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Theorem 11.4.3

Theorem 11.4.3. If a group G acts on a set S, then the cardinal number
of x € S, ||, is the index [G : G4] (recall that [G : G4] is the cardinal
number of the left cosets of subgroups Gy in group G).
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Theorem 11.4.3

Theorem 11.4.3

Theorem 11.4.3. If a group G acts on a set S, then the cardinal number

of x € S, ||, is the index [G : G4] (recall that [G : G4] is the cardinal
number of the left cosets of subgroups Gy in group G).

Proof. Let g, h € G. We denote the group action with a star, x. We have
gxx=hix<= g tx(hxx) =g x(g*x)= (g g)xx=x

<« g th e G(defn of G) < hG, = gG,.
So the map given by gG, — g * x is well defined.
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Theorem 11.4.3

Theorem 11.4.3. If a group G acts on a set S, then the cardinal number
of x € S, ||, is the index [G : G4] (recall that [G : G4] is the cardinal
number of the left cosets of subgroups Gy in group G).

Proof. Let g, h € G. We denote the group action with a star, x. We have
gxx=hix<= g tx(hxx) =g x(g*x)= (g g)xx=x

<« g th e G(defn of G) < hG, = gG,.

So the map given by gGy — g * x is well defined. This mapping from the
set of cosets of Gy in G into the orbit of x, x = {gxx | g € G} is one to
one (by this string of equivalent statements) and onto (since g x x € X is
the image of coset gGy). So this mapping is a bijection. Hence the
cardinality of the set of left cosets of Gy in G equals the cardinality of set
X, [G: Gx] = [x]. O
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Corollary 11.4.4

Corollary 11.4.4. Let G be a finite group and K a subgroup of G.
(i) The number of elements in the conjugacy class of x € G is
[G : Cs(x)], which divides |G]|.
(i) If X1,X2,...,Xp are the distinct conjugacy classes of G, then
|Gl = 227416 = Co(xi)]-
(iii) The number of subgroups of G conjugate to K is
[G : Ng(K)], which divides |G|.
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Corollary 11.4.4

Corollary 11.4.4. Let G be a finite group and K a subgroup of G.
(i) The number of elements in the conjugacy class of x € G is
[G : Cs(x)], which divides |G]|.
(i) If X1,X2,...,Xp are the distinct conjugacy classes of G, then
|Gl = 227416 = Co(xi)]-
(iii) The number of subgroups of G conjugate to K is
[G : Ng(K)], which divides |G|.

Proof. (i) Now Cg(x) ={g € G|gx=xg} ={gc G|gxgt=x}isa

subgroup of G (by Theorem 11.4.2(ii) where the action is conjugation). So
by Theorem [1.4.3, the number of elements in the conjugacy class of x is
x| = [{gxg ™! | g € G}| =[G : Cs(x)] (since action is conjugation). By
Lagrange's Theorem (Theorem 1.4.6) [G : Cg(x)] = |G|/|Cs(x)| and so
[G : Cs(x)] divides |G]|.
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Corollary 11.4.4

Corollary 11.4.4 (continued 1)

Corollary 11.4.4. Let G be a finite group and K a subgroup of G.

(i) If X1,X2,...,X, are the distinct conjugacy classes of G, then

1G] =>274[G = Co(xi)]-

Proof (continued). (ii) Since conjugation by an element of group G is an

action on G (treated as a set) then by Theorem 11.4.2(i), conjugation is an
equivalence relation.
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Corollary 11.4.4 (continued 1)

Corollary 11.4.4. Let G be a finite group and K a subgroup of G.

(i) If X1,X2,...,X, are the distinct conjugacy classes of G, then

1G] =>274[G = Co(xi)]-

Proof (continued). (ii) Since conjugation by an element of group G is an
action on G (treated as a set) then by Theorem 11.4.2(i), conjugation is an
equivalence relation. The conjugacy classes X1, X», ..., X, are the orbits of
G under the action of conjugation and so are equivalence classes of G.
Since the equivalence classes must partition G (Theorem 0.4.1) then

|G| =>4 |xil = >°11[G : Cs(xi)] by Theorem 11.4.3.
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Corollary 11.4.4 (continued 2)

Corollary 11.4.4. Let G be a finite group and K a subgroup of G.

(iii) The number of subgroups of G conjugate to K is
[G : Ng(K)], which divides |G|.

Proof (continued). (iii) Now Ng(K)={g€ G |gKg ! =K} isa
subgroup of G (by Theorem 11.4.2(ii) where set S is the set of all
subgroups of G, so x = K is an element of S, and the action is
conjugation).

