Modern Algebra

Chapter II. The Structure of Groups

II.6. Classification of Finite Groups—Proofs of Theorems

Table of contents

- 1 Proposition II.6.1
- 2 Corollary II.6.2
- 3 Proposition II.6.3
- 4 Proposition II.6.4

Proposition II.6.1. Let p and q be primes such that p > q.

- (i) If $q \nmid p-1$ then every group of order pq is isomorphic to the cyclic group \mathbb{Z}_{pa} .
- (ii) If $q \mid p-1$ then there are (up to isomorphism) exactly two distinct groups of order pq: the cyclic group \mathbb{Z}_{pq} and a nonabelian group K generated by elements c and d such that these elements have orders |c| = p and |d| = q. Also $dc = c^s d$ where $s \not\equiv 1 \pmod{p}$ and $s^q \equiv 1 \pmod{p}$. This nonabelian group is called a *metacyclic group* (see Exercise 11.6.2).

Proof. In both cases, the only abelian group of order pq is (up to isomorphism) $\mathbb{Z}_{pq} \cong \mathbb{Z}_p \oplus \mathbb{Z}_q$ by Theorem II.2.6 and Lemma II.2.3. By Cauchy's Theorem (Theorem II.5.2), G contains elements a and b with orders |a| = p and |b| = q. Furthermore, $S = \langle a \rangle$ is normal in G by Corollary II.4.10, so the quotient group G/S exists and is of order |G/S| = |G|/|S| = q by Lagrange's Theorem (Corollary I.4.6).

Proposition II.6.1. Let p and q be primes such that p > q.

- (i) If $q \nmid p-1$ then every group of order pq is isomorphic to the cyclic group \mathbb{Z}_{pq} .
- (ii) If $q \mid p-1$ then there are (up to isomorphism) exactly two distinct groups of order pq: the cyclic group \mathbb{Z}_{pq} and a nonabelian group K generated by elements c and d such that these elements have orders |c| = p and |d| = q. Also $dc = c^s d$ where $s \not\equiv 1 \pmod{p}$ and $s^q \equiv 1 \pmod{p}$. This nonabelian group is called a metacyclic group (see Exercise 11.6.2).

Proof. In both cases, the only abelian group of order pq is (up to isomorphism) $\mathbb{Z}_{pq} \cong \mathbb{Z}_p \oplus \mathbb{Z}_q$ by Theorem II.2.6 and Lemma II.2.3. By Cauchy's Theorem (Theorem II.5.2), G contains elements a and b with orders |a| = p and |b| = q. Furthermore, $S = \langle a \rangle$ is normal in G by Corollary II.4.10, so the quotient group G/S exists and is of order |G/S| = |G|/|S| = q by Lagrange's Theorem (Corollary I.4.6).

Proposition II.6.1 (continued 1)

Proof (continued). Since q is prime, G/S is cyclic (Exercise I.4.3(iii)). Now coset bS is of order q in group G/S. (Notice that $b \notin \langle a \rangle = S$ or else $\langle a \rangle \cap \langle b \rangle \neq \{e\}$ and we would have a subgroup of G of an order different from 1, p, q, and pq, contradicting Lagrange's Theorem. Since the order of element bS must divide |G/S| = q and the order of bS is not 1, then the order of bS must be q.) So $G/S = \langle bS \rangle$. Now the cosets of S partition group G, so every $g \in G$ is in some $b^i S$ and since $S = \langle a \rangle$ then $g = b^i a^j$ for some $i, j \ge 0$. That is, $G = \langle a, b \rangle$. The number of Sylow *q*-subgroups is kq + 1 for some k > 0 and divides |G| = pq by the Third Sylow Theorem (Theorem II.5.10). So there are either 1 or p Sylow q-subgroups of G. If there is one such subgroup, which must be the case if $q \nmid (p-1)$ (since $q \nmid (p-1)$ and $(kq+1) \mid (pq)$ imply that either kq + 1 = 1, kq + 1 = p, or kq + 1 = q; if kq + 1 = 1 then k = 0; for $k \ge 1$, we cannot have kq + 1 = q; if kq + 1 = p then kq = p - 1 and $q \mid (p - 1)$; so if $q \nmid (p-1)$ then k=0 and there is one Sylow q-subgroup) then this unique Sylow q-subgroup $\langle b \rangle$ is a normal subgroup by Corollary II.5.8(iii).

Proposition II.6.1 (continued 1)

Proof (continued). Since q is prime, G/S is cyclic (Exercise I.4.3(iii)). Now coset bS is of order q in group G/S. (Notice that $b \notin \langle a \rangle = S$ or else $\langle a \rangle \cap \langle b \rangle \neq \{e\}$ and we would have a subgroup of G of an order different from 1, p, q, and pq, contradicting Lagrange's Theorem. Since the order of element bS must divide |G/S| = q and the order of bS is not 1, then the order of bS must be q.) So $G/S = \langle bS \rangle$. Now the cosets of S partition group G, so every $g \in G$ is in some $b^i S$ and since $S = \langle a \rangle$ then $g = b^i a^j$ for some $i, j \ge 0$. That is, $G = \langle a, b \rangle$. The number of Sylow *q*-subgroups is kq + 1 for some k > 0 and divides |G| = pq by the Third Sylow Theorem (Theorem II.5.10). So there are either 1 or p Sylow q-subgroups of G. If there is one such subgroup, which must be the case if $q \nmid (p-1)$ (since $q \nmid (p-1)$ and $(kq+1) \mid (pq)$ imply that either kq + 1 = 1, kq + 1 = p, or kq + 1 = q; if kq + 1 = 1 then k = 0; for $k \ge 1$, we cannot have kq + 1 = q; if kq + 1 = p then kq = p - 1 and $q \mid (p - 1)$; so if $q \nmid (p-1)$ then k=0 and there is one Sylow q-subgroup) then this unique Sylow q-subgroup $\langle b \rangle$ is a normal subgroup by Corollary II.5.8(iii).

