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Lemma II.5.1. Fraleigh, Theorem 36.1

Lemma II.5.1

Lemma II.5.1. Fraleigh, Theorem 36.1.
If a group H of order pn (p prime) acts on a finite set S and if
S0 = {x ∈ S | h ? x = x for all h ∈ H} then |S | ≡ |S0| (mod p).

Proof. Recall that the orbit of x ∈ S under action on S is
x = {h ? x | h ∈ H}. So an orbit contains exactly one element if and only
if x ∈ S0. Since the orbits represent equivalence classes, then they
partition set S so S = S0 ∪· x1 ∪· x2 ∪· · · · ∪· xm where |x i | > 1 for each i .
Hence |S | = |S0|+ |x1|+ |x2|+ · · ·+ |xm|.

Now |x i | | pn by Corollary
II.4.4(i) (since |H| = pn) and so p | |x i | for each i since |x i | > 1.
Therefore |S | ≡ |S0| (mod p).
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Theorem II.5.2. Fraleigh, Theorem 36.3, Cauchy’s Theorem

Theorem II.5.2

Theorem II.5.2. Fraleigh, Theorem 36.3. Cauchy’s Theorem.
If G is a finite group whose order is divisible by a prime p, then G contains
an element of order p.

Proof. Let S be the set of p-tuples of group elements with product e:

S = {(a1, a2, . . . , ap) | ai ∈ G and a1a2 · · · ap = e}.

Now with |G | = n, there are n choices for each of a1, a2, . . . , ap−1. But,
since the product of the p elements must be e, then
ap = (a1a2 · · · ap−1)

−1 and so there is only one choice for ap. So
|S | = np−1. Since p | |G | (or in the notation, p | n) then n ≡ 0 (mod p)
and so |S | ≡ 0 (mod p).

Let the group Zp act on set S as follows: for
k ∈ Zp let k ? (a1, a2, . . . , ap) = (ak+1, ak+2, . . . , ap, a1, . . . , ak) (that is,
the action by k is to cycle the p-tuple around k “slots”).
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Theorem II.5.2. Fraleigh, Theorem 36.3, Cauchy’s Theorem

Theorem II.5.2 (continued 1)

Proof (continued). In a group, if ab = e then
ba = (a−1a)(ba) = a−1(ab)a = a−1ea = e. In G , since
(a1a2 · · · ak)︸ ︷︷ ︸

a

(ak+1ak+2 · · · ap)︸ ︷︷ ︸
b

= e then ak+1ak+2 · · · apa1a2 · · · ak = e and

so (ak+1, ak+2, . . . , ak) ∈ S . Hence this action actually maps G × S → S
as required by the definition of group action. Next, for e = 0 ∈ Zp, we
have for x ∈ S that 0 ? x = x , satisfying the first condition of group action
(Definition II.4.1). Now for k, k ′ ∈ Zp we have

(k + k ′) ? (a1, a2, . . . , ap) = (a1+k+k ′ , a2+k+k ′ , . . . , ap, a1, . . . , ak+k ′)

= k ? (a1+k ′ , a2+k ′ , . . . , ap, a1, . . . , ak ′) = k ? (k ′ ? (a1, a2, . . . , ap))

(where the indices are reduced as appropriate). So the second condition of
the definition of group action is also satisfied. Therefore this is actually an
example of group action.
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Theorem II.5.2. Fraleigh, Theorem 36.3, Cauchy’s Theorem

Theorem II.5.2 (continued 2)

Theorem II.5.2. Fraleigh, Theorem 36.3. Cauchy’s Theorem.
If G is a finite group whose order is divisible by a prime p, then G contains
an element of order p.

Proof (continued). Now S0 = {x ∈ S | k ? x = x for all k ∈ Zp} so
(a1, a2, . . . , ap) ∈ S0 if and only if a1 = a2 = · · · = ap. Next
(e, e, . . . , e) ∈ S0 so |S0| 6= 0. By Lemma II.5.1 |S | ≡ |S0| (mod p). By
above, |S | ≡ 0 (mod p), so |S0| ≡ 0 (mod p). Since |S0| 6= 0 then S0

must contain at least p elements. That is, there exists a 6= e such that
(a, a, . . . , a) ∈ S0 ⊆ S . By the definition of S , aa · · · a = ap = e. Since p
is prime, it must be that the order of a is p.
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Corollary II.5.3. Fraleigh, Corollary 36.4

Corollary II.5.3

Corollary II.5.3. Fraleigh, Corollary 36.4.
A finite group G is a p-group if and only if |G | is a power of p.

