Modern Algebra

Chapter II. The Structure of Groups

II.5. The Sylow Theorems-Proofs of Theorems

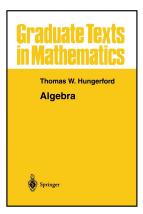


Table of contents

- 1 Lemma II.5.1. Fraleigh, Theorem 36.1
- Theorem II.5.2. Fraleigh, Theorem 36.3, Cauchy's Theorem
- 3 Corollary II.5.3. Fraleigh, Corollary 36.4
- 4 Corollary II.5.4
- 5 Lemma 11.5.5
- 6 Corollary II.5.6. Fraleigh, Corollary 36.7
- 7 Theorem II.5.7. Fraleigh, Theorem 36.8, First Sylow Theorem
- 8 Corollary II.5.8
 - Theorem II.5.9. Fraleigh, Theorem 36.10, Second Sylow Theorem
- Theorem II.5.10. Fraleigh, Theorem 36.11, Third Sylow Theorem
 - Theorem II.5.11

Lemma II.5.1. Fraleigh, Theorem 36.1. If a group *H* of order p^n (*p* prime) acts on a finite set *S* and if $S_0 = \{x \in S \mid h \star x = x \text{ for all } h \in H\}$ then $|S| \equiv |S_0| \pmod{p}$.

Proof. Recall that the orbit of $x \in S$ under action on S is $\overline{x} = \{h \star x \mid h \in H\}$. So an orbit contains exactly one element if and only if $x \in S_0$. Since the orbits represent equivalence classes, then they partition set S so $S = S_0 \cup \overline{x}_1 \cup \overline{x}_2 \cup \cdots \cup \overline{x}_m$ where $|\overline{x}_i| > 1$ for each i. Hence $|S| = |S_0| + |\overline{x}_1| + |\overline{x}_2| + \cdots + |\overline{x}_m|$.

Lemma II.5.1. Fraleigh, Theorem 36.1. If a group *H* of order p^n (*p* prime) acts on a finite set *S* and if $S_0 = \{x \in S \mid h \star x = x \text{ for all } h \in H\}$ then $|S| \equiv |S_0| \pmod{p}$.

Proof. Recall that the orbit of $x \in S$ under action on S is $\overline{x} = \{h \star x \mid h \in H\}$. So an orbit contains exactly one element if and only if $x \in S_0$. Since the orbits represent equivalence classes, then they partition set S so $S = S_0 \cup \overline{x}_1 \cup \overline{x}_2 \cup \cdots \cup \overline{x}_m$ where $|\overline{x}_i| > 1$ for each i. Hence $|S| = |S_0| + |\overline{x}_1| + |\overline{x}_2| + \cdots + |\overline{x}_m|$. Now $|\overline{x}_i| \mid p^n$ by Corollary II.4.4(i) (since $|H| = p^n$) and so $p \mid |\overline{x}_i|$ for each i since $|\overline{x}_i| > 1$. Therefore $|S| \equiv |S_0| \pmod{p}$.

Lemma II.5.1. Fraleigh, Theorem 36.1. If a group H of order p^n (p prime) acts on a finite set S and if

 $S_0 = \{x \in S \mid h \star x = x \text{ for all } h \in H\} \text{ then } |S| \equiv |S_0| \pmod{p}.$

Proof. Recall that the orbit of $x \in S$ under action on S is $\overline{x} = \{h \star x \mid h \in H\}$. So an orbit contains exactly one element if and only if $x \in S_0$. Since the orbits represent equivalence classes, then they partition set S so $S = S_0 \cup \overline{x}_1 \cup \overline{x}_2 \cup \cdots \cup \overline{x}_m$ where $|\overline{x}_i| > 1$ for each i. Hence $|S| = |S_0| + |\overline{x}_1| + |\overline{x}_2| + \cdots + |\overline{x}_m|$. Now $|\overline{x}_i| \mid p^n$ by Corollary II.4.4(i) (since $|H| = p^n$) and so $p \mid |\overline{x}_i|$ for each i since $|\overline{x}_i| > 1$. Therefore $|S| \equiv |S_0| \pmod{p}$.

Theorem II.5.2. Fraleigh, Theorem 36.3. Cauchy's Theorem. If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Proof. Let *S* be the set of *p*-tuples of group elements with product *e*:

$$S=\{(a_1,a_2,\ldots,a_p)\mid a_i\in G ext{ and } a_1a_2\cdots a_p=e\}.$$

Now with |G| = n, there are *n* choices for each of $a_1, a_2, \ldots, a_{p-1}$. But, since the product of the *p* elements must be *e*, then $a_p = (a_1a_2\cdots a_{p-1})^{-1}$ and so there is only one choice for a_p . So $|S| = n^{p-1}$. Since $p \mid |G|$ (or in the notation, $p \mid n$) then $n \equiv 0 \pmod{p}$ and so $|S| \equiv 0 \pmod{p}$.