Proposition II.6.1 (continued 2)

Proof (continued). As described above, $\langle a \rangle \cap \langle b \rangle = \{e\}$. By Theorem 1.3.2, $S = \langle a \rangle \cong \mathbb{Z}_p$ and $\langle b \rangle \cong \mathbb{Z}_q$ and these are normal subgroups of G by the above arguments. So the hypotheses of Theorem I.8.6 are satisfied and G is the weak direct product of $\langle a \rangle$ and $\langle b \rangle$. Since for finite products, the weak direct product and direct product coincide, then we can also say that G is the direct product of $\langle a \rangle$ and $\langle b \rangle$. Now define $f_1 : \langle a \rangle \to \mathbb{Z}_p$ such that $f_1(a) = \overline{1}$ and define $f_2 : \langle b \rangle \to \mathbb{Z}_a$ such that $f_2(b) = \overline{1}$. Then f_1 and f_2 are isomorphisms and f mapping $\langle a \rangle \times \langle b \rangle$ to $\mathbb{Z}_p \oplus \mathbb{Z}_q$ defined as $f = f_1 \times f_2$ is an isomorphism by Theorem I.8.10. By Exercise I.8.5, since p and q are relatively prime, then $\mathbb{Z}_p \oplus \mathbb{Z}_q \cong \mathbb{Z}_{pq}$. Hence

$$G = \langle a \rangle \times \langle b \rangle \cong \mathbb{Z}_p \oplus \mathbb{Z}_q \cong \mathbb{Z}_{pq},$$

and if G has only one Sylow q-subgroup then $G \cong \mathbb{Z}_{pq}$. So (i) holds and (ii) holds in the event that G has only one Sylow q-subgroup.

Modern Algebra May 3, 2021 5 / 17

Proposition II.6.1 (continued 2)

Proof (continued). As described above, $\langle a \rangle \cap \langle b \rangle = \{e\}$. By Theorem 1.3.2, $S = \langle a \rangle \cong \mathbb{Z}_p$ and $\langle b \rangle \cong \mathbb{Z}_q$ and these are normal subgroups of G by the above arguments. So the hypotheses of Theorem I.8.6 are satisfied and G is the weak direct product of $\langle a \rangle$ and $\langle b \rangle$. Since for finite products, the weak direct product and direct product coincide, then we can also say that G is the direct product of $\langle a \rangle$ and $\langle b \rangle$. Now define $f_1 : \langle a \rangle \to \mathbb{Z}_p$ such that $f_1(a) = \overline{1}$ and define $f_2 : \langle b \rangle \to \mathbb{Z}_q$ such that $f_2(b) = \overline{1}$. Then f_1 and f_2 are isomorphisms and f mapping $\langle a \rangle \times \langle b \rangle$ to $\mathbb{Z}_p \oplus \mathbb{Z}_q$ defined as $f = f_1 \times f_2$ is an isomorphism by Theorem I.8.10. By Exercise I.8.5, since p and q are relatively prime, then $\mathbb{Z}_p \oplus \mathbb{Z}_q \cong \mathbb{Z}_{pq}$. Hence

$$G = \langle a \rangle \times \langle b \rangle \cong \mathbb{Z}_p \oplus \mathbb{Z}_q \cong \mathbb{Z}_{pq},$$

and if G has only one Sylow q-subgroup then $G \cong \mathbb{Z}_{pq}$. So (i) holds and (ii) holds in the event that G has only one Sylow q-subgroup.

Modern Algebra May 3, 2021 5 / 17

Proposition II.6.1 (continued 3)

Proof (continued). If the number of Sylow q-subgroups is p (which can only occur if $q \mid (p-1)$, as explained above), then $bab^{-1} = a^r$ for some $a^r \in \langle a \rangle$, since $S = \langle a \rangle \triangleleft G$, where

$$r \not\equiv 1 \pmod{p} \tag{*}$$

(for if $r \equiv 1 \pmod p$) then $a^r = a$ by Theorem I.3.4(v) and then $bab^{-1} = a$ or ba = ab; but then, since every element of G is of the form $b^i a^j$ as explained above, then G would be abelian and so have only one Sylow g-subgroup, not g, a contradiction). Since $bab^{-1} = a^r$, it follows by induction that $b^j ab^{-j} = a^{r^j}$, as we now explain. The result is true for j = 1, by hypothesis. Next, $b^j ab^{-j} = a^{r^j}$ implies

$$b^{j+1}ab^{-(j+1)} = b(b^{j}ab^{-j})b^{-1} = ba^{r^{j}}b^{-1} = b\underbrace{aa\cdots a}_{r^{j} \text{ times}}b^{-1} =$$

$$= \underbrace{(bab^{-1})(bab^{-1})\cdots(bab^{-1})}_{i \text{ times}} = (a^r)^{r^j} = a^{r^{j+1}} \text{ since } bab^{-1} = a^r.$$