Modern Algebra B A G



Corollary 11.4.4 (continued 2)

Corollary 11.4.4. Let G be a finite group and K a subgroup of G.

(iii) The number of subgroups of G conjugate to K is
[G : Ng(K)], which divides |G|.

Proof (continued). (iii) Now Ng(K)={g€ G |gKg ! =K} isa
subgroup of G (by Theorem 11.4.2(ii) where set S is the set of all
subgroups of G, so x = K is an element of S, and the action is
conjugation). Here, the orbit of x = K under conjugation is
x=K={gKg'| g€ G} and so |[x| = |K] is the number of distinct
conjugates of K in G, each of which is a subgroup of G by Exercise 1.5.6.
So the number of subgroups of G conjugate to K is [x| = |K| and by
Theorem 11.4.3 this equals [G : Ng(K)]. By Lagrange's Theorem (Theorem
1.4.6) [G : Ng(K)] = |G|/|Ng(K)| and so [G : Ng(K)] divides |G]. O

Modern Algebra TR



Theorem 11.4.5

Theorem 11.4.5. If a group G acts on set S, then this action induces a
homomorphism mapping G — A(S) where A(S) is the group of all
permutations of S.
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Theorem 11.4.5

Theorem 11.4.5. If a group G acts on set S, then this action induces a
homomorphism mapping G — A(S) where A(S) is the group of all
permutations of S.

Proof. We represent the group action with a star, x. If g € G, define

Ts:S—Sbyx— gxx. Sincex=exx= (g lg)xx=g1x(g*x)
for all x € S, then 7, is onto (since 75(g ™! * x) = x). Similarly,
g *x =gy (where x,y € S) implies

x = g lx(gxx) by above

= g 1« (g*y) by hypothesis
=y by above,

whence Tg is one to one.
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Theorem 11.4.5

Theorem 11.4.5. If a group G acts on set S, then this action induces a
homomorphism mapping G — A(S) where A(S) is the group of all
permutations of S.

Proof. We represent the group action with a star, x. If g € G, define
Ts:S—Sbyx— gxx. Sincex=exx= (g lg)xx=g1x(g*x)
for all x € S, then 7, is onto (since 75(g ™! * x) = x). Similarly,

g *x =gy (where x,y € S) implies
x = g lx(gxx) by above
= g 1« (g*y) by hypothesis
=y by above,
whence 7, is one to one. So T, is a bijection from set S to set S, so 7, is
a permutation of set S (see the definition on page 26). By the definition

of action, 74gr = 7,7, for all g,g’ € G, so the map G — A(S) given by
g > Tg is a homomorphism and this map is the desired (“induced")

map. L]
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Corollary 11.4.6. Cayley’s Theorem

Corollary 11.4.6

Corollary 11.4.6. Cayley’s Theorem.
If G is a group, then there is a monomorphism (a one to one
homomorphism) mapping G — A(G). Hence, every group is isomorphic to

a group of permutations. In particular, every finite group is isomorphic to
a subgroup of S, with n = |G|.
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Corollary 11.4.6

Corollary 11.4.6. Cayley’s Theorem.

If G is a group, then there is a monomorphism (a one to one
homomorphism) mapping G — A(G). Hence, every group is isomorphic to
a group of permutations. In particular, every finite group is isomorphic to
a subgroup of S, with n = |G|.

Proof. We represent the group action with a star, x. Let G act on itself
by left translation (so g acts on x to produce g x x = gx € G). Then by
Theorem 11.4.5, there is a homomorphism 7 : G — A(G); as seen in the
proof, the homomorphism maps g € G to 7, where 7,(x) = g x = gx. If
7(g) = 74 = 1 (that is, g is mapped under 7 to the identity of A(G); so
g € Ker(7)), then g x x = gx = 74(x) = x for all x € G. The only element
such that gx = x forall x € G is g = e.
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Corollary 11.4.6

Corollary 11.4.6. Cayley’s Theorem.

If G is a group, then there is a monomorphism (a one to one
homomorphism) mapping G — A(G). Hence, every group is isomorphic to
a group of permutations. In particular, every finite group is isomorphic to
a subgroup of S, with n = |G|.

