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Proposition 11.6.1

Proposition 11.6.1 (continued 1)

Proof (continued). Since g is prime, G/S is cyclic (Exercise 1.4.3(iii)).
Now coset bS is of order g in group G/S. (Notice that b ¢ (a) = S or
else (a) N (b) # {e} and we would have a subgroup of G of an order
different from 1, p, g, and pq, contradicting Lagrange's Theorem. Since
the order of element bS must divide |G/S| = g and the order of bS is not
1, then the order of bS must be q.) So G/S = (bS). Now the cosets of S
partition group G, so every g € G is in some b'S and since S = (a) then
g = b'd for some i,j > 0. Thatis, G = (a, b). The number of Sylow
g-subgroups is kq + 1 for some k > 0 and divides |G| = pqg by the Third
Sylow Theorem (Theorem 11.5.10). So there are either 1 or p Sylow
g-subgroups of G. If there is one such subgroup, which must be the case if
qt(p—1) (since g (p—1) and (kg + 1) | (pq) imply that either
kgq+1=1kg+1=p,orkg+1=gq;if kg+1=1then k =0; for k > 1,
we cannot have kg+1=gq;if kg+1=pthen kg=p—1landgq|(p—1);
so if g1 (p—1) then k = 0 and there is one Sylow g-subgroup) then this
unique Sylow g-subgroup (b) is a normal subgroup by Corollary 11.5.8(iii).
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Proposition 11.6.1

Proposition 11.6.1

Proposition 11.6.1. Let p and g be primes such that p > q.
(i) If g4 p— 1 then every group of order pgq is isomorphic to the
cyclic group Zpg.
(i) If g| p— 1 then there are (up to isomorphism) exactly two
distinct groups of order pq: the cyclic group Zpq and a
nonabelian group K generated by elements ¢ and d such
that these elements have orders |c| = p and |d| = g. Also
dc = c*d where s # 1 (mod p) and s9 =1 (mod p). This
nonabelian group is called a metacyclic group (see Exercise
11.6.2).
Proof. In both cases, the only abelian group of order pq is (up to
isomorphism) Zpq = Zp & Zg by Theorem 11.2.6 and Lemma 11.2.3. By
Cauchy's Theorem (Theorem 11.5.2), G contains elements a and b with
orders |a| = p and |b| = q. Furthermore, S = (a) is normal in G by
Corollary 11.4.10, so the quotient group G/S exists and is of order
|G/S| =1|G|/|S| = q by Lagrange's Theorem (Corollary 1.4.6).
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Proposition 11.6.1

Proposition 11.6.1 (continued 2)

Proof (continued). As described above, (a) N (b) = {e}. By Theorem
[.3.2, S = (a) = Zp, and (b) = Z4 and these are normal subgroups of G by
the above arguments. So the hypotheses of Theorem 1.8.6 are satisfied
and G is the weak direct product of (a) and (b). Since for finite products,
the weak direct product and direct product coincide, then we can also say
that G is the direct product of (a) and (b). Now define f; : (a) — Z, such
that f1(a) =1 and define £ : (b) — Zg such that f(b) = 1. Then f; and
fo are isomorphisms and f mapping (a) x (b) to Z, & Zq defined as

f = f1 X fp is an isomorphism by Theorem 1.8.10. By Exercise 1.8.5, since
p and g are relatively prime, then Z, © Zq = Zpq. Hence

G =(a) x(b) = Zp® Lq = ZLpqg,

and if G has only one Sylow g-subgroup then G = Z,4. So (i) holds and
(i) holds in the event that G has only one Sylow g-subgroup.
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Proposition 11.6.1

Proposition 11.6.1 (continued 3)

Proof (continued). If the number of Sylow g-subgroups is p (which can
only occur if g | (p — 1), as explained above), then bab™! = a" for some
a" € (a), since S = (a) < G, where

r#1(mod p) (+)