Modern Algebra May 3, 2021 6 / 17

Proposition II.6.1 (continued 3)

Proof (continued). If the number of Sylow q-subgroups is p (which can only occur if $q \mid (p-1)$, as explained above), then $bab^{-1} = a^r$ for some $a^r \in \langle a \rangle$, since $S = \langle a \rangle \triangleleft G$, where

$$r \not\equiv 1 \pmod{p} \tag{*}$$

(for if $r\equiv 1\pmod p$) then $a^r=a$ by Theorem I.3.4(v) and then $bab^{-1}=a$ or ba=ab; but then, since every element of G is of the form b^ia^j as explained above, then G would be abelian and so have only one Sylow g-subgroup, not g, a contradiction). Since $bab^{-1}=a^r$, it follows by induction that $b^jab^{-j}=a^{r^j}$, as we now explain. The result is true for j=1, by hypothesis. Next, $b^jab^{-j}=a^{r^j}$ implies

$$b^{j+1}ab^{-(j+1)} = b(b^{j}ab^{-j})b^{-1} = ba^{r^{j}}b^{-1} = b\underbrace{aa\cdots a}_{r^{j} \text{ times}}b^{-1} =$$

$$= \underbrace{(bab^{-1})(bab^{-1})\cdots(bab^{-1})}_{r^{j}} = (a^{r})^{r^{j}} = a^{r^{j+1}} \text{ since } bab^{-1} = a^{r}.$$

Modern Algebra May 3, 2021 6 / 3

rj times

Proposition II.6.1 (continued 4)

Proof (continued). In particular for j=q, $b^qab^{-q}=a=a^{r^q}$ (since |b|=q) and by Theorem I.3.4(v)

$$r^q \equiv 1 \pmod{p}. \tag{**}$$

To complete the proof, we must show that if $q \mid (p-1)$ and G is the nonabelian group described in the previous paragraph, then G is isomorphic to group K in the statement of the theorem. We need two results from number theory. Hungerford references J.E. Schockley's Introduction to Number Theory (Holt, Rinehart, and Winston, 1967): Result 1. The congruence $x^q \equiv 1 \pmod{p}$ has exactly q distinct solutions modulo p. [Shockley, Corollary 6.1, page 67]

Result 2. If r is a solution to $x^q \equiv 1 \pmod{p}$ and k is the least positive integer such that $r^k \equiv q \pmod{p}$, then $k \mid p$. [Shockley, Theorem 8, page 70]

Modern Algebra May 3, 2021 7 / 17

Proposition II.6.1 (continued 4)

Proof (continued). In particular for j = q, $b^q a b^{-q} = a = a^{r^q}$ (since |b|=q) and by Theorem I.3.4(v)

$$r^q \equiv 1 \pmod{p}. \tag{**}$$

To complete the proof, we must show that if $q \mid (p-1)$ and G is the nonabelian group described in the previous paragraph, then G is isomorphic to group K in the statement of the theorem. We need two results from number theory. Hungerford references J.E. Schockley's Introduction to Number Theory (Holt, Rinehart, and Winston, 1967): Result 1. The congruence $x^q \equiv 1 \pmod{p}$ has exactly q distinct solutions modulo p. [Shockley, Corollary 6.1, page 67]

Result 2. If r is a solution to $x^q \equiv 1 \pmod{p}$ and k is the least positive integer such that $r^k \equiv q \pmod{p}$, then $k \mid p$. [Shockley, Theorem 8, page 701

Proposition II.6.1 (continued 5)

Proof (continued). In our case $r \not\equiv 1 \pmod{p}$ (see (*)) and $r^q \equiv 1$ (mod p) (see (**)), so the condition $k \mid q$ of Result 2 implies that k = qsince q is prime. So the q distinct solutions modulo p to the equation $x^q \equiv 1 \pmod{p}$ of Result 1 are $1, r, r^2, \dots, r^{q-1}$. Consider any $s \in \mathbb{N}$ with $s \equiv r^t \pmod{p}$ for some t where $1 \le t \le q-1$ (so $s \not\equiv 1 \pmod{p}$ since these powers of r are distinct from Result 1). Also, $s^q \equiv r^{tq} \pmod{p} \equiv (r^q)^t \pmod{p} \equiv 1 \pmod{p}$. Define $b_1 = b^t \in G$. Since the order of b is |b| = q and $1 \le t \le q - 1$, then the order of b_1 must be $|b_1| = q$ also (and $\langle b \rangle = \langle b_1 \rangle$ are both subgroups of G of order a). As argued at the beginning of the proof (with b replaced with b_1), $G = \langle a, b_1 \rangle$ and every element of G can be written in the form $b_1^i a^j$, that |a| = p, and that $b_1 a b_1^{-1} = a^s$ for some $a^s \in \langle a \rangle$ where $s \not\equiv 1 \pmod{p}$ and $s^q \equiv 1 \pmod{p}$ (see (**) above; s here plays the role of r in the argument

Proposition II.6.1 (continued 5)