Theorem II.5.2. Fraleigh, Theorem 36.3. Cauchy's Theorem. If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Proof. Let *S* be the set of *p*-tuples of group elements with product *e*:

$$S=\{(a_1,a_2,\ldots,a_p)\mid a_i\in G ext{ and } a_1a_2\cdots a_p=e\}.$$

Now with |G| = n, there are *n* choices for each of $a_1, a_2, \ldots, a_{p-1}$. But, since the product of the *p* elements must be *e*, then $a_p = (a_1 a_2 \cdots a_{p-1})^{-1}$ and so there is only one choice for a_p . So $|S| = n^{p-1}$. Since $p \mid |G|$ (or in the notation, $p \mid n$) then $n \equiv 0 \pmod{p}$ and so $|S| \equiv 0 \pmod{p}$. Let the group \mathbb{Z}_p act on set *S* as follows: for $k \in \mathbb{Z}_p$ let $k \star (a_1, a_2, \ldots, a_p) = (a_{k+1}, a_{k+2}, \ldots, a_p, a_1, \ldots, a_k)$ (that is, the action by *k* is to cycle the *p*-tuple around *k* "slots").

Theorem II.5.2. Fraleigh, Theorem 36.3. Cauchy's Theorem. If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Proof. Let *S* be the set of *p*-tuples of group elements with product *e*:

$$S=\{(a_1,a_2,\ldots,a_p)\mid a_i\in G ext{ and } a_1a_2\cdots a_p=e\}.$$

Now with |G| = n, there are *n* choices for each of $a_1, a_2, \ldots, a_{p-1}$. But, since the product of the *p* elements must be *e*, then $a_p = (a_1 a_2 \cdots a_{p-1})^{-1}$ and so there is only one choice for a_p . So $|S| = n^{p-1}$. Since $p \mid |G|$ (or in the notation, $p \mid n$) then $n \equiv 0 \pmod{p}$ and so $|S| \equiv 0 \pmod{p}$. Let the group \mathbb{Z}_p act on set *S* as follows: for $k \in \mathbb{Z}_p$ let $k \star (a_1, a_2, \ldots, a_p) = (a_{k+1}, a_{k+2}, \ldots, a_p, a_1, \ldots, a_k)$ (that is, the action by *k* is to cycle the *p*-tuple around *k* "slots").

Theorem II.5.2 (continued 1)

Proof (continued). In a group, if ab = e then $ba = (a^{-1}a)(ba) = a^{-1}(ab)a = a^{-1}ea = e$. In *G*, since $(\underline{a_1a_2\cdots a_k})\underbrace{(a_{k+1}a_{k+2}\cdots a_p)}_{b} = e$ then $a_{k+1}a_{k+2}\cdots a_pa_1a_2\cdots a_k = e$ and so $(a_{k+1}, a_{k+2}, \dots, a_k) \in S$. Hence this action actually maps $G \times S \to S$ as required by the definition of group action. Next, for $e = 0 \in \mathbb{Z}_p$, we have for $x \in S$ that $0 \star x = x$, satisfying the first condition of group action (Definition II.4.1). Now for $k, k' \in \mathbb{Z}_p$ we have

$$(k + k') \star (a_1, a_2, \dots, a_p) = (a_{1+k+k'}, a_{2+k+k'}, \dots, a_p, a_1, \dots, a_{k+k'})$$

$$= k \star (a_{1+k'}, a_{2+k'}, \dots, a_p, a_1, \dots, a_{k'}) = k \star (k' \star (a_1, a_2, \dots, a_p))$$

(where the indices are reduced as appropriate). So the second condition of the definition of group action is also satisfied. Therefore this is actually an example of group action.

— C

Theorem II.5.2 (continued 1)

Proof (continued). In a group, if
$$ab = e$$
 then
 $ba = (a^{-1}a)(ba) = a^{-1}(ab)a = a^{-1}ea = e$. In *G*, since
 $(\underbrace{a_1a_2\cdots a_k}_{a})\underbrace{(a_{k+1}a_{k+2}\cdots a_p)}_{b} = e$ then $a_{k+1}a_{k+2}\cdots a_pa_1a_2\cdots a_k = e$ and
so $(a_{k+1}, a_{k+2}, \dots, a_k) \in S$. Hence this action actually maps $G \times S \to S$
as required by the definition of group action. Next, for $e = 0 \in \mathbb{Z}_p$, we
have for $x \in S$ that $0 \star x = x$, satisfying the first condition of group action
(Definition II.4.1). Now for $k, k' \in \mathbb{Z}_p$ we have

$$(k + k') \star (a_1, a_2, \dots, a_p) = (a_{1+k+k'}, a_{2+k+k'}, \dots, a_p, a_1, \dots, a_{k+k'})$$

$$= k \star (a_{1+k'}, a_{2+k'}, \dots, a_p, a_1, \dots, a_{k'}) = k \star (k' \star (a_1, a_2, \dots, a_p))$$

(where the indices are reduced as appropriate). So the second condition of the definition of group action is also satisfied. Therefore this is actually an example of group action.