(for if r =1 (mod p) then a" = a by Theorem 1.3.4(v) and then

bab™! = a or ba = ab; but then, since every element of G is of the form
b'a as explained above, then G would be abelian and so have only one
Sylow g-subgroup, not p, a contradiction). Since bab~! = a", it follows by
induction that bab™/ = a”, as we now explain. The result is true for

j =1, by hypothesis. Next, Bab™ = a” implies

btlap=UtD) = p(Wab )bt = ba”"bL = baa---ab ! =
——

r times
. . . j 1 _
= (bab™Y)(bab™!)---(bab™1) = (a")" = a" since bab ! = a".
ri times
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Proposition 11.6.1

Proposition 11.6.1 (continued 5)

Proof (continued). In our case r Z 1 (mod p) (see (%)) and rf =1
(mod p) (see (*x*)), so the condition k | g of Result 2 implies that k = g
since g is prime. So the g distinct solutions modulo p to the equation

x9 =1 (mod p) of Result 1 are 1,r,r? ..., r971. Consider any s € N with
s = r' (mod p) for some t where 1 <t < g—1(sos# 1 (mod p) since
these powers of r are distinct from Result 1). Also,

s? = r9(mod p) = (r9)* (mod p) = 1(mod p). Define by = b* € G.
Since the order of bis |b| = g and 1 <t < g — 1, then the order of by
must be |b1| = g also (and (b) = (b1) are both subgroups of G of order
q). As argued at the beginning of the proof (with b replaced with by),

G = (a, by) and every element of G can be written in the form b}/, that
|a| = p, and that bjab; ! = a° for some a° € (a) where s # 1 (mod p) and
s9 =1 (mod p) (see (**) above; s here plays the role of r in the argument
above).
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Proposition 11.6.1

Proposition 11.6.1 (continued 4)

Proof (continued). In particular for j = g, b%b~9 = a = a" (since
|b| = q) and by Theorem 1.3.4(v)

r9 =1 (mod p). ()

To complete the proof, we must show that if g | (p — 1) and G is the
nonabelian group described in the previous paragraph, then G is
isomorphic to group K in the statement of the theorem. We need two
results from number theory. Hungerford references J.E. Schockley's
Introduction to Number Theory (Holt, Rinehart, and Winston, 1967):
Result 1. The congruence x9 = 1 (mod p) has exactly g distinct solutions
modulo p. [Shockley, Corollary 6.1, page 67]

Result 2. If r is a solution to x9 =1 (mod p) and k is the least positive
integer such that r* = g (mod p), then k | p. [Shockley, Theorem 8, page
70]
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Proposition 11.6.1

Proposition 11.6.1 (continued 6)

Proposition 11.6.1. Let p and g be primes such that p > q.

(i) If g4 p— 1 then every group of order pgq is isomorphic to the
cyclic group Zpg.

(i) If g| p—1 then there are (up to isomorphism) exactly two
distinct groups of order pq: the cyclic group Zpq and a
nonabelian group K generated by elements ¢ and d such
that these elements have orders |c| = p and |d| = g. Also
dc = c*d where s # 1 (mod p) and s9 =1 (mod p). This
nonabelian group is called a metacyclic group (see Exercise
11.6.2).

Proof (continued). So CHOOSE s € N where bjab;* = a°, s # 1 (mod
p) and s9 =1 (mod p). Now blabl_1 = a° gives bja = a°b;. For the
isomorphism between G = (a, b1) and K = (c, d), define the mapping
ar— cand by — d. O
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Corollary 11.6.2

Corollary 11.6.2

Corollary 11.6.2. If p is an odd prime, then every group of order 2p is
isomorphic either to the cyclic group Zo, or the dihedral group Dp.

Proof. By Proposition 11.6.1 with g = 2 (in which case g | (p — 1)) there
are two distinct groups of order pg = 2p, one of which is the cyclic group
Zyp. The other group, say G, has parameter s satisfying s 1 (mod p)
and s> =1 (mod p). So s = —1 (mod p). Hence G = (c, d) where

|d| =2, |c| = p, and dc = c°d or dc = cP~1d = c~'d. By Theorem
1.6.13, G = D, 0
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Proposition 11.6.3 (continued)

Proposition 11.6.3. There are (up to isomorphism) exactly two distinct
nonabelian groups of order 8: the quaternion group Qg (see Exercise 1.2.3)
and the dihedral group Dj.