Proof. We represent the group action with a star, x. Let G act on itself
by left translation (so g acts on x to produce g x x = gx € G). Then by
Theorem 11.4.5, there is a homomorphism 7 : G — A(G); as seen in the
proof, the homomorphism maps g € G to 7, where 7,(x) = g x = gx. If
7(g) = 74 = 1 (that is, g is mapped under 7 to the identity of A(G); so
g € Ker(7)), then g x x = gx = 74(x) = x for all x € G. The only element
such that gx = x for all x € G is g = e. That is, Ker(7) = {e}. By
Theorem 1.2.3(i) 7 is a monomorphism (one to one homomorphism). So 7
is an isomorphism between G and 7(G) and so G is isomorphic to a
subgroup of A(G) (that is, 7(G) < A(G) is a group of permutations).
When |G| = n, A(G) = S, and this gives the second claim. O
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Corollary 11.4.7

Corollary 11.4.7. Let G be a group.

(i) For each g € G, conjugation by g induces an automorphism
of G.

(ii) There is a homomorphism mapping G — Aut(G) whose
kernel is C(G) = {g € G | gx = xg for all x € G}.
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Corollary 11.4.7

Corollary 11.4.7

Corollary 11.4.7. Let G be a group.

(i) For each g € G, conjugation by g induces an automorphism
of G.

(ii) There is a homomorphism mapping G — Aut(G) whose
kernel is C(G) = {g € G | gx = xg for all x € G}.

Proof. (i) If G acts on itself by conjugation, then for each g € G, the

map 7z : G — G given by 74(x) = gxg ! is a bijection, as shown in the
proof of Theorem 11.4.5.
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Corollary 11.4.7

Corollary 11.4.7. Let G be a group.

(i) For each g € G, conjugation by g induces an automorphism
of G.

(ii) There is a homomorphism mapping G — Aut(G) whose
kernel is C(G) = {g € G | gx = xg for all x € G}.

Proof. (i) If G acts on itself by conjugation, then for each g € G, the
map 7z : G — G given by 74(x) = gxg ! is a bijection, as shown in the
proof of Theorem I1.4.5. For x,y € G,

To(xy) = gxvg ! = gxg lgyg ! = 74(x)74(y) and so 7, is a
homomorphism. So 7 is an isomorphism of G with itself. That is, 7, is an
automorphism of G—the automorphism induced by element g € G.
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Corollary 11.4.7 (continued)

Corollary 11.4.7. Let G be a group.

(i) For each g € G, conjugation by g induces an automorphism
of G.

(i) There is a homomorphism mapping G — Aut(G) whose
kernel is C(G) = {g € G | gx = xg for all x € G}.

Proof (continued). (i) Let G act on itself by conjugation. By Theorem
11.4.5, there is a homomorphism 7: G — A(G) (where A(G) is the group
of all permutations of G). This 7 is induced by the conjugation action, so

for g € G we have 7(g) € A(G) is the permutation of G that maps x € G

to gxg L.
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Corollary 11.4.7 (continued)

Corollary 11.4.7. Let G be a group.

(i) For each g € G, conjugation by g induces an automorphism
of G.

(i) There is a homomorphism mapping G — Aut(G) whose
kernel is C(G) = {g € G | gx = xg for all x € G}.

Proof (continued). (i) Let G act on itself by conjugation. By Theorem
11.4.5, there is a homomorphism 7: G — A(G) (where A(G) is the group
of all permutations of G). This 7 is induced by the conjugation action, so
for g € G we have 7(g) € A(G) is the permutation of G that maps x € G
to gxg~1. Now if g € Ker(7) then 7(g) = 1¢ and this is the case if and
only if gxg=! = x for all x € G. So if g € Ker(7) then g € C(G) (and if
g € C(G) then g € Ker(7)). That is, Ker(7) = C(G). O
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Proposition 11.4.8

Proposition 11.4.8

Proposition 11.4.8. Let H be a subgroup of a group G and let G act on
set S of all left cosets of H in G by left translation. Then the kernel of the
induced homomorphism mapping G — A(S) is contained in H.
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Proposition 11.4.8

Proposition 11.4.8. Let H be a subgroup of a group G and let G act on
set S of all left cosets of H in G by left translation. Then the kernel of the
induced homomorphism mapping G — A(S) is contained in H.

Proof. Since G acts on S by left translation, the induced homomorphism
mapping G — A(S) maps g to the permutation of the set of left cosets of
H, say 74, which maps xH to gxH (so 74(xH) = gxH and the
homomorphism maps g to 7).
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Proposition 11.4.8

Proposition 11.4.8. Let H be a subgroup of a group G and let G act on
set S of all left cosets of H in G by left translation. Then the kernel of the
induced homomorphism mapping G — A(S) is contained in H.