Proof (continued). In our case $r \not\equiv 1 \pmod{p}$ (see (*)) and $r^q \equiv 1$ (mod p) (see (**)), so the condition $k \mid q$ of Result 2 implies that k = qsince q is prime. So the q distinct solutions modulo p to the equation $x^q \equiv 1 \pmod{p}$ of Result 1 are $1, r, r^2, \dots, r^{q-1}$. Consider any $s \in \mathbb{N}$ with $s \equiv r^t \pmod{p}$ for some t where $1 \le t \le q-1$ (so $s \not\equiv 1 \pmod{p}$ since these powers of r are distinct from Result 1). Also, $s^q \equiv r^{tq} \pmod{p} \equiv (r^q)^t \pmod{p} \equiv 1 \pmod{p}$. Define $b_1 = b^t \in G$. Since the order of b is |b| = q and $1 \le t \le q - 1$, then the order of b_1 must be $|b_1| = q$ also (and $\langle b \rangle = \langle b_1 \rangle$ are both subgroups of G of order q). As argued at the beginning of the proof (with b replaced with b_1), $G = \langle a, b_1 \rangle$ and every element of G can be written in the form $b_1^i a^j$, that |a| = p, and that $b_1 a b_1^{-1} = a^s$ for some $a^s \in \langle a \rangle$ where $s \not\equiv 1 \pmod{p}$ and $s^q \equiv 1 \pmod{p}$ (see (**) above; s here plays the role of r in the argument above).

Modern Algebra May 3, 2021 8 / 17

Proposition II.6.1 (continued 6)

Proposition II.6.1. Let p and q be primes such that p > q.

- (i) If $q \nmid p-1$ then every group of order pq is isomorphic to the cyclic group \mathbb{Z}_{pq} .
- (ii) If $q \mid p-1$ then there are (up to isomorphism) exactly two distinct groups of order pq: the cyclic group \mathbb{Z}_{pq} and a nonabelian group K generated by elements c and d such that these elements have orders |c| = p and |d| = q. Also $dc = c^s d$ where $s \not\equiv 1 \pmod{p}$ and $s^q \equiv 1 \pmod{p}$. This nonabelian group is called a metacyclic group (see Exercise II.6.2).

Proof (continued). So CHOOSE $s \in \mathbb{N}$ where $b_1 a b_1^{-1} = a^s$, $s \not\equiv 1$ (mod p) and $s^q \equiv 1$ (mod p). Now $b_1 a b_1^{-1} = a^s$ gives $b_1 a = a^s b_1$. For the isomorphism between $G = \langle a, b_1 \rangle$ and $K = \langle c, d \rangle$, define the mapping $a \mapsto c$ and $b_1 \mapsto d$.

Modern Algebra May 3, 2021 9 / 17

Corollary II.6.2

Corollary II.6.2. If p is an odd prime, then every group of order 2p is isomorphic either to the cyclic group \mathbb{Z}_{2p} or the dihedral group D_p .

Proof. By Proposition II.6.1 with q=2 (in which case $q\mid (p-1)$) there are two distinct groups of order pq=2p, one of which is the cyclic group \mathbb{Z}_{2p} . The other group, say G, has parameter s satisfying $s\not\equiv 1\pmod p$ and $s^2\equiv 1\pmod p$. So $s\equiv -1\pmod p$. Hence $G=\langle c,d\rangle$ where |d|=2, |c|=p, and $dc=c^sd$ or $dc=c^{p-1}d=c^{-1}d$. By Theorem I.6.13, $G\cong D_p$

Modern Algebra May 3, 2021 10 / 17

Corollary II.6.2

Corollary II.6.2. If p is an odd prime, then every group of order 2p is isomorphic either to the cyclic group \mathbb{Z}_{2p} or the dihedral group D_p .

Proof. By Proposition II.6.1 with q=2 (in which case $q \mid (p-1)$) there are two distinct groups of order pq = 2p, one of which is the cyclic group \mathbb{Z}_{2p} . The other group, say G, has parameter s satisfying $s \not\equiv 1 \pmod{p}$ and $s^2 \equiv 1 \pmod{p}$. So $s \equiv -1 \pmod{p}$. Hence $G = \langle c, d \rangle$ where |d|=2, |c|=p, and $dc=c^sd$ or $dc=c^{p-1}d=c^{-1}d$. By Theorem 1.6.13, $G \cong D_n$

> May 3, 2021 10 / 17

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise I.2.3) and the dihedral group D_4 .

Proof. By Exercise II.6.10, $D_4 \not\cong Q_8$. If a group G of order 8 is nonabelian then it cannot contain an element of order 8 (otherwise it would be cyclic). Nor can such a group have every nonidentity element of order 2 (or else G would be abelian by Exercise I.1.13). Hence G contains an element G order 4. Now group G is of index 2, G index 2, G is a normal subgroup by Exercise I.5.1. Choose G is in coset G is a normal subgroup by Exercise I.5.1. Choose G is in coset G is in coset G and G is an G in G in G is in coset G in G

Modern Algebra May 3, 2021 11 / 17

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise I.2.3) and the dihedral group D_4 .

