϕ(N ∪ {0}) → S as ϕ(0) = G and
ϕ(n + 1) = f (ϕ(n)) = Kϕ(n) for n ∈ N ∪ {0} (we are using the Recursion
Theorem, Theorem 0.6.2, here). Denote ϕ(n) = Gn. Then each Gn is
normal in G , Gn+1 is a proper subgroup of Gn and so we have that the
descending chain of normal subgroups G > G1 > G2 > G2 > · · · does not
satisfy the descending chain condition.
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Theorem II.3.3

Theorem II.3.3 (continued 2)

Proof (continued). So we have a CONTRADICTION in the case that G
satisfies the descending chain condition. To complete the proof, we still
need a contradiction in the case that G satisfies the ascending chain
condition. We now have by induction that for each n ∈ N,
G ∼= Gn × JGn−1 × JGn−2 × · · · × JG0 where each JGi

is a proper subgroup of
G (notice that JG0

∼= JH × TH in the notation above and that
H ∼= Gn × JGn × · · · × JG1).

Now JG0 / G by Exercise I.8.A as described
above and each JGi

/ G for i ∈ N since, by construction, JGi
∈ S . So we

then form the ascending chain of normal subgroups J0 < J1 < J2 < · · ·
where J0 = JG0 , J1

∼= JG1 × JG0 , J2
∼= JG2 × JG1 × JG0 , . . . ,

Fh
∼= JGn × JGn−1 × · · · × JG0 , . . . . Notice that Jn+1 6= Jn for all

n ∈ N ∪ {0}, so this ascending chain does not satisfy the ascending chain
condition. So we have a CONTRADICTION in the case that G satisfies
the ascending chain condition. Hence, the assumption that G is not
isomorphic to a finite direct product of indecomposable subgroups is false
and the claim follows.

() Modern Algebra January 4, 2017 5 / 28



Theorem II.3.3

Theorem II.3.3 (continued 2)

Proof (continued). So we have a CONTRADICTION in the case that G
satisfies the descending chain condition. To complete the proof, we still
need a contradiction in the case that G satisfies the ascending chain
condition. We now have by induction that for each n ∈ N,
G ∼= Gn × JGn−1 × JGn−2 × · · · × JG0 where each JGi

is a proper subgroup of
G (notice that JG0

∼= JH × TH in the notation above and that
H ∼= Gn × JGn × · · · × JG1). Now JG0 / G by Exercise I.8.A as described
above and each JGi

/ G for i ∈ N since, by construction, JGi
∈ S . So we

then form the ascending chain of normal subgroups J0 < J1 < J2 < · · ·
where J0 = JG0 , J1

∼= JG1 × JG0 , J2
∼= JG2 × JG1 × JG0 , . . . ,

Fh
∼= JGn × JGn−1 × · · · × JG0 , . . . . Notice that Jn+1 6= Jn for all

n ∈ N ∪ {0}, so this ascending chain does not satisfy the ascending chain
condition.

So we have a CONTRADICTION in the case that G satisfies
the ascending chain condition. Hence, the assumption that G is not
isomorphic to a finite direct product of indecomposable subgroups is false
and the claim follows.

() Modern Algebra January 4, 2017 5 / 28



Theorem II.3.3

Theorem II.3.3 (continued 2)

Proof (continued). So we have a CONTRADICTION in the case that G
satisfies the descending chain condition. To complete the proof, we still
need a contradiction in the case that G satisfies the ascending chain
condition. We now have by induction that for each n ∈ N,
G ∼= Gn × JGn−1 × JGn−2 × · · · × JG0 where each JGi

is a proper subgroup of
G (notice that JG0

∼= JH × TH in the notation above and that
H ∼= Gn × JGn × · · · × JG1). Now JG0 / G by Exercise I.8.A as described
above and each JGi

/ G for i ∈ N since, by construction, JGi
∈ S . So we

then form the ascending chain of normal subgroups J0 < J1 < J2 < · · ·
where J0 = JG0 , J1

∼= JG1 × JG0 , J2
∼= JG2 × JG1 × JG0 , . . . ,

Fh
∼= JGn × JGn−1 × · · · × JG0 , . . . . Notice that Jn+1 6= Jn for all

n ∈ N ∪ {0}, so this ascending chain does not satisfy the ascending chain
condition. So we have a CONTRADICTION in the case that G satisfies
the ascending chain condition. Hence, the assumption that G is not
isomorphic to a finite direct product of indecomposable subgroups is false
and the claim follows.