(

Theorem II.5.2 (continued 2)

Theorem II.5.2. Fraleigh, Theorem 36.3. Cauchy's Theorem. If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Proof (continued). Now $S_0 = \{x \in S \mid k \star x = x \text{ for all } k \in \mathbb{Z}_p\}$ so $(a_1, a_2, \ldots, a_p) \in S_0$ if and only if $a_1 = a_2 = \cdots = a_p$. Next $(e, e, \ldots, e) \in S_0$ so $|S_0| \neq 0$. By Lemma II.5.1 $|S| \equiv |S_0| \pmod{p}$. By above, $|S| \equiv 0 \pmod{p}$, so $|S_0| \equiv 0 \pmod{p}$. Since $|S_0| \neq 0$ then S_0 must contain at least p elements. That is, there exists $a \neq e$ such that $(a, a, \ldots, a) \in S_0 \subseteq S$. By the definition of S, $aa \cdots a = a^p = e$. Since p is prime, it must be that the order of a is p.

Theorem II.5.2 (continued 2)

Theorem II.5.2. Fraleigh, Theorem 36.3. Cauchy's Theorem. If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Proof (continued). Now $S_0 = \{x \in S \mid k \star x = x \text{ for all } k \in \mathbb{Z}_p\}$ so $(a_1, a_2, \ldots, a_p) \in S_0$ if and only if $a_1 = a_2 = \cdots = a_p$. Next $(e, e, \ldots, e) \in S_0$ so $|S_0| \neq 0$. By Lemma II.5.1 $|S| \equiv |S_0| \pmod{p}$. By above, $|S| \equiv 0 \pmod{p}$, so $|S_0| \equiv 0 \pmod{p}$. Since $|S_0| \neq 0$ then S_0 must contain at least p elements. That is, there exists $a \neq e$ such that $(a, a, \ldots, a) \in S_0 \subseteq S$. By the definition of S, $aa \cdots a = a^p = e$. Since p is prime, it must be that the order of a is p.

Corollary 11.5.3. Fraleigh, Corollary 36.4. A finite group *G* is a *p*-group if and only if |G| is a power of *p*.

Proof. If *G* is a *p*-group and *q* is a prime which divides |G|, then *G* contains an element of order *q* by Cauchy's Theorem (Theorem II.5.2). Since every element of *G* has order a power of *p* (by definition of *p*-group), then q = p. So the only prime divisor of |G| is *p* and |G| is a power of prime *p*. Conversely, if |G| is a power of prime *p* then by Lagrange's Theorem (Corollary I.4.6) every element of *G* is an order dividing this power of *p* and so every element is of order a power of prime *p*.

Corollary II.5.3. Fraleigh, Corollary 36.4.

A finite group G is a p-group if and only if |G| is a power of p.

Proof. If *G* is a *p*-group and *q* is a prime which divides |G|, then *G* contains an element of order *q* by Cauchy's Theorem (Theorem II.5.2). Since every element of *G* has order a power of *p* (by definition of *p*-group), then q = p. So the only prime divisor of |G| is *p* and |G| is a power of prime *p*. Conversely, if |G| is a power of prime *p* then by Lagrange's Theorem (Corollary I.4.6) every element of *G* is an order dividing this power of *p* and so every element is of order a power of prime *p*.

Corollary 11.5.4. The center C(G) of a nontrivial finite *p*-group *G* contains more than one element.

Proof. Consider the class equation of *G* (see Note II.4.A):

$$|G| = |C(G)| + \sum [G : C_G(x_i)]$$

where $C_G(x)$ is the centralizer of x:

$$C_G(x) = \{g \in G \mid gxg^{-1} = x\} = \{g \in G \mid gx = xg\}.$$

Since each $[G : C_G(x_i)] > 1$ (by convention, see Note II.4.A) and $[G : C_G(x_i)]$ divides $|G| = p^n$ $(n \ge 1$; by Corollary II.4.4(i)) then p divides each $[G : C_G(x_i)]$.

Corollary 11.5.4. The center C(G) of a nontrivial finite *p*-group *G* contains more than one element.

Proof. Consider the class equation of *G* (see Note II.4.A):

$$|G| = |C(G)| + \sum [G : C_G(x_i)]$$

where $C_G(x)$ is the centralizer of x:

$$C_G(x) = \{g \in G \mid gxg^{-1} = x\} = \{g \in G \mid gx = xg\}.$$

Since each $[G : C_G(x_i)] > 1$ (by convention, see Note II.4.A) and $[G : C_G(x_i)]$ divides $|G| = p^n$ ($n \ge 1$; by Corollary II.4.4(i)) then p divides each $[G : C_G(x_i)]$. Since G is a p-group by hypothesis, by Corollary II.5.3, |G| is a power of p and so p divides |G|. So p must divide |C(G)| from the class equation. Since $e \in C(G)$ then $|C(G)| \ge 1$ and so |C(G)| has at least p elements (and hence more than one element).

Corollary 11.5.4. The center C(G) of a nontrivial finite *p*-group *G* contains more than one element.

Proof. Consider the class equation of *G* (see Note II.4.A):

$$|G| = |C(G)| + \sum [G : C_G(x_i)]$$

where $C_G(x)$ is the centralizer of x:

$$C_G(x) = \{g \in G \mid gxg^{-1} = x\} = \{g \in G \mid gx = xg\}.$$

Since each $[G : C_G(x_i)] > 1$ (by convention, see Note II.4.A) and $[G : C_G(x_i)]$ divides $|G| = p^n$ ($n \ge 1$; by Corollary II.4.4(i)) then p divides each $[G : C_G(x_i)]$. Since G is a p-group by hypothesis, by Corollary II.5.3, |G| is a power of p and so p divides |G|. So p must divide |C(G)| from the class equation. Since $e \in C(G)$ then $|C(G)| \ge 1$ and so |C(G)| has at least p elements (and hence more than one element).