Proof (continued). Since (a) is normal in G, then bab™! € (a) by
Theorem 1.5.1(iv). If bab~! = e then ba= b and a = e, a contradiction.
If bab™! = a then ab = ba and since G = (a, b) then G is abelian, a
contradiction. If bab=! = a2 then (bab™1)? = a* = e or ba’b~! = e and
ba? = b and a® = e, a contradiction. So it must be that bab~! = a®. So
ba = a®b = a~1b. Hence, we have two cases depending on the value of
b2. In one case we have |a| = 4, b?> = a?, ba = a—'b, and so by Exercise
1.4.14, G = Qg. In the other case, |a| = 4, |b| = 2 (since b = e),

ba = a~'b and so by Theorem 1.6.13, G = D,. O
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Proposition 11.6.3

Proposition 11.6.3

Proposition 11.6.3. There are (up to isomorphism) exactly two distinct
nonabelian groups of order 8: the quaternion group Qg (see Exercise 1.2.3)
and the dihedral group Dj.

Proof. By Exercise 11.6.10, Dy 2 Qg. If a group G of order 8 is nonabelian
then it cannot contain an element of order 8 (otherwise it would be cyclic).
Nor can such a group have every nonidentity element of order 2 (or else G
would be abelian by Exercise 1.1.13). Hence G contains an element a of
order 4. Now group (a) is of index 2, |G|/|(a)| = 2, and so (a) is a normal
subgroup by Exercise 1.5.1. Choose b ¢ (a). Then b is in coset b(a). So
G = (a) Ub(a) and G = (a, b). Since b & (a) then b? & b(a). Since G is
partitioned into (a) and b(a), b> must be in (a). If b> = a then (b?) = (a)
and coset b(b?) gives the elements in G \ (b?) and so (b) = G, a
contradiction. Since a is of order 4, (a) = (a®) and a similar contradiction
results if b2 = a3. So it must be that either b?> = a? or b?> = e.
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Proposition 11.6.4

Proposition 11.6.4

Proposition 11.6.4. There are (up to isomorphism) exactly three distinct
nonabelian groups of order 12: the dihedral group Dg, the alternating
group A, and a group T generated by elements a and b such that |a] = 6,
b?> = a3, and ba = a7 1b.

Proof. In Exercise 11.6.5 it is shown that the group T actually exists and
in Exercise 11.6.6 it is shown that no two of Dg, A4, T are isomorphic. If G
is a nonabelian group of order 12, then G has a Sylow 3-subgroup P by
the First Sylow Theorem (Theorem 11.5.7). Then |P| = 3 and

[G : P] =|G|/|P| = 4. By Proposition 11.4.8 there is a homomorphism
f:G— A(S) (where A(S) is the group of all permutations of the set of
left cosets of P; since there a 4 left cosets of P then A(S) = S4) whose
kernel K is contained in P. Whence K = P or K = {e} (since the kernel
is a subgroup by Exercise 1.2.9(a) and |P| = 3). If K = {e} then f is one
to one (Theorem 1.2.3(i)) and G is isomorphic to a subgroup of order 12
of S4 (namely Im(f) = f[G]), which must be A4 by Theorem 1.6.8 (and

the first possible structure of G is established).
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Proposition 11.6.4 (continued 1)

Proof (continued). Otherwise K = P and P is normal in G (Theorem
[.5.5). In this case, P is the unique Sylow 3-subgroup (since all Sylow
p-subgroups of G are conjugates by the Second Sylow Theorem [Theorem
[1.5.9] and a normal subgroup is self conjugate by Theorem 1.5.1(v)).
Hence G contains only two elements of order 3 (the two nonidentity
elements in P). If c is one of these order 3 elements, then [G : Cs(c)] is
the number of conjugates of ¢ (by Corollary 11.4.4(i);