Proof. Since G acts on S by left translation, the induced homomorphism
mapping G — A(S) maps g to the permutation of the set of left cosets of
H, say 74, which maps xH to gxH (so 74(xH) = gxH and the
homomorphism maps g to 7). If g is in the kernel of the homomorphism
then 7, = 15 and so gxH = xH for all x € G. In particular, for x = e we
have geH = eH = H. Now gH = H implies g € H (for example, e € H
and so ge = g € H). So the kernel is contained in H. O
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Corollary 11.4.9

Corollary 11.4.9

Corollary 11.4.9. If H is a subgroup of index n in a group G (that is, H
has n left cosets in G) and no nontrivial normal subgroup of G is
contained in H, then G is isomorphic to a subgroup of S,.
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Corollary 11.4.9

Corollary 11.4.9. If H is a subgroup of index n in a group G (that is, H
has n left cosets in G) and no nontrivial normal subgroup of G is
contained in H, then G is isomorphic to a subgroup of S,.

Proof. Let S be the set of all left cosets of H in G. Let G act on the set
S by left translation. By Proposition 11.4.8, the kernel of the induced
homomorphism mapping G — A(S) is contained in H. The kernel is a
normal subgroup of G by Theorem 1.5.5. By hypothesis, the only normal
subgroup of G contained in H is (e), so the kernel of the induced
homomorphism is (e). By Theorem 1.2.3(i) the induced homomorphism is
a monomorphism (that is, it is one to one).
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Corollary 11.4.9

Corollary 11.4.9. If H is a subgroup of index n in a group G (that is, H
has n left cosets in G) and no nontrivial normal subgroup of G is
contained in H, then G is isomorphic to a subgroup of S,.

Proof. Let S be the set of all left cosets of H in G. Let G act on the set
S by left translation. By Proposition 11.4.8, the kernel of the induced
homomorphism mapping G — A(S) is contained in H. The kernel is a
normal subgroup of G by Theorem 1.5.5. By hypothesis, the only normal
subgroup of G contained in H is (e), so the kernel of the induced
homomorphism is (e). By Theorem 1.2.3(i) the induced homomorphism is
a monomorphism (that is, it is one to one). Therefore G is isomorphic to a
subgroup of the group of all permutations of the n left cosets of H. This
group of permutations is isomorphic to S, and so G is isomorphic to a
subgroup of S,,. O
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Corollary 11.4.10

Corollary 11.4.10

Corollary 11.4.10. If H is a subgroup of a finite group G of index p (that

is, H has p left cosets in G), where p is the smallest prime dividing the
order of G, then H is normal in G.
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Corollary 11.4.10

Corollary 11.4.10

Corollary 11.4.10. If H is a subgroup of a finite group G of index p (that

is, H has p left cosets in G), where p is the smallest prime dividing the
order of G, then H is normal in G.

Proof. Let S be the set of all left cosets of H in G. Then the set of all

permutations of S, A(S), forms a group isomorphic to S, since the
number of left cosets in [G : H] = p.
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Corollary 11.4.10

Corollary 11.4.10. If H is a subgroup of a finite group G of index p (that
is, H has p left cosets in G), where p is the smallest prime dividing the
order of G, then H is normal in G.

Proof. Let S be the set of all left cosets of H in G. Then the set of all
permutations of S, A(S), forms a group isomorphic to S, since the
number of left cosets in [G : H] = p. If K is the kernel of the induced
homomorphism mapping G — A(S) of Proposition 11.4.8, then K is normal
in G (as shown in the proof of Corollary 11.4.9) and is contained in H (as
shown in the proof of Proposition 11.4.8). Furthermore, G/K is isomorphic
to a subgroup of S, by the First Isomorphism Theorem (Corollary 1.5.7;
the image of the induced homomorphism is some subgroup of A(S)).
Hence, by Lagrange’s Theorem (Corollary 1.4.6), |G /K| divides |S,| = p!.
But every divisor of |G/K| =[G : K] must divide |G| = |K|[G : K].
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Corollary 11.4.10 (continued)

Corollary 11.4.10. If H is a subgroup of a finite group G of index p (that
is, H has p left cosets in G), where p is the smallest prime dividing the
order of G, then H is normal in G.

Proof (continued). Since no number smaller than p (except 1) can
divide |G|, we must have |G/K| = p or |G/K| = 1. However

1G/K]

[G:K]=[G: H][H:K]
= p[H : K] since p =[G : H] by hypothesis
> p.

Therefore |G/K| = p and it must be that [H: K] =1. So H= K. But K
is normal in G and so H is normal in G. 0
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