() Modern Algebra January 4, 2017 5 / 28



Theorem II.3.3

Theorem II.3.3 (continued 2)

Proof (continued). So we have a CONTRADICTION in the case that G
satisfies the descending chain condition. To complete the proof, we still
need a contradiction in the case that G satisfies the ascending chain
condition. We now have by induction that for each n ∈ N,
G ∼= Gn × JGn−1 × JGn−2 × · · · × JG0 where each JGi

is a proper subgroup of
G (notice that JG0

∼= JH × TH in the notation above and that
H ∼= Gn × JGn × · · · × JG1). Now JG0 / G by Exercise I.8.A as described
above and each JGi

/ G for i ∈ N since, by construction, JGi
∈ S . So we

then form the ascending chain of normal subgroups J0 < J1 < J2 < · · ·
where J0 = JG0 , J1

∼= JG1 × JG0 , J2
∼= JG2 × JG1 × JG0 , . . . ,

Fh
∼= JGn × JGn−1 × · · · × JG0 , . . . . Notice that Jn+1 6= Jn for all

n ∈ N ∪ {0}, so this ascending chain does not satisfy the ascending chain
condition. So we have a CONTRADICTION in the case that G satisfies
the ascending chain condition. Hence, the assumption that G is not
isomorphic to a finite direct product of indecomposable subgroups is false
and the claim follows.

() Modern Algebra January 4, 2017 5 / 28



Lemma II.3.4

Lemma II.3.4

Lemma II.3.4. Let G be a group that satisfies the ascending chain
condition on normal subgroups and let f be an endomorphism of G . Then
f is an automorphism if and only if f is an epimorphism (i.e., an onto
homomorphism). Let G be a group that satisfies the descending chain
condition on normal subgroups and let f be a normal endomorphism of G .
Then f is an automorphism if and only if f is a monomorphism (i.e., a one
to one homomorphism).

Proof. Suppose G satisfies the ascending chain condition and that f is an
epimorphism. Since a composition of onto functions is onto, then
f k = ff · · · f is also an epimorphism of G . Recall that if f : G → H is a
homomorphism, then Ker(f ) is a subgroup of H by Exercise I.2.9(a) and
Ker(f ) / G by Theorem I.5.5.

So we have the ascending chain of normal
subgroups of G , 〈e〉 < Ker(f ) < Ker(f 2) < · · · (where f k = ff · · · f ).
Since G satisfied the ascending chain condition, then Ker(f i ) = Ker(f n)
for some n ∈ N and for all i ≥ n.
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Lemma II.3.4

Lemma II.3.4 (continued 1)

Proof (continued). If a ∈ G and f (a) = e, then a = f n(b) for some
b ∈ G since f n is onto, and e = f (a) = f (f n(b)) = f n+1(b).
Consequently, b ∈ Ker(f n+1) = Ker(f n) which implies that a = f n(b) = e;
that is, f (a) = e implies a = e. So Ker(f ) = {e} and by Theorem I.2.3(i),
f is a monomorphism (one to one homomorphism). So f : G → G is a one
to one and onto homomorphism and hence is an automorphism of G .

Suppose G satisfies the descending chain condition and that f is a
monomorphism. Since f is a normal endomorphism, then for k ≥ 1 and for
all a ∈ G we have for any b ∈ G that

af k(b)a−1 = af (f k−1(b))1−1 = f (af k−1(b)a−1)

= f (f (af k−2(b)a−1)) = · · · = f k(aba−1) ∈ Im(f k).