Proof. By Exercise II.6.10, $D_4 \not\cong Q_8$. If a group G of order 8 is nonabelian then it cannot contain an element of order 8 (otherwise it would be cyclic). Nor can such a group have every nonidentity element of order 2 (or else G would be abelian by Exercise I.1.13). Hence G contains an element a of order 4. Now group $\langle a \rangle$ is of index 2, $|G|/|\langle a \rangle| = 2$, and so $\langle a \rangle$ is a normal subgroup by Exercise I.5.1. Choose $b \notin \langle a \rangle$. Then b is in coset $b \langle a \rangle$. So $G = \langle a \rangle \cup b \langle a \rangle$ and $G = \langle a, b \rangle$. Since $b \notin \langle a \rangle$ then $b^2 \notin b \langle a \rangle$. Since G is partitioned into $\langle a \rangle$ and $b \langle a \rangle$, b^2 must be in $\langle a \rangle$. If $b^2 = a$ then $\langle b^2 \rangle = \langle a \rangle$ and coset $b\langle b^2 \rangle$ gives the elements in $G \setminus \langle b^2 \rangle$ and so $\langle b \rangle = G$, a contradiction. Since a is of order 4, $\langle a \rangle = \langle a^3 \rangle$ and a similar contradiction results if $b^2 = a^3$. So it must be that either $b^2 = a^2$ or $b^2 = e$.

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise I.2.3) and the dihedral group D_4 .

Proof. By Exercise II.6.10, $D_4 \not\cong Q_8$. If a group G of order 8 is nonabelian then it cannot contain an element of order 8 (otherwise it would be cyclic). Nor can such a group have every nonidentity element of order 2 (or else G would be abelian by Exercise I.1.13). Hence G contains an element a of order 4. Now group $\langle a \rangle$ is of index 2, $|G|/|\langle a \rangle| = 2$, and so $\langle a \rangle$ is a normal subgroup by Exercise I.5.1. Choose $b \notin \langle a \rangle$. Then b is in coset $b \langle a \rangle$. So $G = \langle a \rangle \cup b \langle a \rangle$ and $G = \langle a, b \rangle$. Since $b \notin \langle a \rangle$ then $b^2 \notin b \langle a \rangle$. Since G is partitioned into $\langle a \rangle$ and $b \langle a \rangle$, b^2 must be in $\langle a \rangle$. If $b^2 = a$ then $\langle b^2 \rangle = \langle a \rangle$ and coset $b\langle b^2 \rangle$ gives the elements in $G \setminus \langle b^2 \rangle$ and so $\langle b \rangle = G$, a contradiction. Since a is of order 4, $\langle a \rangle = \langle a^3 \rangle$ and a similar contradiction results if $b^2 = a^3$. So it must be that either $b^2 = a^2$ or $b^2 = e$.

> Modern Algebra May 3, 2021 11 / 17

Proposition II.6.3 (continued)

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise I.2.3) and the dihedral group D_4 .

Proof (continued). Since $\langle a \rangle$ is normal in G, then $bab^{-1} \in \langle a \rangle$ by Theorem I.5.1(iv). If $bab^{-1} = e$ then ba = b and a = e, a contradiction. If $bab^{-1} = a$ then ab = ba and since $G = \langle a, b \rangle$ then G is abelian, a contradiction. If $bab^{-1} = a^2$ then $(bab^{-1})^2 = a^4 = e$ or $ba^2b^{-1} = e$ and $ba^2 = b$ and $a^2 = e$, a contradiction. So it must be that $bab^{-1} = a^3$. So $ba = a^3b = a^{-1}b$. Hence, we have two cases depending on the value of b^2 . In one case we have |a| = 4, $b^2 = a^2$, $ba = a^{-1}b$, and so by Exercise I.4.14, $G \cong Q_8$. In the other case, |a| = 4, |b| = 2 (since $b^2 = e$), $ba = a^{-1}b$ and so by Theorem I.6.13, $G \cong D_4$.

Modern Algebra May 3, 2021 12 / 17

Proposition II.6.3 (continued)

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise I.2.3) and the dihedral group D_4 .

Proof (continued). Since $\langle a \rangle$ is normal in G, then $bab^{-1} \in \langle a \rangle$ by Theorem I.5.1(iv). If $bab^{-1} = e$ then ba = b and a = e, a contradiction. If $bab^{-1} = a$ then ab = ba and since $G = \langle a, b \rangle$ then G is abelian, a contradiction. If $bab^{-1} = a^2$ then $(bab^{-1})^2 = a^4 = e$ or $ba^2b^{-1} = e$ and $ba^2 = b$ and $a^2 = e$, a contradiction. So it must be that $bab^{-1} = a^3$. So $ba = a^3b = a^{-1}b$. Hence, we have two cases depending on the value of b^2 . In one case we have |a| = 4, $b^2 = a^2$, $ba = a^{-1}b$, and so by Exercise 1.4.14, $G \cong Q_8$. In the other case, |a| = 4, |b| = 2 (since $b^2 = e$), $ba = a^{-1}b$ and so by Theorem I.6.13, $G \cong D_4$.

> May 3, 2021 12 / 17

Proposition II.6.4. There are (up to isomorphism) exactly three distinct nonabelian groups of order 12: the dihedral group D_6 , the alternating group A_4 , and a group T generated by elements a and b such that |a|=6, $b^2 = a^3$ and $ba = a^{-1}b$.

Proof. In Exercise II.6.5 it is shown that the group T actually exists and in Exercise II.6.6 it is shown that no two of D_6 , A_4 , T are isomorphic. If Gis a nonabelian group of order 12, then G has a Sylow 3-subgroup P by the First Sylow Theorem (Theorem II.5.7). Then |P|=3 and [G:P] = |G|/|P| = 4.