Proof. If G is a p-group and q is a prime which divides |G |, then G
contains an element of order q by Cauchy’s Theorem (Theorem II.5.2).
Since every element of G has order a power of p (by definition of p-group),
then q = p. So the only prime divisor of |G | is p and |G | is a power of
prime p. Conversely, if |G | is a power of prime p then by Lagrange’s
Theorem (Corollary I.4.6) every element of G is an order dividing this
power of p and so every element is of order a power of prime p.
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Corollary II.5.4

Corollary II.5.4

Corollary II.5.4. The center C (G ) of a nontrivial finite p-group G
contains more than one element.

Proof. Consider the class equation of G (see Note II.4.A):

|G | = |C (G )|+
∑

[G : CG (xi )]

where CG (x) is the centralizer of x :

CG (x) = {g ∈ G | gxg−1 = x} = {g ∈ G | gx = xg}.

Since each [G : CG (xi )] > 1 (by convention, see Note II.4.A) and
[G : CG (xi )] divides |G | = pn (n ≥ 1; by Corollary II.4.4(i)) then p divides
each [G : CG (xi )].

Since G is a p-group by hypothesis, by Corollary II.5.3,
|G | is a power of p and so p divides |G |. So p must divide |C (G )| from
the class equation. Since e ∈ C (G ) then |C (G )| ≥ 1 and so |C (G )| has at
least p elements (and hence more than one element).
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Lemma II.5.5

Lemma II.5.5

Lemma II.5.5. If H is a p-subgroup of a finite group G , then
[NG (H) : H] ≡ [G : H] (mod p).

Proof. Recall that NG (H) is the normalizer of H:

NG (H) = {g ∈ G | gHg−1 = H} = {g ∈ G | gH = Hg}.

Let S be the set of left cosets of H in G and let H act on S by left
translation. Then

|S | = [G : H]. (∗)

Also by the definition of S0, (xH ∈ S0) if and only if
(hxH = xH for all h ∈ H) if and only if (x−1hxH = H for all h ∈ H) if and
only if (x−1hx ∈ H for all h ∈ H) if and only if (x−1Hx = H) if and only if
(xHx−1 = H) if and only if (x ∈ NG (H)). Therefore |S0| is the number of
cosets xH with x ∈ NG (H).

() Modern Algebra April 19, 2021 9 / 20



Lemma II.5.5

Lemma II.5.5

Lemma II.5.5. If H is a p-subgroup of a finite group G , then
[NG (H) : H] ≡ [G : H] (mod p).

Proof. Recall that NG (H) is the normalizer of H:

NG (H) = {g ∈ G | gHg−1 = H} = {g ∈ G | gH = Hg}.

Let S be the set of left cosets of H in G and let H act on S by left
translation. Then

|S | = [G : H]. (∗)

Also by the definition of S0, (xH ∈ S0) if and only if
(hxH = xH for all h ∈ H) if and only if (x−1hxH = H for all h ∈ H) if and
only if (x−1hx ∈ H for all h ∈ H) if and only if (x−1Hx = H) if and only if
(xHx−1 = H) if and only if (x ∈ NG (H)). Therefore |S0| is the number of
cosets xH with x ∈ NG (H).

() Modern Algebra April 19, 2021 9 / 20



Lemma II.5.5

Lemma II.5.5

Lemma II.5.5. If H is a p-subgroup of a finite group G , then
[NG (H) : H] ≡ [G : H] (mod p).

Proof. Recall that NG (H) is the normalizer of H:

NG (H) = {g ∈ G | gHg−1 = H} = {g ∈ G | gH = Hg}.