So Im(f k)a−1 ⊂ Im(f k) for all a ∈ G , and by Theorem I.5.1(iv),
Im(f k) / G . So we have the descending chain G > Im(f ) > Im(f 2) > · · ·
and by hypothesis, Gi = Gn for some n ∈ N and for all i ≥ n, which
implies that Im(f n) = Im(f n+1).
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Lemma II.3.4

Lemma II.3.4 (continued 2)

Lemma II.3.4. Let G be a group that satisfies the ascending chain
condition on normal subgroups and let f be an endomorphism of G . Then
f is an automorphism if and only if f is an epimorphism (i.e., an onto
homomorphism). Let G be a group that satisfies the descending chain
condition on normal subgroups and let f be a normal endomorphism of G .
Then f is an automorphism if and only if f is a monomorphism (i.e., a one
to one homomorphism).

Proof (continued). Then for any a ∈ G , we have f n(a) = f n+1(b) for
some b ∈ G (since the images of f n and f n+1 are the same). A
composition of one to one maps is one to one, so that the fact that f is a
monomomorphism implies that f n is also a monomorphism, so
f n(a) = f n+1(b) = f n(f (b)) implies a = f (b). That is, any a ∈ G is the
image under f of some b ∈ G and so f is onto. Therefore, f : G → G is a
one to one and onto homomorphism and hence is an automorphism of
G .
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Lemma II.3.5

Lemma II.3.5

Lemma II.3.5. If G is a group that satisfies both the ascending and
descending chain conditions on normal subgroups an df is a normal
endomorphism of G , then for some n ≥ 1, we have G = Ker(f n)× Im(f n).

Proof. As shown in the second part of the proof of Lemma II.3.4, since f
is a normal endomorphism, then for all k ≥ 1 we have Im(f k) / G . Also as
in the proof of Lemma II.3.4, we have two chains of normal subgroups,
G > Im(f ) > Imf 2 > · · · and 〈e〉 < Ker(f ) < Ker(f 2) < · · · .

Since G
satisfies both the ascending chain condition and the descending chain
condition then Im(f k) = Im(f h) and Ker(f j) = Ker(f n) for all k ≥ n, for
some n ∈ N.

Suppose a ∈ Ker(f n) ∩ Im(f n). Then a = f n(b) for some b ∈ G (since
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Lemma II.3.5

Lemma II.3.5 (continued)

Lemma II.3.5. If G is a group that satisfies both the ascending and
descending chain conditions on normal subgroups an df is a normal
endomorphism of G , then for some n ≥ 1, we have G = Ker(f n)× Im(f n).

Proof (continued). For any c ∈ G with f n(c) ∈ Im(f n) = Im(f 2n) we
have f n(c) = f 2n(d) for some d ∈ G . Thus
f n(cf n(d−1)) = f n(c)f n(f n(d−1))− f n(c)f 2n(d−1) = f n(c)(f 2n(d))−1 =
f n(c)(f n(c))−1 = e and hence c = f n(d−1) ∈ Ker(f n). Since
c = (cf n(d−1))(f n(d)) and c is any element of G , then
G = Ker(f n)Im(f n). By Corollary I.8.7, G ∼= Ker(f n)× Im(f n).
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Corollary II.3.6

Corollary II.3.6

Corollary II.3.6. If G is an indecomposable group that satisfies both the
ascending and descending chain conditions on normal subgroups and f is a
normal endomorphism of G , then either f is nilpotent of f is an
automorphism.

Proof. By Lemma II.3.5, there is n ∈ N such that G ∼= Ker(f n)× Im(f n).
Since G is indecomposable then either Ker(f n) = 〈e〉 or Im(f n) = 〈e〉.