Proposition II.6.4. There are (up to isomorphism) exactly three distinct nonabelian groups of order 12: the dihedral group D_6 , the alternating group A_4 , and a group T generated by elements a and b such that |a|=6, $b^2 = a^3$ and $ba = a^{-1}b$.

Proof. In Exercise II.6.5 it is shown that the group T actually exists and in Exercise II.6.6 it is shown that no two of D_6 , A_4 , T are isomorphic. If G is a nonabelian group of order 12, then G has a Sylow 3-subgroup P by the First Sylow Theorem (Theorem II.5.7). Then |P|=3 and [G:P]=|G|/|P|=4. By Proposition II.4.8 there is a homomorphism $f: G \to A(S)$ (where A(S) is the group of all permutations of the set of left cosets of P; since there a 4 left cosets of P then $A(S) \cong S_4$) whose kernel K is contained in P. Whence K = P or $K = \{e\}$ (since the kernel is a subgroup by Exercise I.2.9(a) and |P|=3).

Proposition II.6.4. There are (up to isomorphism) exactly three distinct nonabelian groups of order 12: the dihedral group D_6 , the alternating group A_4 , and a group T generated by elements a and b such that |a|=6, $b^2=a^3$, and $ba=a^{-1}b$.

Proof. In Exercise II.6.5 it is shown that the group T actually exists and in Exercise II.6.6 it is shown that no two of D_6 , A_4 , T are isomorphic. If G is a nonabelian group of order 12, then G has a Sylow 3-subgroup P by the First Sylow Theorem (Theorem II.5.7). Then |P| = 3 and [G:P]=|G|/|P|=4. By Proposition II.4.8 there is a homomorphism $f: G \to A(S)$ (where A(S) is the group of all permutations of the set of left cosets of P; since there a 4 left cosets of P then $A(S) \cong S_4$) whose kernel K is contained in P. Whence K = P or $K = \{e\}$ (since the kernel is a subgroup by Exercise I.2.9(a) and |P|=3). If $K=\{e\}$ then f is one to one (Theorem I.2.3(i)) and G is isomorphic to a subgroup of order 12 of S_4 (namely Im(f) = f[G]), which must be A_4 by Theorem I.6.8 (and the first possible structure of G is established).

Proposition II.6.4. There are (up to isomorphism) exactly three distinct nonabelian groups of order 12: the dihedral group D_6 , the alternating group A_4 , and a group T generated by elements a and b such that |a| = 6, $b^2 = a^3$, and $ba = a^{-1}b$.

Proof. In Exercise II.6.5 it is shown that the group T actually exists and in Exercise II.6.6 it is shown that no two of D_6 , A_4 , T are isomorphic. If G is a nonabelian group of order 12, then G has a Sylow 3-subgroup P by the First Sylow Theorem (Theorem II.5.7). Then |P| = 3 and [G:P]=|G|/|P|=4. By Proposition II.4.8 there is a homomorphism $f: G \to A(S)$ (where A(S) is the group of all permutations of the set of left cosets of P; since there a 4 left cosets of P then $A(S) \cong S_4$) whose kernel K is contained in P. Whence K = P or $K = \{e\}$ (since the kernel is a subgroup by Exercise I.2.9(a) and |P|=3). If $K=\{e\}$ then f is one to one (Theorem I.2.3(i)) and G is isomorphic to a subgroup of order 12 of S_4 (namely Im(f) = f[G]), which must be A_4 by Theorem I.6.8 (and the first possible structure of G is established).

Proposition II.6.4 (continued 1)

Proof (continued). Otherwise K = P and P is normal in G (Theorem 1.5.5). In this case, P is the unique Sylow 3-subgroup (since all Sylow p-subgroups of G are conjugates by the Second Sylow Theorem [Theorem [1.5.9] and a normal subgroup is self conjugate by Theorem [1.5.1(v)]. Hence G contains only two elements of order 3 (the two nonidentity elements in P). If c is one of these order 3 elements, then $[G:C_G(c)]$ is the number of conjugates of c (by Corollary II.4.4(i); $C_G(c) = \{g \in G \mid gcg^{-1} = c\}$ is the "centralizer" of c) and every conjugate of c has order 3 (consider $(gcg^{-1})^3$); so $[G:C_G(c)]=1$ or 2 (either c is self conjugate or c and the other element of G of order 3 are conjugates, respectively).

Proposition II.6.4 (continued 1)

Proof (continued). Otherwise K = P and P is normal in G (Theorem 1.5.5). In this case, P is the unique Sylow 3-subgroup (since all Sylow p-subgroups of G are conjugates by the Second Sylow Theorem [Theorem [1.5.9] and a normal subgroup is self conjugate by Theorem [1.5.1(v)]. Hence G contains only two elements of order 3 (the two nonidentity elements in P). If c is one of these order 3 elements, then $[G:C_G(c)]$ is the number of conjugates of c (by Corollary II.4.4(i); $C_G(c) = \{g \in G \mid gcg^{-1} = c\}$ is the "centralizer" of c) and every conjugate of c has order 3 (consider $(gcg^{-1})^3$); so $[G:C_G(c)]=1$ or 2 (either c is self conjugate or c and the other element of G of order 3 are conjugates, respectively). Since $[G:C_G(c)]=|G|/|C_G(c)|$ (Lagrange's Theorem, Corollary I.4.6) then $|C_G(c)| = 12$ or 6 (respectively). In either case there is $d \in C_G(c)$ of order 2 by Cauchy's Theorem (Theorem II.5.2). Since $cd \in C_G(c)$ then |cd| is 1, 2, 3, 4, or 6. Since $d \in C_G(c)$ then $dcd^{-1} = c$ or dc = cd. Now if cd = e then $e = e^2 = (cd)^2 = (cd)(dc)$ $= cd^2c = cec = c^2$, a contradiction since |c| = 3.