Let S be the set of left cosets of H in G and let H act on S by left
translation. Then

|S | = [G : H]. (∗)

Also by the definition of S0, (xH ∈ S0) if and only if
(hxH = xH for all h ∈ H) if and only if (x−1hxH = H for all h ∈ H) if and
only if (x−1hx ∈ H for all h ∈ H) if and only if (x−1Hx = H) if and only if
(xHx−1 = H) if and only if (x ∈ NG (H)). Therefore |S0| is the number of
cosets xH with x ∈ NG (H).

() Modern Algebra April 19, 2021 9 / 20



Lemma II.5.5

Lemma II.5.5 (continued)

Lemma II.5.5. If H is a p-subgroup of a finite group G , then
[NG (H) : H] ≡ [G : H] (mod p).

Proof (continued). Now NG (H) is a group (by Theorem II.4.2, where the
group action is conjugation) and H is a subgroup of NG (H). So
[NG (H) : H] is the number of left cosets of H in NG (H) and hence

|S0| = [NG (H) : H]. (∗∗)

By Lemma II.5.1, |S | ≡ |S0| (mod p) and so by (∗) and (∗∗),
[NG (H) : H] ≡ [G : H] (mod p).
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Corollary II.5.6. Fraleigh, Corollary 36.7

Corollary II.5.6

Corollary II.5.6. Fraleigh Corollary 36.7
If H is a p-subgroup of a finite group G such that p divides [G : H], then
NG (H) 6= H.

Proof. Since p divides [G : H] by hypothesis, then [G : H] ≡ 0 (mod p).
So from Lemma II.5.5, [NG (H) : H] ≡ 0 (mod p). Since [NG (H) : H] ≥ 1
(eH = H is one coset of H) then we must have that [NG (H) : H] is at
least p. So [NG (H) : H] > 1 and NG (H) 6= H (if NG (H) = H then there is
only one coset of H in NG (H)).
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Theorem II.5.7. Fraleigh, Theorem 36.8, First Sylow Theorem

Theorem II.5.7

Theorem II.5.7. Fraleigh, Theorem 36.8. First Sylow Theorem.
Let G be a group of order pnm with n ≥ 1, p prime, and (p,m) = 1. Then
G contains a subgroup of order pi for each 1 ≤ i ≤ n and every subgroup
of G of order pi (i < n) is normal in some subgroup of order pi+1.

Proof. Since p | |G |, G contains an element a (and therefore a subgroup
〈a〉) of order p by Cauchy’s Theorem (Theorem II.5.2). Now perform
induction on i and assume that G has a subgroup H of order pi where
1 ≤ i < n (so H is a p-subgroup of G by Corollary II.5.3) we now
construct a group H1 of order pi+1 where H1 < G and H / H1). Now
[G : H] = |G |/|H| by Lagrange’s Theorem (Corollary I.4.6) and since
|H| ≤ pn−1 then p | [G : H].

Next NG (H) = {g ∈ G | gHg−1 = H} so
H / NG (H) by Theorem I.5.1(v). By Corollary II.5.6, NG (H) 6= H and so
|NG (H)/H| = [NG (H) : H] > 1. By Lemma II.5.5

1 < |NG (H)/H| = [NG (H) : H] ≡ [G : H] ≡ 0 (mod p).
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Theorem II.5.7. Fraleigh, Theorem 36.8, First Sylow Theorem

Theorem II.5.7

Proof (continued). Hence p | |NG (H)/H| and NG (H)/H contains an
element bH (and a subgroup 〈bH〉) of order p by Cauchy’s Theorem
(Theorem II.5.2). By Corollary I.5.12, this group 〈bH〉 is of the form
H1/H where H1 < NG (H) and H < H1 (in the notation of Corollary I.5.12,
〈bH〉 < NG (H)/H = G/N and K = H1; so K = H1 < G ,
N = H < H1 = K and K/N = H1/H). Since H is normal in NG (H) and
H1 < NG (H) then H is normal in H1. Finally,

|H1| = |H||H1/H| by Lagrange’s Theorem

= pip = pi+1.

So H / H1 and |H1| = pi+1 and the result follows by induction for all
appropriate i .
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Corollary II.5.8

Corollary II.5.8

Corollary II.5.8. Let G be a group of order pnm with p prime, n ≥ 1, and
(p,m) = 1. Let H be a p-subgroup of G .

(i) H is a Sylow p-subgroup of G if and only if |H| = pn.