If
Im(f n) = 〈e〉 then (by definition) f is nilpotent. If Ker(f n) = 〈e〉 then
Ker(f ) = 〈e〉 (since 〈e〉 < Ker(f ) < Ker(f 2) < · · · ). So by Theorem
I.2.3(i), f is a monomorphism (one to one) and by Lemma II.2.4 (the
second claim) f is an automorphism.
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Corollary II.3.7

Corollary II.3.7

Corollary II.3.7. Let G (where G 6= 〈e〉) be an indecomposable group
that satisfies both the ascending and descending chain conditions on
normal subgroups. If f1, f2, . . . , fn are normal nilpotent epimorphisms of G
such that fi1 + fi2 + · · ·+ fir (where 1 ≤ i1 < i2 < · · · < ir ≤ n) is an
epimorphism, then f1 + f2 + · · ·+ fn is nilpotent.

Proof. By Exercise III.3.8(c), if the sum of two normal endomorphisms is
itself an endormorphism, then the sum is normal. Induction implies that
this holds for any finite sum of normal endormorphisms. Since each
fi1 + fi2 + · · ·+ fir is an endomorphisms by hypothesis, then Exercise
II.3.8(c) implies that fi1 + fi2 + · · ·+ fir is a normal endomorphism. So we
prove the corollary for n = 2 and then the general result will follow by
induction.

Consider f1 + f2, a normal endomorphism of G . ASSUME f1 + f2 is not
nilpotent, then by Corollary II.3.6 it is an automorphism of G .
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Corollary II.3.7

Corollary II.3.7 (continued 1)

Proof (continued). So f1 + f2 : G → G has an inverse g which is also an
automorphism of G (by Exercise I.2.15(a), the set of automorphisms of G
form a group Aut(G )). Then g−1 = f1 + f2 and for all a, b ∈ G we have

g(aba−1) = g(ag−1(b′)a−1) since b′ = g(b) for some unique b′ ∈ G

= g(g−1(ab′a−1) since g−1 = f1 + f2 is normal

= ab′a−1 = ag(b)a−1

and so g is normal. If we define g1 = f1 ◦ g = f1g and g2 = f2 ◦ g = f2g
then g1 + g2 = f1g + f2g = (f1 + f2)g = 1G (because for any a ∈ G , let
b = g(a) so a = g−1(b), we have

(g1 + g2)(a) = g1(a)g2(a) by the definition of g − 1 + g − 2

= (f1 ◦ g)(a) (f2 ◦ g)(a) = f1(g(a))f2(g(a))

= f1(b)f − 2(b) = (f1 + f2)(b) by the definition of f1 + f2

= g−1(b)g−1(g(a)) = a.)
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Corollary II.3.7

Corollary II.3.7 (continued 2)

Proof (continued). So for all x ∈ G ,
x−1 = (g1 + g2)(x

−1) = g1(x
−1)g2(x

−1) (by the definition of g1 + g2).
Hence

x = (g1(x
−1g2(x

−1))−1 = (g2(x
−1))−1(g1(x

−1))−1

= g2(x)g1(x) by Exercise I.2.1

= (g − 2 + g1)(x) by the definition of g2 + g1,

so g2 + g1 = 1G . Therefore g1 + g2 = g2 + g1 = 1G and so
g1(g1 + g2) = g − 11G = 1Gg1 = (g1 + g2)g1 and so g1g2 = g2g1

(because for any a ∈ G , since g1 is a homomorphism, we have
g1(g1 + g2)g1(a) = g1(g1(a)g2(a)) = g1(g1(a))ga(g2(a)) and
(g1 + g2)g1(a) = g1(g1(a))g2(g1(a)) by the definition of g1 + g2, and so
g1(g1(a))g1(g2(a)) = g1(g1(a))g2(g1(a)) and multiplying both sides of this
by g1(g1(a))

−1 we have g1(g2(a))− g2(g1(a)), hence g1g2 = g2g1).
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Corollary II.3.7

Corollary II.3.7 (continued 3)

Proof (continued). In Exercise II.3.C it is shown by induction that

(g1 + g2)
m =

m∑
i=0

cig
i
1g

m−i
2

where ci ∈ N are the binomial coefficients ci =
(m

i

)
= m!

i!(m−i)! , to be
encountered in Section III.1 in Theorem III.1.6 in the setting of rings.
Here, cih means h + h + · · ·+ h (ci summands). Since each fi is nilpotent
by hypothesis then Ker(fi ) 6= {e} (or else Ker(f n

i ) = {e} for all n ∈ N and
f is not nilpotent), so for gi = fi ◦ g = fig , where i ∈ {1, 2}, we have
Ker(gi ) = Ker(fig) 6= {e} and so by Theorem I.2.3(i), gi is not a
monomorphism (not one to one) and hence gi is not an automorphism as
shown above and fi is a normal endomorphism by hypothesis, then by
Exercise II.3.8(a), gi = fig is normal.