Lemma II.5.5. If *H* is a *p*-subgroup of a finite group *G*, then $[N_G(H) : H] \equiv [G : H] \pmod{p}$.

Proof. Recall that $N_G(H)$ is the normalizer of H:

$$N_G(H) = \{g \in G \mid gHg^{-1} = H\} = \{g \in G \mid gH = Hg\}.$$

Let S be the set of left cosets of H in G and let H act on S by left translation. Then

$$|S| = [G:H]. \tag{(*)}$$

Lemma II.5.5. If *H* is a *p*-subgroup of a finite group *G*, then $[N_G(H) : H] \equiv [G : H] \pmod{p}$.

Proof. Recall that $N_G(H)$ is the normalizer of H:

$$N_G(H) = \{g \in G \mid gHg^{-1} = H\} = \{g \in G \mid gH = Hg\}.$$

Let S be the set of left cosets of H in G and let H act on S by left translation. Then

$$|S| = [G:H]. \tag{(*)}$$

Also by the definition of S_0 , $(xH \in S_0)$ if and only if $(hxH = xH \text{ for all } h \in H)$ if and only if $(x^{-1}hxH = H \text{ for all } h \in H)$ if and only if $(x^{-1}hx \in H \text{ for all } h \in H)$ if and only if $(x^{-1}Hx = H)$ if and only if $(xHx^{-1} = H)$ if and only if $(x \in N_G(H))$. Therefore $|S_0|$ is the number of cosets xH with $x \in N_G(H)$.

Lemma II.5.5. If *H* is a *p*-subgroup of a finite group *G*, then $[N_G(H) : H] \equiv [G : H] \pmod{p}$.

Proof. Recall that $N_G(H)$ is the normalizer of H:

$$N_G(H) = \{g \in G \mid gHg^{-1} = H\} = \{g \in G \mid gH = Hg\}.$$

Let S be the set of left cosets of H in G and let H act on S by left translation. Then

$$|S| = [G:H].$$
 (*)

Also by the definition of S_0 , $(xH \in S_0)$ if and only if $(hxH = xH \text{ for all } h \in H)$ if and only if $(x^{-1}hxH = H \text{ for all } h \in H)$ if and only if $(x^{-1}hx \in H \text{ for all } h \in H)$ if and only if $(x^{-1}Hx = H)$ if and only if $(xHx^{-1} = H)$ if and only if $(x \in N_G(H))$. Therefore $|S_0|$ is the number of cosets xH with $x \in N_G(H)$.

Lemma II.5.5 (continued)

Lemma II.5.5. If *H* is a *p*-subgroup of a finite group *G*, then $[N_G(H) : H] \equiv [G : H] \pmod{p}$.

Proof (continued). Now $N_G(H)$ is a group (by Theorem II.4.2, where the group action is conjugation) and H is a subgroup of $N_G(H)$. So $[N_G(H) : H]$ is the number of left cosets of H in $N_G(H)$ and hence

$$|S_0| = [N_G(H) : H].$$
 (**)

By Lemma II.5.1, $|S| \equiv |S_0| \pmod{p}$ and so by (*) and (**), $[N_G(H) : H] \equiv [G : H] \pmod{p}$.

Corollary II.5.6. Fraleigh Corollary 36.7

If H is a p-subgroup of a finite group G such that p divides [G : H], then $N_G(H) \neq H$.

Proof. Since *p* divides [G : H] by hypothesis, then $[G : H] \equiv 0 \pmod{p}$. So from Lemma II.5.5, $[N_G(H) : H] \equiv 0 \pmod{p}$. Since $[N_G(H) : H] \ge 1$ (eH = H is one coset of H) then we must have that $[N_G(H) : H]$ is at least *p*. So $[N_G(H) : H] > 1$ and $N_G(H) \neq H$ (if $N_G(H) = H$ then there is only one coset of *H* in $N_G(H)$).

Corollary II.5.6. Fraleigh Corollary 36.7

If H is a p-subgroup of a finite group G such that p divides [G : H], then $N_G(H) \neq H$.

Proof. Since *p* divides [G : H] by hypothesis, then $[G : H] \equiv 0 \pmod{p}$. So from Lemma II.5.5, $[N_G(H) : H] \equiv 0 \pmod{p}$. Since $[N_G(H) : H] \ge 1$ (eH = H is one coset of H) then we must have that $[N_G(H) : H]$ is at least *p*. So $[N_G(H) : H] > 1$ and $N_G(H) \neq H$ (if $N_G(H) = H$ then there is only one coset of *H* in $N_G(H)$).

Theorem II.5.7. Fraleigh, Theorem 36.8. First Sylow Theorem. Let G be a group of order $p^n m$ with $n \ge 1$, p prime, and (p, m) = 1. Then G contains a subgroup of order p^i for each $1 \le i \le n$ and every subgroup of G of order p^i (i < n) is normal in some subgroup of order p^{i+1} .