Proposition II.6.4 (continued 1)

Proof (continued). Otherwise K = P and P is normal in G (Theorem 1.5.5). In this case, P is the unique Sylow 3-subgroup (since all Sylow p-subgroups of G are conjugates by the Second Sylow Theorem [Theorem [1.5.9] and a normal subgroup is self conjugate by Theorem [1.5.1(v)]. Hence G contains only two elements of order 3 (the two nonidentity elements in P). If c is one of these order 3 elements, then $[G:C_G(c)]$ is the number of conjugates of c (by Corollary II.4.4(i); $C_G(c) = \{g \in G \mid gcg^{-1} = c\}$ is the "centralizer" of c) and every conjugate of c has order 3 (consider $(gcg^{-1})^3$); so $[G:C_G(c)]=1$ or 2 (either c is self conjugate or c and the other element of G of order 3 are conjugates, respectively). Since $[G:C_G(c)]=|G|/|C_G(c)|$ (Lagrange's Theorem, Corollary I.4.6) then $|C_G(c)| = 12$ or 6 (respectively). In either case there is $d \in C_G(c)$ of order 2 by Cauchy's Theorem (Theorem II.5.2). Since $cd \in C_G(c)$ then |cd| is 1, 2, 3, 4, or 6. Since $d \in C_G(c)$ then $dcd^{-1} = c$ or dc = cd. Now if cd = e then $e = e^2 = (cd)^2 = (cd)(dc)$ $= cd^2c = cec = c^2$, a contradiction since |c| = 3.

Proposition II.6.4 (continued 2)

Proof (continued). Next,
$$(cd)^2 = (cd)(cd) = (cd)(dc) = cd^2c = cec$$

= $c^2 \neq e$ since $|c| = 3$. Also $(cd)^3 = (cd)(cd)(cd) = (cd)(dc)(cd)$
= $cd^2c^2d = cec^2d = c^3d = d \neq e$. Similarly, $(cd)^4 = (cd)^3(cd)$
= $d(cd) = d(dc) = d^2c = ec = c \neq e$. Also, $(cd)^6 = (cd)^3(cd)^3 = (d)(d) = d^2 = e$. Hence $|cd| = 6$.

Let a=cd. Then, as in the proof of Proposition II.6.3, $\langle a \rangle$ is normal in G since $|G/\langle a \rangle|=2$; there is $b \in G$ such that $b \notin \langle a \rangle$, $b \neq e$, $b^2 \in \langle a \rangle$. Since $\langle a \rangle$ is normal, $bab^{-1} \in \langle a \rangle$. We now consider the value of bab^{-1} .

- If $bab^{-1} = e$ then ba = b and a = e, contradiction.
- If $bab^{-1} = a$ then ba = ab and G is abelian ($G = \langle a, b \rangle$ since $G = \langle a \rangle \cup b \langle a \rangle$), a contradiction.
- If $bab^{-1} = a^2$ then $(bab^{-1})^3 = (a^2)^3 = a^6 = e$ and $ba^3b^{-1} = e$ or $ba^3 = b$ or $a^3 = e$, a contradiction.
- If $bab^{-1} = a^3$ then $(bab^{-1})^2 = (a^3)^2$ or $ba^2b^{-1} = a^6 = e$ or $ba^2b^{-1} = e$ and $ba^2 = b$ or $a^2 = e$, a contradiction.

Proposition II.6.4 (continued 2)

Proof (continued). Next, $(cd)^2 = (cd)(cd) = (cd)(dc) = cd^2c = cec$ $= c^2 \neq e$ since |c| = 3. Also $(cd)^3 = (cd)(cd)(cd) = (cd)(dc)(cd)$ $= cd^2c^2d = cec^2d = c^3d = d \neq e$. Similarly, $(cd)^4 = (cd)^3(cd)$ $= d(cd) = d(dc) = d^2c = ec = c \neq e$. Also, $(cd)^6 = (cd)^3(cd)^3 = (d)(d) = d^2 = e$. Hence |cd| = 6. Let a = cd. Then, as in the proof of Proposition II.6.3, $\langle a \rangle$ is normal in G since $|G/\langle a \rangle| = 2$; there is $b \in G$ such that $b \notin \langle a \rangle$, $b \neq e$, $b^2 \in \langle a \rangle$. Since $\langle a \rangle$ is normal, $bab^{-1} \in \langle a \rangle$. We now consider the value of bab^{-1} .

- If $bab^{-1} = e$ then ba = b and a = e, contradiction.
- If $bab^{-1} = a$ then ba = ab and G is abelian ($G = \langle a, b \rangle$ since $G = \langle a \rangle \cup b \langle a \rangle$), a contradiction.
- If $bab^{-1} = a^2$ then $(bab^{-1})^3 = (a^2)^3 = a^6 = e$ and $ba^3b^{-1} = e$ or $ba^3 = b$ or $a^3 = e$, a contradiction.
- If $bab^{-1} = a^3$ then $(bab^{-1})^2 = (a^3)^2$ or $ba^2b^{-1} = a^6 = e$ or $ba^2b^{-1} = e$ and $ba^2 = b$ or $a^2 = e$, a contradiction.