Therefore by Corollary II.3.6, since
gi is not an automorphism then gi is nilpotent. So let n1, n2 ∈ N such that
for all a ∈ G , gn1

1 (a) = gn2
2 (a) = e.
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Corollary II.3.7

Corollary II.3.7 (continued 4)

Proof (continued). Define n = max{n1, n2} and choose m large enough
that m/2 ≥ n. Then for i = 0, 1, . . . ,m, either i or m − i is greater than
or equal to m/2 ≥ n. For such m we have

(g1 + g2)
m(a) =

(
m∑

i=0

cig
i
1g

m−i
2

)
(a) the sums are in

the group of functions from G to G

=
m∏

i=0

(g i
1(g

m−i
2 (a)))ci by the definition of function sum

in the group of functions mapping G → G of

Exercise II.3.B and the notation for cih and

the product of functions means composition

=
m∏

i=0

eci since either i or m − i is ≥ n

= e. (∗)
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Corollary II.3.7

Corollary II.3.7 (continued 5)

Corollary II.3.7. Let G (where G 6= 〈e〉) be an indecomposable group
that satisfies both the ascending and descending chain conditions on
normal subgroups. If f1, f2, . . . , fn are normal nilpotent epimorphisms of G
such that fi1 + fi2 + · · ·+ fir (where 1 ≤ i1 < i2 < · · · < ir ≤ n) is an
epimorphism, then f1 + f2 + · · ·+ fn is nilpotent.
Proof (continued). But since we showed above that g1 + g2 = 1G then
we must have for all m ∈ N that

(g1 + g2)
m = 1G (∗∗)

(since the exponent means function composition). By hypothesis G 6= 〈e〉,
so there is a ∈ G with a 6= e. We now have (g1 + g2)

m(a) = e by (∗) and
(g1 + g2)

m(a) = a by (∗∗), a CONTRADICTION. So the assumption that
f1 + f2 is not nilpotent is false, and hence f1 + f2 is nilpotent. The general
result now holds by induction, as described above.
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. (The Krull-Schmidt Theorem)
Let G be a group that satisfies both the ascending and descending chain
conditions on normal subgroups. If G = G1 ×i G2 ×i · · · ×i Gs and
G = H1 ×i H2 ×i · · · ×i Ht with each Gi ,Hj indecomposable, then s = t
and after reindexing, Gi

∼= Hi for every i and for each r < t,

G = G1 ×i G2 ×i · · · ×i Gr ×i Hr+1 ×i Hr+2 ×i · · · ×i Ht .

Proof. We start with the hypothesis that G = G1 ×i G2 ×i · · · ×i Gs .

Let P(0) be the statement: “G = H1 ×i H2 ×i · · · ×i Ht .” For
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued 1)

Proof(continued). P(0) is true by hypothesis. Suppose P(r − 1) is true;
that is, “After some reindexing Gi

∼= Hi for i = 1, 2, . . . , r − 1 and
G = G1 ×i G2 ×i · · · ×i Gr−1 ×i Hr ×i Hr−1 ×i · · · ×i Ht .” Let
π1, π2, . . . , πs be the canonical epimorphism associated with the internal
direct product G = G1 ×i G2 ×i · · · ×i Gs (so that πi : G → Gi ). Let
π′1, π