Proof. Since $p \mid |G|$, G contains an element a (and therefore a subgroup $\langle a \rangle$) of order p by Cauchy's Theorem (Theorem II.5.2). Now perform induction on i and assume that G has a subgroup H of order p^i where $1 \leq i < n$ (so H is a p-subgroup of G by Corollary II.5.3) we now construct a group H_1 of order p^{i+1} where $H_1 < G$ and $H \triangleleft H_1$). Now [G:H] = |G|/|H| by Lagrange's Theorem (Corollary I.4.6) and since $|H| \leq p^{n-1}$ then $p \mid [G:H]$.

Theorem II.5.7. Fraleigh, Theorem 36.8. First Sylow Theorem. Let G be a group of order $p^n m$ with $n \ge 1$, p prime, and (p, m) = 1. Then G contains a subgroup of order p^i for each $1 \le i \le n$ and every subgroup of G of order p^i (i < n) is normal in some subgroup of order p^{i+1} .

Proof. Since $p \mid |G|$, G contains an element a (and therefore a subgroup $\langle a \rangle$) of order p by Cauchy's Theorem (Theorem II.5.2). Now perform induction on i and assume that G has a subgroup H of order p^i where $1 \leq i < n$ (so H is a p-subgroup of G by Corollary II.5.3) we now construct a group H_1 of order p^{i+1} where $H_1 < G$ and $H \triangleleft H_1$). Now [G:H] = |G|/|H| by Lagrange's Theorem (Corollary I.4.6) and since $|H| \leq p^{n-1}$ then $p \mid [G:H]$. Next $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ so $H \triangleleft N_G(H)$ by Theorem I.5.1(v). By Corollary II.5.6, $N_G(H) \neq H$ and so $|N_G(H)/H| = [N_G(H):H] > 1$. By Lemma II.5.5

 $1 < |N_G(H)/H| = [N_G(H):H] \equiv [G:H] \equiv 0 \pmod{p}.$

Theorem II.5.7. Fraleigh, Theorem 36.8. First Sylow Theorem. Let G be a group of order $p^n m$ with $n \ge 1$, p prime, and (p, m) = 1. Then G contains a subgroup of order p^i for each $1 \le i \le n$ and every subgroup of G of order p^i (i < n) is normal in some subgroup of order p^{i+1} .

Proof. Since $p \mid |G|$, G contains an element a (and therefore a subgroup $\langle a \rangle$) of order p by Cauchy's Theorem (Theorem II.5.2). Now perform induction on i and assume that G has a subgroup H of order p^i where $1 \leq i < n$ (so H is a p-subgroup of G by Corollary II.5.3) we now construct a group H_1 of order p^{i+1} where $H_1 < G$ and $H \triangleleft H_1$). Now [G:H] = |G|/|H| by Lagrange's Theorem (Corollary I.4.6) and since $|H| \leq p^{n-1}$ then $p \mid [G:H]$. Next $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ so $H \triangleleft N_G(H)$ by Theorem I.5.1(v). By Corollary II.5.6, $N_G(H) \neq H$ and so $|N_G(H)/H| = [N_G(H):H] > 1$. By Lemma II.5.5

 $1 < |N_G(H)/H| = [N_G(H):H] \equiv [G:H] \equiv 0 \pmod{p}.$

Proof (continued). Hence $p \mid |N_G(H)/H|$ and $N_G(H)/H$ contains an element bH (and a subgroup $\langle bH \rangle$) of order p by Cauchy's Theorem (Theorem II.5.2). By Corollary I.5.12, this group $\langle bH \rangle$ is of the form H_1/H where $H_1 < N_G(H)$ and $H < H_1$ (in the notation of Corollary I.5.12, $\langle bH \rangle < N_G(H)/H = G/N$ and $K = H_1$; so $K = H_1 < G$, $N = H < H_1 = K$ and $K/N = H_1/H$). Since H is normal in $N_G(H)$ and $H_1 < N_G(H)$ then H is normal in H_1 . Finally,

$$|H_1| = |H||H_1/H|$$
 by Lagrange's Theorem
= $p^i p = p^{i+1}$.

So $H \triangleleft H_1$ and $|H_1| = p^{i+1}$ and the result follows by induction for all appropriate *i*.

Proof (continued). Hence $p \mid |N_G(H)/H|$ and $N_G(H)/H$ contains an element bH (and a subgroup $\langle bH \rangle$) of order p by Cauchy's Theorem (Theorem II.5.2). By Corollary I.5.12, this group $\langle bH \rangle$ is of the form H_1/H where $H_1 < N_G(H)$ and $H < H_1$ (in the notation of Corollary I.5.12, $\langle bH \rangle < N_G(H)/H = G/N$ and $K = H_1$; so $K = H_1 < G$, $N = H < H_1 = K$ and $K/N = H_1/H$). Since H is normal in $N_G(H)$ and $H_1 < N_G(H)$ then H is normal in H_1 . Finally,

$$|H_1| = |H||H_1/H|$$
 by Lagrange's Theorem
= $p^i p = p^{i+1}$.

