Modern Algebra

Chapter II. The Structure of Groups

II.6. Classification of Finite Groups—Proofs of Theorems

- [Corollary II.6.2](#page-15-0)
- [Proposition II.6.3](#page-17-0)

Proposition II.6.1. Let p and q be primes such that $p > q$.

- (i) If $q \nmid p-1$ then every group of order pq is isomorphic to the cyclic group \mathbb{Z}_{pa} .
- (ii) If $q \mid p-1$ then there are (up to isomorphism) exactly two distinct groups of order pq : the cyclic group \mathbb{Z}_{pq} and a nonabelian group K generated by elements c and d such that these elements have orders $|c| = p$ and $|d| = q$. Also $dc = c^s d$ where $s \neq 1$ (mod p) and $s^q \equiv 1$ (mod p). This nonabelian group is called a metacyclic group (see Exercise $II.6.2$).

Proof. In both cases, the only abelian group of order pq is (up to isomorphism) $\mathbb{Z}_{pq} \cong \mathbb{Z}_p \oplus \mathbb{Z}_q$ by Theorem II.2.6 and Lemma II.2.3. By Cauchy's Theorem (Theorem II.5.2), G contains elements a and b with orders $|a| = p$ and $|b| = q$. Furthermore, $S = \langle a \rangle$ is normal in G by Corollary II.4.10, so the quotient group G/S exists and is of order $|G/S| = |G|/|S| = q$ by Lagrange's Theorem (Corollary 1.4.6).

Proposition II.6.1. Let p and q be primes such that $p > q$.

- (i) If $q \nmid p-1$ then every group of order pq is isomorphic to the cyclic group \mathbb{Z}_{pa} .
- (ii) If $q \mid p-1$ then there are (up to isomorphism) exactly two distinct groups of order pq : the cyclic group \mathbb{Z}_{pq} and a nonabelian group K generated by elements c and d such that these elements have orders $|c| = p$ and $|d| = q$. Also $dc = c^s d$ where $s \neq 1$ (mod p) and $s^q \equiv 1$ (mod p). This nonabelian group is called a *metacyclic group* (see Exercise $II.6.2$).

Proof. In both cases, the only abelian group of order pq is (up to isomorphism) $\mathbb{Z}_{pq} \cong \mathbb{Z}_p \oplus \mathbb{Z}_q$ by Theorem II.2.6 and Lemma II.2.3. By Cauchy's Theorem (Theorem II.5.2), G contains elements a and b with orders $|a| = p$ and $|b| = q$. Furthermore, $S = \langle a \rangle$ is normal in G by Corollary II.4.10, so the quotient group G/S exists and is of order $|G/S| = |G|/|S| = q$ by Lagrange's Theorem (Corollary I.4.6).

Proposition II.6.1 (continued 1)

Proof (continued). Since q is prime, G/S is cyclic (Exercise I.4.3(iii)). Now coset bS is of order q in group G/S . (Notice that $b \notin \langle a \rangle = S$ or else $\langle a \rangle \cap \langle b \rangle \neq \{e\}$ and we would have a subgroup of G of an order different from 1, p , q , and pq , contradicting Lagrange's Theorem. Since the order of element bS must divide $|G/S| = q$ and the order of bS is not 1, then the order of bS must be q.) So $G/S = \langle bS \rangle$. Now the cosets of S partition group G , so every $g\in G$ is in some b^iS and since $S=\langle a\rangle$ then $g=b^i\dot{a}^j$ for some $i,j\geq 0.$ That is, $G=\langle a,b\rangle.$ The number of Sylow q-subgroups is $kq + 1$ for some $k > 0$ and divides $|G| = pq$ by the Third Sylow Theorem (Theorem II.5.10). So there are either 1 or p Sylow q-subgroups of G. If there is one such subgroup, which must be the case if $q \nmid (p-1)$ (since $q \nmid (p-1)$ and $(kq+1) \mid (pq)$ imply that either $kq + 1 = 1$, $kq + 1 = p$, or $kq + 1 = q$; if $kq + 1 = 1$ then $k = 0$; for $k \ge 1$, we cannot have $kq + 1 = q$; if $kq + 1 = p$ then $kq = p - 1$ and $q | (p - 1)$; so if $q \nmid (p - 1)$ then $k = 0$ and there is one Sylow q-subgroup) then this unique Sylow q-subgroup $\langle b \rangle$ is a normal subgroup by Corollary II.5.8(iii).