′
2, . . . , π

′
i be the canonical epimorphism associated with the internal

direct product G = G1 ×i G2 ×i · · · ×i Gr−1 ×i Hr ×i · · · ×i Ht (so that
πi : G → Gi for 1 ≤ i ≤ r − 1 and πi : G → Hi for r ≤ i ≤ t). Let λi be
the inclusion map sending Gi into G and let λ′i be the inclusion map
sending the ith factor of G1 ×i G2 ×i · · · ×i Gr−1 ×i Hr ×i Hr+1 ×i · · · ×i Ht

into G . For each i let ϕi = λiπi : G → G and let ψi = λ′iπ
′
i : G → G (i.e.,

ϕi and ψi are compositions; notice that the λi ’s and λ′i ’s are necessary
since πi maps G to Gi , not G ).
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued 2)

Proof(continued). We claim that we have the following nine identities:

ϕi |G1 = 1Gi
ϕiϕi = ϕi ϕiϕj = 0G for i 6= j

ψ1 + ψ2 + · · ·+ ψt = 1G ψiψi = ψi ψiψj = 0 for i 6= j
Im(ϕi ) = Gi Im(ψi ) = Gi for i < r Im(ψi ) = Hi for i ≥ r .

We leave the proofs of these claims to Exercise II.3.D. Now for i < r we
have for any x ∈ G that

ϕrψi = ϕr (ψi (x))

= ϕr (1Gi
(ψi (x))) since Im(ψi ) = Fi for i < r

= ϕr (ϕi (ψi (x))) since Im(ψi ) = Gi for i < r and ϕi |Gi
− 1Gi

= (ϕrϕi )(ψi (x)) since function composition is associative

= 0G (ψi (x)) since ϕiϕj = 0G for i 6= j

= e.

Therefore, ϕyψi = 0G for i < r .
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued 3)

Proof(continued). These identities give

ϕr = ϕr1G

= ϕr (ψ1 + ψ2 + · · ·+ ψt) since ψ1 + ψ2 + · · ·+ ψt = 1G

= ϕrψ1 + ϕrψ2 + · · ·+ ϕrψt

with the last inequality holding because for
g1g2 · · · gt ∈ G = G1 ×i G2 ×i · · · ×i Gr ×i Hr+1 ×i Hr+2 ×i · · · ×i Ht we
have

ϕr (ψ1 + ψ2 + · · ·+ ψt)(g1g2 · · · gt)

= ϕr (ψ1(g1g2 · · · gt)ψ2(g1g2 · · · gt) · · ·ψt(g1g2 · · · gt))

by the definition of ψ1 + ψ2 + · · ·+ ψt

= ϕr (ψ1(g1g − 2 · · · gt))ϕr (ψ2(g1g2 · · · gt)) · · ·ϕr (ψt(g1g2 · · · gt))

since ϕr is a homomorphism
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued 4)

Proof(continued).

ϕr (ψ1 + ψ2 + · · ·+ ψt)(g1g2 · · · gt)

= ee · · · eϕr (ψ)r(g1g2 · · · gt))ϕr+1(g1g2 · · · gt)) · · ·ϕr (ψt(g1g2 · · · gt))

since ϕrψi = 0G as shown in the previous paragraph

= (ϕ2ψr + ϕrψr+1 + · · ·+ ϕrψt)(g1g2 · · · gt)

by the definition of ϕ2ψr + ϕrψr+1 + · · ·+ ϕrψt .

Since ϕr and ψi are normal endomorphisms (since Im(ϕr ) = Gr / G ,
Im(ψi ) = Gi / G if i < r , and Im(ψi ) = Hi / G is i ≥ r) then by Exercise
II.3.8(a,) ϕrψi is a normal endomorphism. By Exercise II.3.9, every sum of
distinct ϕrψi is a normal endomorphism.