Co(c) ={g € G| gcg™! = c} is the “centralizer” of c) and every
conjugate of ¢ has order 3 (consider (gcg™1)3); so [G : Cg(c)] =1 or 2
(either c is self conjugate or ¢ and the other element of G of order 3 are
conjugates, respectively). Since [G : Cs(c)] =|G|/|Cs(c)| (Lagrange's
Theorem, Corollary 1.4.6) then |Cg(c)| = 12 or 6 (respectively). In either
case there is d € Cg(c) of order 2 by Cauchy’s Theorem (Theorem 11.5.2).
Since cd € Cg(c) then |cd|is 1, 2, 3, 4, or 6. Since d € Cg(c) then
dcd™! = c or dc = cd. Now if cd = e then e = €? = (cd)? = (cd)(dc)
= cd?c = cec = ¢?, a contradiction since |c| = 3.
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Proposition 11.6.4 (continued 3)

Proof (continued).
o If bab ! = a* then (bab 1)® = (a*)3 = al2 = e or
ba’b™! = e and ba® = b or a® = e, a contradiction.
So it must be that bab™! = a® = a=1. That is ba = a~'b or aba = b.

We now consider the possible values of b?> € (a) in terms of powers of a.

o If b> = 2% then, since aba = b, we have (aba)?> = b? or
(aba)(aba) = b? or aba®ba = b> or abb’ba = b? or
ab*a = b? or ab*a = a° or b* = e or a* = e, a contradiction
since |a| = 6.

o If b2 =23%= a2 then, since aba=bor b=a lbhal, we

have b?> = (a=1bha~1)(a=tha~l) = a~tba2ba~! = a7 1b*a~!
or (since b?> = a*) a* = a7 1b*a~l or a® = b* or e = b* or

e = a® = a2, a contradiction since |a| = 6.
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Proposition 11.6.4 (continued 2)

Proof (continued). Next, (cd)? = (cd)(cd) = (cd)(dc) = cd?c = cec
= c? # e since |c| = 3. Also (cd)? = (cd)(cd)(cd) = (cd)(dc)(cd)
= cd?c®d = cec®’d = c3d = d # e. Similarly, (cd)* = (cd)3(cd)
= d(cd) = d(dc) = d’c = ec = ¢ # e. Also,
(cd)® = (cd)*(cd)® = (d)(d) = d? = e. Hence |cd| = 6.
Let a = cd. Then, as in the proof of Proposition 11.6.3, (a) is normal in G
since |G/(a)| = 2; there is b € G such that b ¢ (a), b # e, b € (a).
Since (a) is normal, bab™! € (a). We now consider the value of bab™1.
e If bab~! = e then ba = b and a = e, contradiction.

e If bab™! = a then ba = ab and G is abelian (G = (a, b)
since G = (a) U b(a)), a contradiction.

o If bab™! = 2° then (bab™1)® = (a°)3 = a® = e and
balb~! = e or ba® = b or a® = e, a contradiction.

o If bab™! = 23 then (bab™1)? = (a3)% or ba’b™ ! = a® = e or
ba’b~! = e and ba® = b or a®> = e, a contradiction.
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Proposition 11.6.4 (continued 4)

Proof (continued).

o If b> = athen b2 = 2% = e. Then b° = a3 #£ ¢,
b* = a% # e, and b®> = ab # e since b # a~! (or else
b € (a)) and so G = (b) which implies that G is cyclic and
hence abelian, a contradiction.

o If B2 = 2% then b2 =230 = e (and B® = al® = 23 £ ¢,
b* = a0 = a* £ e, and b3 = b?’b = a®b # e since b # a, or
else b € (a)). Then G = (b) which implies that G is cyclic
and hence abelian, a contradiction.

Therefore, the only possibilities are:
(i) |a] =6, b> = e, ba= a~1b, where G = Dg by Theorem

1.6.13;
(i) |a| = 6, b> = a3, ba = a~1b, whence G = T by Exercise
11.6.5(b).
So the other two possible structures of G are established. O
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