Proposition II.6.1 (continued 1)

Proof (continued). Since q is prime, G/S is cyclic (Exercise I.4.3(iii)). Now coset bS is of order q in group G/S . (Notice that $b \notin \langle a \rangle = S$ or else $\langle a \rangle \cap \langle b \rangle \neq \{e\}$ and we would have a subgroup of G of an order different from 1, p , q , and pq , contradicting Lagrange's Theorem. Since the order of element bS must divide $|G/S| = q$ and the order of bS is not 1, then the order of bS must be q.) So $G/S = \langle bS \rangle$. Now the cosets of S partition group G , so every $g\in G$ is in some b^iS and since $S=\langle a\rangle$ then $\epsilon g=b^i a^j$ for some $i,j\geq 0.$ That is, $G=\langle a,b\rangle.$ The number of Sylow q-subgroups is $kq + 1$ for some $k \ge 0$ and divides $|G| = pq$ by the Third Sylow Theorem (Theorem II.5.10). So there are either 1 or p Sylow q -subgroups of G. If there is one such subgroup, which must be the case if $q \nmid (p-1)$ (since $q \nmid (p-1)$ and $(kq+1) | (pq)$ imply that either $kq + 1 = 1$, $kq + 1 = p$, or $kq + 1 = q$; if $kq + 1 = 1$ then $k = 0$; for $k \ge 1$, we cannot have $kq + 1 = q$; if $kq + 1 = p$ then $kq = p - 1$ and $q | (p - 1)$; so if $q \nmid (p - 1)$ then $k = 0$ and there is one Sylow q-subgroup) then this unique Sylow q-subgroup $\langle b \rangle$ is a normal subgroup by Corollary II.5.8(iii).

Proposition II.6.1 (continued 2)

Proof (continued). As described above, $\langle a \rangle \cap \langle b \rangle = \{e\}$. By Theorem I.3.2, $S = \langle a \rangle \cong \mathbb{Z}_p$ and $\langle b \rangle \cong \mathbb{Z}_q$ and these are normal subgroups of G by the above arguments. So the hypotheses of Theorem I.8.6 are satisfied and G is the weak direct product of $\langle a \rangle$ and $\langle b \rangle$. Since for finite products, the weak direct product and direct product coincide, then we can also say that G is the direct product of $\langle a \rangle$ and $\langle b \rangle$. Now define $f_1 : \langle a \rangle \rightarrow \mathbb{Z}_n$ such that $f_1(a) = \overline{1}$ and define $f_2 : \langle b \rangle \to \mathbb{Z}_q$ such that $f_2(b) = \overline{1}$. Then f_1 and f_2 are isomorphisms and f mapping $\langle a \rangle \times \langle b \rangle$ to $\mathbb{Z}_p \oplus \mathbb{Z}_q$ defined as $f = f_1 \times f_2$ is an isomorphism by Theorem I.8.10. By Exercise I.8.5, since p and q are relatively prime, then $\mathbb{Z}_p\oplus \mathbb{Z}_q\cong \mathbb{Z}_{pq}.$ Hence

$$
G = \langle a \rangle \times \langle b \rangle \cong \mathbb{Z}_p \oplus \mathbb{Z}_q \cong \mathbb{Z}_{pq},
$$

and if G has only one Sylow q-subgroup then $G \cong \mathbb{Z}_{pa}$. So (i) holds and (ii) holds in the event that G has only one Sylow q -subgroup.

Proposition II.6.1 (continued 2)

Proof (continued). As described above, $\langle a \rangle \cap \langle b \rangle = \{e\}$. By Theorem I.3.2, $S = \langle a \rangle \cong \mathbb{Z}_p$ and $\langle b \rangle \cong \mathbb{Z}_q$ and these are normal subgroups of G by the above arguments. So the hypotheses of Theorem I.8.6 are satisfied and G is the weak direct product of $\langle a \rangle$ and $\langle b \rangle$. Since for finite products, the weak direct product and direct product coincide, then we can also say that G is the direct product of $\langle a \rangle$ and $\langle b \rangle$. Now define $f_1 : \langle a \rangle \rightarrow \mathbb{Z}_p$ such that $f_1(a) = \overline{1}$ and define $f_2 : \langle b \rangle \to \mathbb{Z}_q$ such that $f_2(b) = \overline{1}$. Then f_1 and f_2 are isomorphisms and f mapping $\langle a \rangle \times \langle b \rangle$ to $\mathbb{Z}_p \oplus \mathbb{Z}_q$ defined as $f = f_1 \times f_2$ is an isomorphism by Theorem I.8.10. By Exercise I.8.5, since ρ and q are relatively prime, then $\mathbb{Z}_\rho\oplus\mathbb{Z}_q\cong\mathbb{Z}_{pq}$. Hence