Now ϕr |Gr is a (normal)
automorphism of Gr and by Exercise II.3.6(b), since G satisfies both the
ACC and the DCC then Gr < G also does. ASSUME that normal
endomorphism ϕrψj |Gr are nilpotent for all j with r ≤ j ≤ t.
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued 5)

Proof(continued). Since every sum of distinct ϕrψj |Gr is a normal
endomorphism, then by Corollary II.3.7 the sum
(ϕrψr + ϕrψr+1 + · · ·+ ϕrψt)|Gr = ϕr |Gr is nilpotent, a
CONTRADICTION to the fact hat ϕr |Gr = 1G2 . So the assumption that
ϕrψj |Gr is nilpotent for all j with r ≤ j ≤ t. So for some j with r ≤ j ≤ t
we have ϕrψj |Gr is not nilpotent. By Corollary II.3.6, ϕrψj |Gr is therefore
an automorphism of Gr . So for every n ∈ N, (ϕrψj)

n+1|Gr is also an
automorphism of Gr .

Now for all n ∈ N,

(ϕrψj)
n+1 = (ϕrψj)(ϕrψj) · · · (ϕrψj)︸ ︷︷ ︸

n+1 “factors”

= ϕr (ϕrψj)(ϕrψj) · · · (ϕrψj)︸ ︷︷ ︸
n “factors”

ψj = ϕr (ϕrψj)
nψj .

Next, ψjϕr : G → G is a normal endomorphism (by Exercise II.3.8(a)) and
ψjϕr |Hj : Hj → Hj (both ψj and ϕr are defined on all of G and
Im(ψj) = Hj since j ≥ r).
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued 6)

Proof(continued). ASSUME ψjϕr |Hj
is nilpotent, say (ψjϕr )

n(h) = e for
all h ∈ Hj . Since Gr 6= 〈e〉 (because Gr is indecomposable by hypothesis
and so Gr 6= 〈e〉 by the definition of “indecomposable”), then there is
some g ∈ Gr with g 6= e. By the induction hypothesis,
G = G1 ×i G2 ×i · · ·Gr−1 ×i Hr ×i Hr+1 ×i · · · ×i Ht , so
g = g1g2 · · · gr−1hrhr+1 · · · ht and

(ϕrψj)
n+1(g) = ϕr (ψjϕr )

nψj(g) = ϕr (ψjϕr )
nhi = ϕr (e) = e.

But then g ∈ Ker((ϕrψj)
n+1) and so Ker((ϕrψj)

n+1) 6= {e} and hence
(ϕrψj)

n+1|Gr is not a monomorphism (one to one) by Theorem I.2.3(i),
and so (ϕrψj)

n+1|Gr is not an automorphism of Gr , a CONTRADICTION.
So the assumption that ψjϕr |Hj

is nilpotent is false.

Now Hj < G satisfies
both the ACC and the DCC (by Exercise II.3.6(b), since G satisfies both)
and ψjϕr |Gr is a normal endomorphism (because ψjϕr is a normal
endomorphism on G as shown above), then by Corollary II.3.6, ψjϕr |Hj

is
an automorphism of Hj .
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n+1|Gr is not an automorphism of Gr , a CONTRADICTION.
So the assumption that ψjϕr |Hj

is nilpotent is false. Now Hj < G satisfies
both the ACC and the DCC (by Exercise II.3.6(b), since G satisfies both)
and ψjϕr |Gr is a normal endomorphism (because ψjϕr is a normal
endomorphism on G as shown above), then by Corollary II.3.6, ψjϕr |Hj

is
an automorphism of Hj .
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued 7)

Proof(continued). Now ϕr (Hj) ⊂ G and Im(ψjϕr |Hj
) = Hj so that

ψj |Gr : Gr → Hj is an isomorphism (and similarly ϕr |Hj
: Hj → Gr is an

isomorphism). Reindex the H’s such that Hj “moves into the rth slot” and
becomes Hr so that Gr

∼= Hr . Then Gi
∼= Hi for i = 1, 2, . . . , r and the

first half of claim P(r) holds.