So $H \triangleleft H_1$ and $|H_1| = p^{i+1}$ and the result follows by induction for all appropriate *i*.

Corollary II.5.8. Let G be a group of order $p^n m$ with p prime, $n \ge 1$, and (p, m) = 1. Let H be a p-subgroup of G.

- (i) *H* is a Sylow *p*-subgroup of *G* if and only if $|H| = p^n$.
- (ii) Every conjugate of a Sylow *p*-subgroup is a Sylow *p*-subgroup.
- (iii) If there is only one Sylow *p*-subgroup P, then P is normal in G.

Proof. (i) *H* is a *p*-subgroup if and only if |H| is some power of *p* by Corollary II.5.3. By the First Sylow Theorem (Theorem II.5.7), if $|H| = p^i$ for $0 \le i < n$ then *H* is not a Sylow *p*-subgroup. The only possible Sylow *p*-subgroups are subgroups of order a power of *p* by Corollary II.5.3, so (by Lagrange's Theorem) if $|H| = p^n$ then *H* is a maximal *p*-subgroup and *H* is a Sylow *p*-subgroup; conversely, by the First Sylow Theorem, a Sylow *p*-subgroup must be of order p^n .

Corollary II.5.8. Let G be a group of order $p^n m$ with p prime, $n \ge 1$, and (p, m) = 1. Let H be a p-subgroup of G.

- (i) *H* is a Sylow *p*-subgroup of *G* if and only if $|H| = p^n$.
- (ii) Every conjugate of a Sylow *p*-subgroup is a Sylow *p*-subgroup.
- (iii) If there is only one Sylow *p*-subgroup P, then P is normal in G.

Proof. (i) *H* is a *p*-subgroup if and only if |H| is some power of *p* by Corollary II.5.3. By the First Sylow Theorem (Theorem II.5.7), if $|H| = p^i$ for $0 \le i < n$ then *H* is not a Sylow *p*-subgroup. The only possible Sylow *p*-subgroups are subgroups of order a power of *p* by Corollary II.5.3, so (by Lagrange's Theorem) if $|H| = p^n$ then *H* is a maximal *p*-subgroup and *H* is a Sylow *p*-subgroup; conversely, by the First Sylow Theorem, a Sylow *p*-subgroup must be of order p^n .

Corollary II.5.8 (continued)

Corollary II.5.8. Let G be a group of order $p^n m$ with p prime, $n \ge 1$, and (p, m) = 1. Let H be a p-subgroup of G.

- (i) *H* is a Sylow *p*-subgroup of *G* if and only if $|H| = p^n$.
- (ii) Every conjugate of a Sylow *p*-subgroup is a Sylow *p*-subgroup.
- (iii) If there is only one Sylow *p*-subgroup P, then P is normal in G.

Proof (continued). (ii) This follows from Exercise I.5.6 and part (i).

(iii) If there is only one Sylow *p*-subgroup *P*, then by (ii) gPg^{-1} is also a Sylow *p*-subgroup, so it must be that $gPg^{-1} = P$ for all $g \in G$. That is, by Theorem I.5.1 (and definition), *P* is normal in *G*.

Corollary II.5.8 (continued)

Corollary II.5.8. Let G be a group of order $p^n m$ with p prime, $n \ge 1$, and (p, m) = 1. Let H be a p-subgroup of G.

- (i) *H* is a Sylow *p*-subgroup of *G* if and only if $|H| = p^n$.
- (ii) Every conjugate of a Sylow *p*-subgroup is a Sylow *p*-subgroup.
- (iii) If there is only one Sylow *p*-subgroup *P*, then *P* is normal in G.

Proof (continued). (ii) This follows from Exercise I.5.6 and part (i).

(iii) If there is only one Sylow *p*-subgroup *P*, then by (ii) gPg^{-1} is also a Sylow *p*-subgroup, so it must be that $gPg^{-1} = P$ for all $g \in G$. That is, by Theorem I.5.1 (and definition), *P* is normal in *G*.

Theorem II.5.9. Fraleigh, Theorem 36.10. Second Sylow Theorem. If *H* is a *p*-subgroup of a finite group *G*, and *P* is any Sylow *p*-subgroup of *G*, then there exists $x \in G$ such that $H < xPx^{-1}$. In particular, any two Sylow *p*-subgroups of *G* are conjugate.

Proof. Let *S* be the set of left cosets of *P* in *G* and let *H* act on *S* by left translation. Now $S_0 = \{xP \in S \mid h(xP) = xP \text{ for all } h \in H\}$ and $[G:P] = |S| \equiv |S_0| \pmod{p}$ by Lemma II.5.1. But $p \nmid [G:P]$ since [G:P] = |G|/|P| = m (where (m, p) = 1). So $|S_0| \neq 0$ and there exists $xP \in S_0$. Now $(xP \in S_0)$ if and only if $(hxP = xP \text{ for all } x \in H \text{ (by the definition of } S_0))$ if and only if $(x^{-1}hxP = P \text{ for all } h \in H)$ if and only if $(x^{-1}Hx < P)$ if and only if $(H < xPx^{-1})$, giving the first claim.