$$
G = \langle a \rangle \times \langle b \rangle \cong \mathbb{Z}_p \oplus \mathbb{Z}_q \cong \mathbb{Z}_{pq},
$$

and if G has only one Sylow q-subgroup then $G \cong \mathbb{Z}_{pa}$. So (i) holds and (ii) holds in the event that G has only one Sylow q -subgroup.

Proposition II.6.1 (continued 3)

Proof (continued). If the number of Sylow q -subgroups is p (which can only occur if $q \mid (p-1)$, as explained above), then $bab^{-1} =$ a^r for some $a^r \in \langle a \rangle$, since $S = \langle a \rangle \triangleleft G$, where

$$
r \not\equiv 1 \pmod{p} \qquad (*)
$$

(for if $r \equiv 1$ (mod p) then $a^r = a$ by Theorem I.3.4(v) and then $bab^{-1} = a$ or $ba = ab$; but then, since every element of G is of the form $b^i\dot{a}^j$ as explained above, then G would be abelian and so have only one **Sylow q-subgroup, not p, a contradiction).** Since $bab^{-1}=a^r$, it follows by induction that $b^jab^{-j}=a^{r^j}$, as we now explain. The result is true for $j=1$, by hypothesis. Next, $b^jab^{-j}=a^{r^j}$ implies

$$
b^{j+1}ab^{-(j+1)} = b(b^jab^{-j})b^{-1} = ba^{r^j}b^{-1} = b\underset{r^j \text{ times}}{aa \cdots a}b^{-1} =
$$

$$
= \underbrace{(bab^{-1})(bab^{-1})\cdots (bab^{-1})}_{r^j \text{ times}} = (a^r)^{r^j} = a^{r^{j+1}} \text{ since } bab^{-1} = a^r.
$$

Proposition II.6.1 (continued 3)

Proof (continued). If the number of Sylow q -subgroups is p (which can only occur if $q \mid (p-1)$, as explained above), then $bab^{-1} =$ a^r for some $a^r \in \langle a \rangle$, since $S = \langle a \rangle \triangleleft G$, where

$$
r \not\equiv 1 \pmod{p} \qquad (*)
$$

(for if $r \equiv 1$ (mod p) then $a^r = a$ by Theorem I.3.4(v) and then $bab^{-1} = a$ or $ba = ab$; but then, since every element of G is of the form $b^i\dot{a}^j$ as explained above, then G would be abelian and so have only one Sylow q-subgroup, not p , a contradiction). Since $bab^{-1}=a^r$, it follows by induction that $b^jab^{-j}=a^{r^j}$, as we now explain. The result is true for $j=1$, by hypothesis. Next, $b^jab^{-j}=a^{r^j}$ implies

$$
b^{j+1}ab^{-(j+1)} = b(b^jab^{-j})b^{-1} = ba^{r^j}b^{-1} = b\underbrace{aa\cdots a}_{r^j \text{ times}}b^{-1} = b\cdots b^{-1}
$$

$$
= \underbrace{(bab^{-1})(bab^{-1})\cdots (bab^{-1})}_{r^j \text{ times}} = (a^r)^{r^j} = a^{r^{j+1}} \text{ since } bab^{-1} = a^r.
$$

Proposition II.6.1 (continued 4)