Proposition II.6.4 (continued 3)

Proof (continued).

• If $bab^{-1} = a^4$ then $(bab^{-1})^3 = (a^4)^3 = a^{12} = e$ or $ba^3b^{-1} = e$ and $ba^3 = b$ or $a^3 = e$, a contradiction.

So it must be that $bab^{-1} = a^5 = a^{-1}$. That is $ba = a^{-1}b$ or aba = b.

We now consider the possible values of $b^2 \in \langle a \rangle$ in terms of powers of a.

- If $b^2 = a^2$ then, since aba = b, we have $(aba)^2 = b^2$ or $(aba)(aba) = b^2$ or $aba^2ba = b^2$ or $abb^2ba = b^2$ or $ab^4a = b^2$ or $ab^4a = a^2$ or $b^4 = e$ or $a^4 = e$, a contradiction since |a| = 6.
- If $b^2 = a^4 = a^{-2}$ then, since aba = b or $b = a^{-1}ba^{-1}$, we have $b^2 = (a^{-1}ba^{-1})(a^{-1}ba^{-1}) = a^{-1}ba^{-2}ba^{-1} = a^{-1}b^4a^{-1}$ or (since $b^2 = a^4$) $a^4 = a^{-1}b^4a^{-1}$ or $a^6 = b^4$ or $e = b^4$ or $e = a^8 = a^2$, a contradiction since |a| = 6.

Proposition II.6.4 (continued 3)

Proof (continued).

• If $bab^{-1} = a^4$ then $(bab^{-1})^3 = (a^4)^3 = a^{12} = e$ or $ba^3b^{-1} = e$ and $ba^3 = b$ or $a^3 = e$, a contradiction.

So it must be that $bab^{-1} = a^5 = a^{-1}$. That is $ba = a^{-1}b$ or aba = b.

We now consider the possible values of $b^2 \in \langle a \rangle$ in terms of powers of a.

- If $b^2 = a^2$ then, since aba = b, we have $(aba)^2 = b^2$ or $(aba)(aba) = b^2$ or $aba^2ba = b^2$ or $abb^2ba = b^2$ or $ab^4a = b^2$ or $ab^4a = a^2$ or $b^4 = e$ or $a^4 = e$, a contradiction since |a| = 6.
- If $b^2 = a^4 = a^{-2}$ then, since aba = b or $b = a^{-1}ba^{-1}$, we have $b^2 = (a^{-1}ba^{-1})(a^{-1}ba^{-1}) = a^{-1}ba^{-2}ba^{-1} = a^{-1}b^4a^{-1}$ or (since $b^2 = a^4$) $a^4 = a^{-1}b^4a^{-1}$ or $a^6 = b^4$ or $e = b^4$ or $e = a^8 = a^2$, a contradiction since |a| = 6.

Proposition II.6.4 (continued 4)

Proof (continued).

- If $b^2 = a$ then $b^{12} = a^6 = e$. Then $b^6 = a^3 \neq e$, $b^4 = a^2 \neq e$, and $b^3 = ab \neq e$ since $b \neq a^{-1}$ (or else $b \in \langle a \rangle$) and so $G = \langle b \rangle$ which implies that G is cyclic and hence abelian, a contradiction.
- If $b^2 = a^5$ then $b^{12} = a^{30} = e$ (and $b^6 = a^{15} = a^3 \neq e$, $b^4 = a^{10} = a^4 \neq e$, and $b^3 = b^2 b = a^5 b \neq e$ since $b \neq a$, or else $b \in \langle a \rangle$). Then $G = \langle b \rangle$ which implies that G is cyclic and hence abelian, a contradiction.

Therefore, the only possibilities are:

- (i) |a| = 6, $b^2 = e$, $ba = a^{-1}b$, where $G \cong D_6$ by Theorem 1.6.13;
- (ii) |a| = 6, $b^2 = a^3$, $ba = a^{-1}b$, whence $G \cong T$ by Exercise II.6.5(b).

So the other two possible structures of G are established.

Proposition II.6.4 (continued 4)

Proof (continued).

- If $b^2 = a$ then $b^{12} = a^6 = e$. Then $b^6 = a^3 \neq e$, $b^4 = a^2 \neq e$, and $b^3 = ab \neq e$ since $b \neq a^{-1}$ (or else $b \in \langle a \rangle$) and so $G = \langle b \rangle$ which implies that G is cyclic and hence abelian, a contradiction.
- If $b^2=a^5$ then $b^{12}=a^{30}=e$ (and $b^6=a^{15}=a^3\neq e$, $b^4=a^{10}=a^4\neq e$, and $b^3=b^2b=a^5b\neq e$ since $b\neq a$, or else $b\in \langle a\rangle$). Then $G=\langle b\rangle$ which implies that G is cyclic and hence abelian, a contradiction.

Therefore, the only possibilities are:

- (i) |a| = 6, $b^2 = e$, $ba = a^{-1}b$, where $G \cong D_6$ by Theorem I.6.13;
- (ii) |a| = 6, $b^2 = a^3$, $ba = a^{-1}b$, whence $G \cong T$ by Exercise II.6.5(b).

So the other two possible structures of G are established.