Theorem II.5.9. Fraleigh, Theorem 36.10. Second Sylow Theorem. If *H* is a *p*-subgroup of a finite group *G*, and *P* is any Sylow *p*-subgroup of *G*, then there exists $x \in G$ such that $H < xPx^{-1}$. In particular, any two Sylow *p*-subgroups of *G* are conjugate.

Proof. Let *S* be the set of left cosets of *P* in *G* and let *H* act on *S* by left translation. Now $S_0 = \{xP \in S \mid h(xP) = xP \text{ for all } h \in H\}$ and $[G:P] = |S| \equiv |S_0| \pmod{p}$ by Lemma II.5.1. But $p \nmid [G:P]$ since [G:P] = |G|/|P| = m (where (m, p) = 1). So $|S_0| \neq 0$ and there exists $xP \in S_0$. Now $(xP \in S_0)$ if and only if $(hxP = xP \text{ for all } x \in H \text{ (by the definition of } S_0))$ if and only if $(x^{-1}hxP = P \text{ for all } h \in H)$ if and only if $(x^{-1}Hx < P)$ if and only if $(H < xPx^{-1})$, giving the first claim.

If *H* is a Sylow *p*-subgroup, then |H| = |P| by Corollary II.5.8(i). Also, $|P| = |xPx^{-1}|$ by Corollary II.5.8(ii), so $|H| = |xPx^{-1}|$ and it must be that $H = xPx^{-1}$ (since $H < xPx^{-1}$ by above) and so two Sylow *p*-subgroups *P* and *H* must be conjugates.

Theorem II.5.9. Fraleigh, Theorem 36.10. Second Sylow Theorem. If *H* is a *p*-subgroup of a finite group *G*, and *P* is any Sylow *p*-subgroup of *G*, then there exists $x \in G$ such that $H < xPx^{-1}$. In particular, any two Sylow *p*-subgroups of *G* are conjugate.

Proof. Let *S* be the set of left cosets of *P* in *G* and let *H* act on *S* by left translation. Now $S_0 = \{xP \in S \mid h(xP) = xP \text{ for all } h \in H\}$ and $[G:P] = |S| \equiv |S_0| \pmod{p}$ by Lemma II.5.1. But $p \nmid [G:P]$ since $[G:P] = |G|/|P| = m \pmod{p} = 1$. So $|S_0| \neq 0$ and there exists $xP \in S_0$. Now $(xP \in S_0)$ if and only if $(hxP = xP \text{ for all } x \in H \pmod{p} \pmod{p})$ if and only if $(x^{-1}hxP = P \text{ for all } h \in H)$ if and only if $(x^{-1}Hx < P)$ if and only if $(H < xPx^{-1})$, giving the first claim.

If *H* is a Sylow *p*-subgroup, then |H| = |P| by Corollary II.5.8(i). Also, $|P| = |xPx^{-1}|$ by Corollary II.5.8(ii), so $|H| = |xPx^{-1}|$ and it must be that $H = xPx^{-1}$ (since $H < xPx^{-1}$ by above) and so two Sylow *p*-subgroups *P* and *H* must be conjugates.

Theorem II.5.10. Fraleigh, Theorem 36.11. Third Sylow Theorem. If *G* is a finite group and *p* a prime, then the number of Sylow *p*-subgroups of *G* divides |G| and is of the form kp + 1 for some $k \ge 0$.

Proof. By the Second Sylow Theorem (Theorem II.5.9) any two Sylow *p*-subgroups are conjugate, so if *P* is a Sylow *p*-subgroup then the number of conjugates of *P* is the number of Sylow *p*-subgroups. But by Corollary II.4.4(iii) the number of conjugates of *P* in *G* is $[G : N_G(P)]$ and this is a divisor of |G|.

Theorem II.5.10. Fraleigh, Theorem 36.11. Third Sylow Theorem. If *G* is a finite group and *p* a prime, then the number of Sylow *p*-subgroups of *G* divides |G| and is of the form kp + 1 for some $k \ge 0$.

Proof. By the Second Sylow Theorem (Theorem II.5.9) any two Sylow *p*-subgroups are conjugate, so if *P* is a Sylow *p*-subgroup then the number of conjugates of *P* is the number of Sylow *p*-subgroups. But by Corollary II.4.4(iii) the number of conjugates of *P* in *G* is $[G : N_G(P)]$ and this is a divisor of |G|.

Let S be the set of all Sylow p-subgroups of G and let P act on S by conjugation. Then $Q \in S_0 = \{Q \in S \mid xQx^{-1} = Q \text{ for all } x \in P\}$ if and only if $P < N_G(Q) = \{x \in G \mid xQx^{-1} = Q\}$. So both P and Q (not necessarily distinct) are Sylow p-subgroups of G and hence of $N_G(Q)$ (since $N_G(Q) < G$) and are therefore conjugate in $N_G(Q)$.

Theorem II.5.10. Fraleigh, Theorem 36.11. Third Sylow Theorem. If *G* is a finite group and *p* a prime, then the number of Sylow *p*-subgroups of *G* divides |G| and is of the form kp + 1 for some $k \ge 0$.