Proof (continued). In particular for $j = q$, $b^qab^{-q} = a = a^{r^q}$ (since $|b| = q$) and by Theorem I.3.4(v)

$$
r^q \equiv 1 \pmod{p}.\tag{**}
$$

To complete the proof, we must show that if $q \mid (p-1)$ and G is the nonabelian group described in the previous paragraph, then G is isomorphic to group K in the statement of the theorem. We need two results from number theory. Hungerford references J.E. Schockley's Introduction to Number Theory (Holt, Rinehart, and Winston, 1967): Result 1. The congruence $x^q \equiv 1 \pmod{p}$ has exactly q distinct solutions modulo p. [Shockley, Corollary 6.1, page 67] <u>Result 2.</u> If r is a solution to $x^q \equiv 1 \pmod{p}$ and k is the least positive integer such that $r^k \equiv q \pmod{p}$, then $k \mid p$. [Shockley, Theorem 8, page 70]

Proposition II.6.1 (continued 4)

Proof (continued). In particular for $j = q$, $b^qab^{-q} = a = a^{r^q}$ (since $|b| = q$) and by Theorem I.3.4(v)

$$
r^q \equiv 1 \pmod{p}.\tag{**}
$$

To complete the proof, we must show that if $q \mid (p-1)$ and G is the nonabelian group described in the previous paragraph, then G is isomorphic to group K in the statement of the theorem. We need two results from number theory. Hungerford references J.E. Schockley's Introduction to Number Theory (Holt, Rinehart, and Winston, 1967): <u>Result 1.</u> The congruence $x^q \equiv 1$ (mod p) has exactly q distinct solutions modulo p. [Shockley, Corollary 6.1, page 67] <u>Result 2.</u> If r is a solution to $x^q \equiv 1$ (mod p) and k is the least positive integer such that $r^k \equiv q \pmod{p}$, then $k \mid p$. [Shockley, Theorem 8, page 70]

Proposition II.6.1 (continued 5)

Proof (continued). In our case $r \not\equiv 1$ (mod p) (see $(*)$) and $r^q \equiv 1$ (mod p) (see (**)), so the condition k | q of Result 2 implies that $k = q$ since q is prime. So the q distinct solutions modulo p to the equation $\mathsf{x}^{\mathsf{q}}\equiv 1$ (mod $\mathsf{p})$ of Result 1 are $1,$ $r,$ $r^2,$ $\dots,$ $r^{{\mathsf{q}}-1}.$ Consider any $\mathsf{s}\in\mathbb{N}$ with $\mathsf{s}\equiv r^t \pmod{p}$ for some t where $1\leq t\leq q-1$ (so $\mathsf{s}\not\equiv 1$ (mod $p)$ since these powers of r are distinct from Result 1). Also, $\mathsf{s}^\mathsf{q} \equiv r^\mathsf{t}\mathsf{q} \, (\mathsf{mod}\,\, p) \equiv (r^\mathsf{q})^\mathsf{t} \, (\mathsf{mod}\,\, p) \equiv 1\, (\mathsf{mod}\,\, p).$ Define $\mathit{b}_1 = \mathit{b}^t \in \mathit{G}.$ Since the order of b is $|b| = q$ and $1 \le t \le q - 1$, then the order of b_1 must be $|b_1| = q$ also (and $\langle b \rangle = \langle b_1 \rangle$ are both subgroups of G of order q). As argued at the beginning of the proof (with b replaced with b_1), $G = \langle a, b_1 \rangle$ and every element of G can be written in the form $b_1^i a^j$, that $|a|=p$, and that $b_1ab_1^{-1}=a^s$ for some $a^s\in\langle a\rangle$ where $s\not\equiv 1$ (mod $p)$ and $s^q \equiv 1 \pmod{p}$ (see $(**)$ above; s here plays the role of r in the argument above).

Proposition II.6.1 (continued 5)

