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Theorem II.4.3

Theorem II.4.3

Theorem II.4.3. If a group G acts on a set S , then the cardinal number
of x ∈ S , |x |, is the index [G : Gx ] (recall that [G : Gx ] is the cardinal
number of the left cosets of subgroups Gx in group G ).

Proof. Let g , h ∈ G . We denote the group action with a star, ?. We have

g ? x = h ? x ⇐⇒ g−1 ? (h ? x) = g−1 ? (g ? x) = (g−1g) ? x = x

⇐⇒ g−1h ∈ Gx(defn of Gx) ⇐⇒ hGx = gGx .

So the map given by gGx 7→ g ? x is well defined.

This mapping from the
set of cosets of Gx in G into the orbit of x , x = {g ? x | g ∈ G} is one to
one (by this string of equivalent statements) and onto (since g ? x ∈ x is
the image of coset gGx). So this mapping is a bijection. Hence the
cardinality of the set of left cosets of Gx in G equals the cardinality of set
x , [G : Gx ] = |x |.
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Corollary II.4.4

Corollary II.4.4

Corollary II.4.4. Let G be a finite group and K a subgroup of G .

(i) The number of elements in the conjugacy class of x ∈ G is
[G : CG (x)], which divides |G |.

(ii) If x1, x2, . . . , xn are the distinct conjugacy classes of G , then
|G | =

∑n
i=1[G : CG (xi )].

(iii) The number of subgroups of G conjugate to K is
[G : NG (K )], which divides |G |.

Proof. (i) Now CG (x) = {g ∈ G | gx = xg} = {g ∈ G | gxg−1 = x} is a
subgroup of G (by Theorem II.4.2(ii) where the action is conjugation). So
by Theorem II.4.3, the number of elements in the conjugacy class of x is
|x | = |{gxg−1 | g ∈ G}| = [G : CG (x)] (since action is conjugation). By
Lagrange’s Theorem (Theorem I.4.6) [G : CG (x)] = |G |/|CG (x)| and so
[G : CG (x)] divides |G |.
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Corollary II.4.4

Corollary II.4.4 (continued 1)

Corollary II.4.4. Let G be a finite group and K a subgroup of G .

(ii) If x1, x2, . . . , xn are the distinct conjugacy classes of G , then
|G | =

∑n
i=1[G : CG (xi )].

Proof (continued). (ii) Since conjugation by an element of group G is an
action on G (treated as a set) then by Theorem II.4.2(i), conjugation is an
equivalence relation. The conjugacy classes x1, x2, . . . , xn are the orbits of
G under the action of conjugation and so are equivalence classes of G .
Since the equivalence classes must partition G (Theorem 0.4.1) then
|G | =

∑n
i=1 |x i | =

∑n
i=1[G : CG (xi )] by Theorem II.4.3.
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Corollary II.4.4

Corollary II.4.4 (continued 2)

Corollary II.4.4. Let G be a finite group and K a subgroup of G .

(iii) The number of subgroups of G conjugate to K is
[G : NG (K )], which divides |G |.

Proof (continued). (iii) Now NG (K ) = {g ∈ G | gKg−1 = K} is a
subgroup of G (by Theorem II.4.2(ii) where set S is the set of all
subgroups of G , so x = K is an element of S , and the action is
conjugation). Here, the orbit of x = K under conjugation is
x = K = {gKg−1 | g ∈ G} and so |x | = |K | is the number of distinct
conjugates of K in G , each of which is a subgroup of G by Exercise I.5.6.
So the number of subgroups of G conjugate to K is |x | = |K | and by
Theorem II.4.3 this equals [G : NG (K )]. By Lagrange’s Theorem (Theorem
I.4.6) [G : NG (K )] = |G |/|NG (K )| and so [G : NG (K )] divides |G |.
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Theorem II.4.5

Theorem II.4.5

Theorem II.4.5. If a group G acts on set S , then this action induces a
homomorphism mapping G → A(S) where A(S) is the group of all
permutations of S .

Proof. We represent the group action with a star, ?. If g ∈ G , define
τg : S → S by x 7→ g ? x . Since x = e ? x = (g−1g) ? x = g−1 ? (g ? x)
for all x ∈ S , then τg is onto (since τg (g−1 ? x) = x). Similarly,
g ? x = g ? y (where x , y ∈ S) implies

x = g−1 ? (g ? x) by above

= g−1 ? (g ? y) by hypothesis

= y by above,

whence τg is one to one.

So τg is a bijection from set S to set S , so τg is
a permutation of set S (see the definition on page 26). By the definition
of action, τgg ′ = τgτg ′ for all g , g ′ ∈ G , so the map G → A(S) given by
g 7→ τg is a homomorphism and this map is the desired (“induced”)
map.
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Corollary II.4.6. Cayley’s Theorem

Corollary II.4.6

Corollary II.4.6. Cayley’s Theorem.
If G is a group, then there is a monomorphism (a one to one
homomorphism) mapping G → A(G ). Hence, every group is isomorphic to
a group of permutations. In particular, every finite group is isomorphic to
a subgroup of Sn with n = |G |.
Proof. We represent the group action with a star, ?. Let G act on itself
by left translation (so g acts on x to produce g ? x = gx ∈ G ). Then by
Theorem II.4.5, there is a homomorphism τ : G → A(G ); as seen in the
proof, the homomorphism maps g ∈ G to τg where τg (x) = g ? x = gx . If
τ(g) = τg = 1G (that is, g is mapped under τ to the identity of A(G ); so
g ∈ Ker(τ)), then g ? x = gx = τg (x) = x for all x ∈ G . The only element
such that gx = x for all x ∈ G is g = e.