(ii) Every conjugate of a Sylow p-subgroup is a Sylow
p-subgroup.

(iii) If there is only one Sylow p-subgroup P, then P is normal in
G .

Proof. (i) H is a p-subgroup if and only if |H| is some power of p by
Corollary II.5.3. By the First Sylow Theorem (Theorem II.5.7), if |H| = pi

for 0 ≤ i < n then H is not a Sylow p-subgroup. The only possible Sylow
p-subgroups are subgroups of order a power of p by Corollary II.5.3, so (by
Lagrange’s Theorem) if |H| = pn then H is a maximal p-subgroup and H
is a Sylow p-subgroup; conversely, by the First Sylow Theorem, a Sylow
p-subgroup must be of order pn.

() Modern Algebra April 19, 2021 14 / 20



Corollary II.5.8

Corollary II.5.8

Corollary II.5.8. Let G be a group of order pnm with p prime, n ≥ 1, and
(p,m) = 1. Let H be a p-subgroup of G .

(i) H is a Sylow p-subgroup of G if and only if |H| = pn.

(ii) Every conjugate of a Sylow p-subgroup is a Sylow
p-subgroup.

(iii) If there is only one Sylow p-subgroup P, then P is normal in
G .

Proof. (i) H is a p-subgroup if and only if |H| is some power of p by
Corollary II.5.3. By the First Sylow Theorem (Theorem II.5.7), if |H| = pi

for 0 ≤ i < n then H is not a Sylow p-subgroup. The only possible Sylow
p-subgroups are subgroups of order a power of p by Corollary II.5.3, so (by
Lagrange’s Theorem) if |H| = pn then H is a maximal p-subgroup and H
is a Sylow p-subgroup; conversely, by the First Sylow Theorem, a Sylow
p-subgroup must be of order pn.

() Modern Algebra April 19, 2021 14 / 20



Corollary II.5.8

Corollary II.5.8 (continued)

Corollary II.5.8. Let G be a group of order pnm with p prime, n ≥ 1, and
(p,m) = 1. Let H be a p-subgroup of G .

(i) H is a Sylow p-subgroup of G if and only if |H| = pn.

(ii) Every conjugate of a Sylow p-subgroup is a Sylow
p-subgroup.

(iii) If there is only one Sylow p-subgroup P, then P is normal in
G .

Proof (continued). (ii) This follows from Exercise I.5.6 and part (i).

(iii) If there is only one Sylow p-subgroup P, then by (ii) gPg−1 is also a
Sylow p-subgroup, so it must be that gPg−1 = P for all g ∈ G . That is,
by Theorem I.5.1 (and definition), P is normal in G .

() Modern Algebra April 19, 2021 15 / 20



Corollary II.5.8

Corollary II.5.8 (continued)

Corollary II.5.8. Let G be a group of order pnm with p prime, n ≥ 1, and
(p,m) = 1. Let H be a p-subgroup of G .

(i) H is a Sylow p-subgroup of G if and only if |H| = pn.

(ii) Every conjugate of a Sylow p-subgroup is a Sylow
p-subgroup.

(iii) If there is only one Sylow p-subgroup P, then P is normal in
G .

Proof (continued). (ii) This follows from Exercise I.5.6 and part (i).

(iii) If there is only one Sylow p-subgroup P, then by (ii) gPg−1 is also a
Sylow p-subgroup, so it must be that gPg−1 = P for all g ∈ G . That is,
by Theorem I.5.1 (and definition), P is normal in G .

() Modern Algebra April 19, 2021 15 / 20



Theorem II.5.9. Fraleigh, Theorem 36.10, Second Sylow Theorem

Theorem II.5.9

Theorem II.5.9. Fraleigh, Theorem 36.10. Second Sylow Theorem.
If H is a p-subgroup of a finite group G , and P is any Sylow p-subgroup of
G , then there exists x ∈ G such that H < xPx−1. In particular, any two
Sylow p-subgroups of G are conjugate.