Proof (continued). In our case $r \not\equiv 1$ (mod p) (see $(*)$) and $r^q \equiv 1$ (mod p) (see (**)), so the condition k | q of Result 2 implies that $k = q$ since q is prime. So the q distinct solutions modulo p to the equation $\mathsf{x}^{\mathsf{q}}\equiv 1$ (mod $\mathsf{p})$ of Result 1 are $1,$ $r,$ $r^2,$ $\dots,$ $r^{{\mathsf{q}}-1}.$ Consider any $\mathsf{s}\in\mathbb{N}$ with $\mathsf{s}\equiv r^t \pmod{p}$ for some t where $1\leq t\leq q-1$ (so $\mathsf{s}\not\equiv 1$ (mod $p)$ since these powers of r are distinct from Result 1). Also, $\mathsf{s}^{\mathsf{q}}\equiv\mathsf{r}^{\mathsf{t}\mathsf{q}}\,(\mathsf{mod}\,\,p)\equiv(\mathsf{r}^{\mathsf{q}})^{\mathsf{t}}\,(\mathsf{mod}\,\,p)\equiv1\,(\mathsf{mod}\,\,p).$ Define $b_1=b^{\mathsf{t}}\in\mathsf{G}.$ Since the order of b is $|b| = q$ and $1 \le t \le q-1$, then the order of b_1 must be $|b_1| = q$ also (and $\langle b \rangle = \langle b_1 \rangle$ are both subgroups of G of order q). As argued at the beginning of the proof (with b replaced with b_1), $G = \langle a, b_1 \rangle$ and every element of G can be written in the form $b_1^i a^j$, that $|a|=p$, and that $b_1ab_1^{-1}=a^s$ for some $a^s\in \langle a\rangle$ where $s\not\equiv 1$ (mod $p)$ and $s^q \equiv 1 \pmod{p}$ (see $(**)$ above; s here plays the role of r in the argument above).

Proposition II.6.1 (continued 6)

Proposition II.6.1. Let p and q be primes such that $p > q$.

- (i) If $q \nmid p-1$ then every group of order pq is isomorphic to the cyclic group \mathbb{Z}_{pa} .
- (ii) If $q \mid p-1$ then there are (up to isomorphism) exactly two distinct groups of order pq: the cyclic group \mathbb{Z}_{pa} and a nonabelian group K generated by elements c and d such that these elements have orders $|c| = p$ and $|d| = q$. Also $dc = c^s d$ where $s \neq 1$ (mod p) and $s^q \equiv 1$ (mod p). This nonabelian group is called a *metacyclic group* (see Exercise $II.6.2$).

Proof (continued). So CHOOSE $s \in \mathbb{N}$ where $b_1ab_1^{-1} = a^s$, $s \not\equiv 1$ (mod $p)$ and $s^q \equiv 1$ (mod p). Now $b_1ab_1^{-1} = a^s$ gives $b_1a = a^sb_1$. For the isomorphism between $G = \langle a, b_1 \rangle$ and $K = \langle c, d \rangle$, define the mapping $a \mapsto c$ and $b_1 \mapsto d$.

Corollary II.6.2. If p is an odd prime, then every group of order $2p$ is isomorphic either to the cyclic group \mathbb{Z}_{2p} or the dihedral group D_{p} .

Proof. By Proposition II.6.1 with $q = 2$ (in which case $q \mid (p - 1)$) there are two distinct groups of order $pq = 2p$, one of which is the cyclic group \mathbb{Z}_{2p} . The other group, say G, has parameter s satisfying $s \not\equiv 1 \pmod{p}$ and $s^2 \equiv 1$ (mod p). So $s \equiv -1$ (mod p). Hence $G = \langle c, d \rangle$ where $|d| = 2$, $|c| = p$, and $dc = c^sd$ or $dc = c^{p-1}d = c⁻¹d$. By Theorem I.6.13, $G \cong D_n$

Corollary II.6.2. If p is an odd prime, then every group of order $2p$ is isomorphic either to the cyclic group \mathbb{Z}_{2p} or the dihedral group D_{p} .

Proof. By Proposition II.6.1 with $q = 2$ (in which case $q \mid (p - 1)$) there are two distinct groups of order $pq = 2p$, one of which is the cyclic group \mathbb{Z}_{2p} . The other group, say G, has parameter s satisfying $s \not\equiv 1 \pmod{p}$ and $s^2\equiv 1$ (mod $p)$. So $s\equiv -1$ (mod $p)$. Hence $G=\langle c, d\rangle$ where $|d|=2$, $|c|=p$, and $dc=c^sd$ or $dc=c^{p-1}d=c^{-1}d$. By Theorem I.6.13, $G \cong D_n$

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise 1.2.3) and the dihedral group D_4 .

Proof. By Exercise II.6.10, $D_4 \ncong Q_8$. If a group G of order 8 is nonabelian then it cannot contain an element of order 8 (otherwise it would be cyclic). Nor can such a group have every nonidentity element of order 2 (or else G would be abelian by Exercise I.1.13). Hence G contains an element a of order 4. Now group $\langle a \rangle$ is of index 2, $|G|/|\langle a \rangle| = 2$, and so $\langle a \rangle$ is a normal subgroup by Exercise I.5.1. Choose $b \notin \langle a \rangle$. Then b is in coset $b \langle a \rangle$. So $G = \langle a \rangle \cup b \langle a \rangle$ and $G = \langle a, b \rangle$.