That is, Ker(τ) = {e}. By
Theorem I.2.3(i) τ is a monomorphism (one to one homomorphism). So τ
is an isomorphism between G and τ(G ) and so G is isomorphic to a
subgroup of A(G ) (that is, τ(G ) < A(G ) is a group of permutations).
When |G | = n, A(G ) ∼= Sn and this gives the second claim.
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Corollary II.4.7

Corollary II.4.7

Corollary II.4.7. Let G be a group.

(i) For each g ∈ G , conjugation by g induces an automorphism
of G .

(ii) There is a homomorphism mapping G → Aut(G ) whose
kernel is C (G ) = {g ∈ G | gx = xg for all x ∈ G}.

Proof. (i) If G acts on itself by conjugation, then for each g ∈ G , the
map τg : G → G given by τg (x) = gxg−1 is a bijection, as shown in the
proof of Theorem II.4.5.

For x , y ∈ G ,
τg (xy) = gxyg−1 = gxg−1gyg−1 = τg (x)τg (y) and so τg is a
homomorphism. So τg is an isomorphism of G with itself. That is, τg is an
automorphism of G—the automorphism induced by element g ∈ G .
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Corollary II.4.7

Corollary II.4.7 (continued)

Corollary II.4.7. Let G be a group.

(i) For each g ∈ G , conjugation by g induces an automorphism
of G .

(ii) There is a homomorphism mapping G → Aut(G ) whose
kernel is C (G ) = {g ∈ G | gx = xg for all x ∈ G}.

Proof (continued). (ii) Let G act on itself by conjugation. By Theorem
II.4.5, there is a homomorphism τ : G → A(G ) (where A(G ) is the group
of all permutations of G ). This τ is induced by the conjugation action, so
for g ∈ G we have τ(g) ∈ A(G ) is the permutation of G that maps x ∈ G
to gxg−1. Now if g ∈ Ker(τ) then τ(g) = 1G and this is the case if and
only if gxg−1 = x for all x ∈ G . So if g ∈ Ker(τ) then g ∈ C (G ) (and if
g ∈ C (G ) then g ∈ Ker(τ)). That is, Ker(τ) = C (G ).
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Proposition II.4.8

Proposition II.4.8

Proposition II.4.8. Let H be a subgroup of a group G and let G act on
set S of all left cosets of H in G by left translation. Then the kernel of the
induced homomorphism mapping G → A(S) is contained in H.

Proof. Since G acts on S by left translation, the induced homomorphism
mapping G → A(S) maps g to the permutation of the set of left cosets of
H, say τg , which maps xH to gxH (so τg (xH) = gxH and the
homomorphism maps g to τg ).

If g is in the kernel of the homomorphism
then τg = 1S and so gxH = xH for all x ∈ G . In particular, for x = e we
have geH = eH = H. Now gH = H implies g ∈ H (for example, e ∈ H
and so ge = g ∈ H). So the kernel is contained in H.
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Corollary II.4.9

Corollary II.4.9

Corollary II.4.9. If H is a subgroup of index n in a group G (that is, H
has n left cosets in G ) and no nontrivial normal subgroup of G is
contained in H, then G is isomorphic to a subgroup of Sn.

Proof. Let S be the set of all left cosets of H in G . Let G act on the set
S by left translation. By Proposition II.4.8, the kernel of the induced
homomorphism mapping G 7→ A(S) is contained in H. The kernel is a
normal subgroup of G by Theorem I.5.5. By hypothesis, the only normal
subgroup of G contained in H is 〈e〉, so the kernel of the induced
homomorphism is 〈e〉. By Theorem I.2.3(i) the induced homomorphism is
a monomorphism (that is, it is one to one).

Therefore G is isomorphic to a
subgroup of the group of all permutations of the n left cosets of H. This
group of permutations is isomorphic to Sn and so G is isomorphic to a
subgroup of Sn.
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group of permutations is isomorphic to Sn and so G is isomorphic to a
subgroup of Sn.
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Corollary II.4.10

Corollary II.4.10

Corollary II.4.10. If H is a subgroup of a finite group G of index p (that
is, H has p left cosets in G ), where p is the smallest prime dividing the
order of G , then H is normal in G .

Proof. Let S be the set of all left cosets of H in G . Then the set of all
permutations of S , A(S), forms a group isomorphic to Sp since the
number of left cosets in [G : H] = p.

If K is the kernel of the induced
homomorphism mapping G → A(S) of Proposition II.4.8, then K is normal
in G (as shown in the proof of Corollary II.4.9) and is contained in H (as
shown in the proof of Proposition II.4.8). Furthermore, G/K is isomorphic
to a subgroup of Sp by the First Isomorphism Theorem (Corollary I.5.7;
the image of the induced homomorphism is some subgroup of A(S)).
Hence, by Lagrange’s Theorem (Corollary I.4.6), |G/K | divides |Sp| = p!.
But every divisor of |G/K | = [G : K ] must divide |G | = |K |[G : K ].
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Corollary II.4.10

Corollary II.4.10 (continued)

Corollary II.4.10. If H is a subgroup of a finite group G of index p (that
is, H has p left cosets in G ), where p is the smallest prime dividing the
order of G , then H is normal in G .

Proof (continued). Since no number smaller than p (except 1) can
divide |G |, we must have |G/K | = p or |G/K | = 1. However

|G/K | = [G : K ] = [G : H][H : K ]

= p[H : K ] since p = [G : H] by hypothesis

≥ p.

Therefore |G/K | = p and it must be that [H : K ] = 1. So H = K . But K
is normal in G and so H is normal in G .
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