Proof. Let S be the set of left cosets of P in G and let H act on S by left
translation. Now S0 = {xP ∈ S | h(xP) = xP for all h ∈ H} and
[G : P] = |S | ≡ |S0| (mod p) by Lemma II.5.1. But p - [G : P] since
[G : P] = |G |/|P| = m (where (m, p) = 1). So |S0| 6= 0 and there exists
xP ∈ S0. Now (xP ∈ S0) if and only if (hxP = xP for all x ∈ H (by the
definition of S0)) if and only if (x−1hxP = P for all h ∈ H) if and only if
(x−1Hx < P) if and only if (H < xPx−1), giving the first claim.

If H is a Sylow p-subgroup, then |H| = |P| by Corollary II.5.8(i). Also,
|P| = |xPx−1| by Corollary II.5.8(ii), so |H| = |xPx−1| and it must be that
H = xPx−1 (since H < xPx−1 by above) and so two Sylow p-subgroups P
and H must be conjugates.
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Theorem II.5.10. Fraleigh, Theorem 36.11, Third Sylow Theorem

Theorem II.5.10

Theorem II.5.10. Fraleigh, Theorem 36.11. Third Sylow Theorem.
If G is a finite group and p a prime, then the number of Sylow
p-subgroups of G divides |G | and is of the form kp + 1 for some k ≥ 0.

Proof. By the Second Sylow Theorem (Theorem II.5.9) any two Sylow
p-subgroups are conjugate, so if P is a Sylow p-subgroup then the number
of conjugates of P is the number of Sylow p-subgroups. But by Corollary
II.4.4(iii) the number of conjugates of P in G is [G : NG (P)] and this is a
divisor of |G |.

Let S be the set of all Sylow p-subgroups of G and let P act on S by
conjugation. Then Q ∈ S0 = {Q ∈ S | xQx−1 = Q for all x ∈ P} if and
only if P < NG (Q) = {x ∈ G | xQx−1 = Q}. So both P and Q (not
necessarily distinct) are Sylow p-subgroups of G and hence of NG (Q)
(since NG (Q) < G ) and are therefore conjugate in NG (Q).
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Theorem II.5.10. Fraleigh, Theorem 36.11, Third Sylow Theorem

Theorem II.5.10 (continued)

Theorem II.5.10. Fraleigh, Theorem 36.11. Third Sylow Theorem.
If G is a finite group and p a prime, then the number of Sylow
p-subgroups of G divides |G | and is of the form kp + 1 for some k ≥ 0.

Proof (continued). Since Q is normal in NG (Q) (by the definition of
NG (Q), the normalizer of Q in G ) then every conjugate of Q in NG (Q)
equals Q and so P = Q. Therefore S0 = {P}. By Lemma II.5.1,
|S | ≡ |S0| ≡ 1 (mod p). Hence |S | = kp + 1 for some k ≥ 0.
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Theorem II.5.11

Theorem II.5.11

Theorem II.5.11. If P is a Sylow p-subgroup of a finite group G , then
NG (NG (P)) = NG (P).

Proof. Every conjugate of P is a Sylow p-subgroup of G by the Second
Sylow Theorem (Theorem II.5.9). Every conjugate of P is a Sylow
p-subgroup of any subgroup of G that contains it by Corollary II.5.8(ii).
Since P is normal in N = NG (P) = {x ∈ G | xPx−1 = P}, then P is the
only Sylow p-subgroup of N by the Second Sylow Theorem (Theorem
II.5.9; all Sylow p-subgroups of N must be conjugates, but any conjugate
of P in N equals P).

Therefore, x ∈ NG (NG (P)) = NG (N) if and only if
xNx−1 = N by the definition of normalizer and this implies that
xPx−1 < N since P < N, and so xPx−1 is a Sylow p-subgroup of N by
Corollary II.5.8(ii). Since P is the only Sylow p-subgroup of N then
P = xPx−1 and so x ∈ NG (P) = N. Therefore NG (NG (P)) ⊆ NG (P).
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Theorem II.5.11

Theorem II.5.11 (continued)

Theorem II.5.11. If P is a Sylow p-subgroup of a finite group G , then
NG (NG (P)) = NG (P).

Proof (continued). Now “clearly” the normalizers of any subgroup of G
contains all the elements of that subgroup and so x ∈ NG (P) implies
x ∈ NG (NG (P)) and NG (P) ⊆ NG (NG (p)).

Hence NG (NG (P)) = NG (P).
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