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise I.2.3) and the dihedral group D_4 .

Proof. By Exercise II.6.10, $D_4 \not\cong Q_8$. If a group G of order 8 is nonabelian then it cannot contain an element of order 8 (otherwise it would be cyclic). Nor can such a group have every nonidentity element of order 2 (or else G would be abelian by Exercise $1.1.13$). Hence G contains an element a of order 4. Now group $\langle a \rangle$ is of index 2, $|G|/|\langle a \rangle| = 2$, and so $\langle a \rangle$ is a normal subgroup by Exercise I.5.1. Choose $b \notin \langle a \rangle$. Then b is in coset $b\langle a \rangle$. So $G = \langle a \rangle \cup b \langle a \rangle$ and $G = \langle a, b \rangle$. Since $b \notin \langle a \rangle$ then $b^2 \notin b \langle a \rangle$. Since G is partitioned into $\langle a \rangle$ and $b\langle a \rangle$, b^2 must be in $\langle a \rangle$. If $b^2 = a$ then $\langle b^2 \rangle = \langle a \rangle$ and coset $b\langle b^2\rangle$ gives the elements in $G \setminus \langle b^2\rangle$ and so $\langle b\rangle = G$, a contradiction. Since *a* is of order 4, $\langle a \rangle = \langle a^3 \rangle$ and a similar contradiction results if $b^2 = a^3$. So it must be that either $b^2 = a^2$ or $b^2 = e$.

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise I.2.3) and the dihedral group D_4 .

Proof. By Exercise II.6.10, $D_4 \not\cong Q_8$. If a group G of order 8 is nonabelian then it cannot contain an element of order 8 (otherwise it would be cyclic). Nor can such a group have every nonidentity element of order 2 (or else G would be abelian by Exercise $1.1.13$). Hence G contains an element a of order 4. Now group $\langle a \rangle$ is of index 2, $|G|/|\langle a \rangle| = 2$, and so $\langle a \rangle$ is a normal subgroup by Exercise I.5.1. Choose $b \notin \langle a \rangle$. Then b is in coset $b \langle a \rangle$. So $G = \langle a \rangle \cup b \langle a \rangle$ and $G = \langle a, b \rangle$. Since $b \notin \langle a \rangle$ then $b^2 \notin b \langle a \rangle$. Since G is partitioned into $\langle a \rangle$ and $b\langle a \rangle$, b^2 must be in $\langle a \rangle$. If $b^2 = a$ then $\langle b^2 \rangle = \langle a \rangle$ and coset $b\langle b^2\rangle$ gives the elements in $G\setminus \langle b^2\rangle$ and so $\langle b\rangle = G$, a contradiction. Since *a* is of order 4, $\langle a \rangle = \langle a^3 \rangle$ and a similar contradiction results if $b^2 = a^3$. So it must be that either $b^2 = a^2$ or $b^2 = e$.

Proposition II.6.3 (continued)

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise I.2.3) and the dihedral group D_4 .

Proof (continued). Since $\langle a \rangle$ is normal in G, then bab⁻¹ ∈ $\langle a \rangle$ by Theorem I.5.1(iv). If $bab^{-1} = e$ then $ba = b$ and $a = e$, a contradiction. If $bab^{-1} = a$ then $ab = ba$ and since $G = \langle a, b \rangle$ then G is abelian, a contradiction. If $bab^{-1}=a^2$ then $(bab^{-1})^2=a^4=e$ or $ba^2b^{-1}=e$ and $ba^2 = b$ and $a^2 = e$, a contradiction. So it must be that $bab^{-1} = a^3$. So $ba = a^3b = a^{-1}b$. Hence, we have two cases depending on the value of $\bm{b^2}.$ In one case we have $|a|=4,~b^2=a^2,~ba=a^{-1}b,$ and so by Exercise I.4.14, $G \cong Q_8$. In the other case, $|a| = 4$, $|b| = 2$ (since $b^2 = e$), $ba = a^{-1}b$ and so by Theorem 1.6.13, $G \cong D_4$.