Proof. By the Second Sylow Theorem (Theorem II.5.9) any two Sylow *p*-subgroups are conjugate, so if *P* is a Sylow *p*-subgroup then the number of conjugates of *P* is the number of Sylow *p*-subgroups. But by Corollary II.4.4(iii) the number of conjugates of *P* in *G* is $[G : N_G(P)]$ and this is a divisor of |G|.

Let S be the set of all Sylow p-subgroups of G and let P act on S by conjugation. Then $Q \in S_0 = \{Q \in S \mid xQx^{-1} = Q \text{ for all } x \in P\}$ if and only if $P < N_G(Q) = \{x \in G \mid xQx^{-1} = Q\}$. So both P and Q (not necessarily distinct) are Sylow p-subgroups of G and hence of $N_G(Q)$ (since $N_G(Q) < G$) and are therefore conjugate in $N_G(Q)$.

Theorem II.5.10 (continued)

Theorem II.5.10. Fraleigh, Theorem 36.11. Third Sylow Theorem. If G is a finite group and p a prime, then the number of Sylow p-subgroups of G divides |G| and is of the form kp + 1 for some $k \ge 0$.

Proof (continued). Since Q is normal in $N_G(Q)$ (by the definition of $N_G(Q)$, the normalizer of Q in G) then every conjugate of Q in $N_G(Q)$ equals Q and so P = Q. Therefore $S_0 = \{P\}$. By Lemma II.5.1, $|S| \equiv |S_0| \equiv 1 \pmod{p}$. Hence |S| = kp + 1 for some $k \ge 0$.

Theorem II.5.11. If *P* is a Sylow *p*-subgroup of a finite group *G*, then $N_G(N_G(P)) = N_G(P)$.

Proof. Every conjugate of *P* is a Sylow *p*-subgroup of *G* by the Second Sylow Theorem (Theorem II.5.9). Every conjugate of *P* is a Sylow *p*-subgroup of any subgroup of *G* that contains it by Corollary II.5.8(ii). Since *P* is normal in $N = N_G(P) = \{x \in G \mid xPx^{-1} = P\}$, then *P* is the only Sylow *p*-subgroup of *N* by the Second Sylow Theorem (Theorem II.5.9; all Sylow *p*-subgroups of *N* must be conjugates, but any conjugate of *P* in *N* equals *P*).

Modern Algebra

Theorem II.5.11. If *P* is a Sylow *p*-subgroup of a finite group *G*, then $N_G(N_G(P)) = N_G(P)$.

Proof. Every conjugate of P is a Sylow p-subgroup of G by the Second Sylow Theorem (Theorem II.5.9). Every conjugate of P is a Sylow *p*-subgroup of any subgroup of G that contains it by Corollary II.5.8(ii). Since P is normal in $N = N_G(P) = \{x \in G \mid xPx^{-1} = P\}$, then P is the only Sylow *p*-subgroup of *N* by the Second Sylow Theorem (Theorem II.5.9; all Sylow p-subgroups of N must be conjugates, but any conjugate of P in N equals P). Therefore, $x \in N_G(N_G(P)) = N_G(N)$ if and only if $xNx^{-1} = N$ by the definition of normalizer and this implies that $xPx^{-1} < N$ since P < N, and so xPx^{-1} is a Sylow *p*-subgroup of N by Corollary II.5.8(ii). Since P is the only Sylow *p*-subgroup of N then $P = xPx^{-1}$ and so $x \in N_G(P) = N$. Therefore $N_G(N_G(P)) \subseteq N_G(P)$.

Theorem II.5.11. If *P* is a Sylow *p*-subgroup of a finite group *G*, then $N_G(N_G(P)) = N_G(P)$.

Proof. Every conjugate of P is a Sylow p-subgroup of G by the Second Sylow Theorem (Theorem II.5.9). Every conjugate of P is a Sylow *p*-subgroup of any subgroup of G that contains it by Corollary II.5.8(ii). Since P is normal in $N = N_G(P) = \{x \in G \mid xPx^{-1} = P\}$, then P is the only Sylow *p*-subgroup of *N* by the Second Sylow Theorem (Theorem II.5.9; all Sylow *p*-subgroups of N must be conjugates, but any conjugate of P in N equals P). Therefore, $x \in N_G(N_G(P)) = N_G(N)$ if and only if $xNx^{-1} = N$ by the definition of normalizer and this implies that $xPx^{-1} < N$ since P < N, and so xPx^{-1} is a Sylow *p*-subgroup of N by Corollary II.5.8(ii). Since P is the only Sylow *p*-subgroup of N then $P = xPx^{-1}$ and so $x \in N_G(P) = N$. Therefore $N_G(N_G(P)) \subseteq N_G(P)$.

Theorem II.5.11 (continued)

Theorem II.5.11. If *P* is a Sylow *p*-subgroup of a finite group *G*, then $N_G(N_G(P)) = N_G(P)$.

Proof (continued). Now "clearly" the normalizers of any subgroup of *G* contains all the elements of that subgroup and so $x \in N_G(P)$ implies $x \in N_G(N_G(P))$ and $N_G(P) \subseteq N_G(N_G(p))$.

Hence $N_G(N_G(P)) = N_G(P)$.