We now need to show that
G = G1 ×i G2 ×i · · · ×i Gr ×i Hr+1 ×i Hr+2 ×i · · · ×i Ht and s = t By the
induction hypothesis
G = G1 ×i G2 ×i · · · ×i Gr−1 ×i Hr ×i Hr+1 ×i · · · ×i Ht . We have the
subgroup of G

〈G1,G2, . . . ,Gr−1,Hr+1,Hr+1, . . . ,Ht〉
= G1G2 · · ·Gr−1Hr+1Hr+1 · · ·Ht

by “an easily proved generalization of Theorem I.5.3” (see page 61)

= G1 ×i G2 ×i · · · ×i Gr−1 ×i Hr+1 ×i Hr+1 ×i · · · ×i Ht

by the definition of internal direct product (Definition I.8.8).
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued 8)

Proof(continued). Observe that for j < r ,

ψr (Gj) = ψrψj(G ) since Im(ψj) = Gj for j < r

= {e} since ψrψj = 0G for j 6= r

and for j > r ,

ψr (Hj) = ψrψj(G ) since Im(ψj) = Hj for j ≥ r

= {e} since ψrψj = 0G for j 6= r .

So ψr (G1G2 · · ·Gr−1Hr+1Hr+2 · · ·Ht) = {e} because each element of the
group is mapped to ee · · · e︸ ︷︷ ︸

t t

. Since ψr |Gr = 1Gr is an isomorphism it is one

to one (injective) on Gr , then applying ψr to
Gr ∩ (G1G2 · · ·Gr−1Hr+1Hr+2 · · ·Ht) yields only {e} and so the only
element of this intersection must be e (otherwise, ψr |Gr would not be
injective).
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued 9)

Proof(continued). So by the definition of internal direct product
(Definition I.8.8) we have

G ∗ = 〈G1,G2, . . . ,Gr−1,Gr ,Hr+1, . . . ,Ht〉
= G1G2 · · ·GrHr+1Hr+2 · · ·Ht by “an easily proved

generalization of Theorem I.5.3” (see page 61)

= G1 ×i G2 ×i · · · ×i Gr ×i Hr+1 ×i Hr+2 ×i · · · ×i Ht

(notice that the order does not matter by Theorem I.5.2(iv)).
Every element of G may be written g = g1g2 · · · gr−1hrhr+1 · · · ht where
gi ∈ G for 1 ≤ i ≤ r − 1 and hj ∈ Hj for r ≤ j ≤ t (by Theorem I.8.9; by
the induction hypothesis
G = G1 ×i G2 ×i · · · ×i Gr−1 ×i Hr ×i Hr+1 ×i · · · ×i Ht). Define
θ : G → G as θ(g) = g1g2 · · · gr−1ϕr (hr )hr+1hr+2 · · · ht . As observes
above (in a “similar” statement) ϕr |Hj

: Hj → Gr (where j = r) is an
isomorphism, so Im(Hr ) = Gr , and hence Im(θ) = G ∗.
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Theorem II.3.8. The Krull-Schmidt Theorem

Theorem II.3.8. The Krull-Schmidt Theorem (continued
10)

Proof(continued). By Theorem I.8.10, since we consider
1G1 , 1G2 , . . . , 1Gr−1 , ϕr , 1Hr+1 , 1Hr+2 , 1Ht are each monomorphisms so θ is a
monomorphism. By Exercise II.3.E, θ is normal. Therefore by Lemma
II.3.4, θ is an automorphism so that
G = Im(θ) = G ∗ = G1×i G2×i · · ·×i Gr−1×i Gr×i Hr+1×i Hr+2×i · · ·×i Ht

and the second part of the inductive claim P(r) holds, completing the
inductive argument.

We now must just show that s = t. After reindexing, Gi
∼= Hi for

0 ≤ i ≤ min{s, t}. If s = min{s, t} then
G = G1×i G2×i · · ·×i Gs = G1×i G2×i · · ·×i Gs ×i Hs+1×i · · ·×i Ht . But
none of the Gi ,Hi are the trivial group 〈e〉, so s = t. If t = min{s, t} then
G = G1 ×i G2 ×i · · · ×i Gs = G1 ×i G2 ×i · · · ×i Gt and again s = t.
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