Proposition II.6.3 (continued)

Proposition II.6.3. There are (up to isomorphism) exactly two distinct nonabelian groups of order 8: the quaternion group Q_8 (see Exercise I.2.3) and the dihedral group D_4 .

Proof (continued). Since $\langle a \rangle$ is normal in G, then $bab^{-1} \in \langle a \rangle$ by Theorem I.5.1(iv). If $bab^{-1} = e$ then $ba = b$ and $a = e$, a contradiction. If $bab^{-1} = a$ then $ab = ba$ and since $G = \langle a, b \rangle$ then G is abelian, a contradiction. If $bab^{-1}=a^2$ then $(bab^{-1})^2=a^4=e$ or $ba^2b^{-1}=e$ and $ba^2 = b$ and $a^2 = e$, a contradiction. So it must be that $bab^{-1} = a^3$. So $ba = a^3b = a^{-1}b$. Hence, we have two cases depending on the value of b^2 . In one case we have $|a|=4, b^2=a^2, ba=a^{-1}b$, and so by Exercise I.4.14, $G \cong Q_8$. In the other case, $|a|=4$, $|b|=2$ (since $b^2=e$), $ba = a^{-1}b$ and so by Theorem 1.6.13, $G \cong D_4$.

Proposition II.6.4. There are (up to isomorphism) exactly three distinct nonabelian groups of order 12: the dihedral group D_6 , the alternating group A_4 , and a group T generated by elements a and b such that $|a|=6$. $b^2 = a^3$, and $ba = a^{-1}b$.

Proof. In Exercise II.6.5 it is shown that the group T actually exists and in Exercise II.6.6 it is shown that no two of D_6 , A_4 , T are isomorphic. If G is a nonabelian group of order 12, then G has a Sylow 3-subgroup P by the First Sylow Theorem (Theorem II.5.7). Then $|P| = 3$ and $[G : P] = |G|/|P| = 4.$

Proposition II.6.4. There are (up to isomorphism) exactly three distinct nonabelian groups of order 12: the dihedral group D_6 , the alternating group A_4 , and a group T generated by elements a and b such that $|a|=6$. $b^2 = a^3$, and $ba = a^{-1}b$.

Proof. In Exercise II.6.5 it is shown that the group T actually exists and in Exercise II.6.6 it is shown that no two of D_6 , A_4 , T are isomorphic. If G is a nonabelian group of order 12, then G has a Sylow 3-subgroup P by the First Sylow Theorem (Theorem II.5.7). Then $|P| = 3$ and $[G : P] = |G|/|P| = 4$. By Proposition II.4.8 there is a homomorphism $f: G \to A(S)$ (where $A(S)$ is the group of all permutations of the set of left cosets of P; since there a 4 left cosets of P then $A(S) \cong S_4$) whose kernel K is contained in P. Whence $K = P$ or $K = \{e\}$ (since the kernel is a subgroup by Exercise I.2.9(a) and $|P| = 3$).

Proposition II.6.4. There are (up to isomorphism) exactly three distinct nonabelian groups of order 12: the dihedral group D_6 , the alternating group A_4 , and a group T generated by elements a and b such that $|a|=6$. $b^2 = a^3$, and $ba = a^{-1}b$.

Proof. In Exercise II.6.5 it is shown that the group T actually exists and in Exercise II.6.6 it is shown that no two of D_6 , A_4 , T are isomorphic. If G is a nonabelian group of order 12, then G has a Sylow 3-subgroup P by the First Sylow Theorem (Theorem II.5.7). Then $|P| = 3$ and $[G : P] = |G|/|P| = 4$. By Proposition II.4.8 there is a homomorphism $f: G \to A(S)$ (where $A(S)$ is the group of all permutations of the set of left cosets of P; since there a 4 left cosets of P then $A(S) \cong S_4$) whose kernel K is contained in P. Whence $K = P$ or $K = \{e\}$ (since the kernel is a subgroup by Exercise I.2.9(a) and $|P|=3$. If $K = \{e\}$ then f is one to one (Theorem $1.2.3(i)$) and G is isomorphic to a subgroup of order 12 of S_4 (namely $Im(f) = f[G]$), which must be A_4 by Theorem 1.6.8 (and the first possible structure of G is established).

Proposition II.6.4. There are (up to isomorphism) exactly three distinct nonabelian groups of order 12: the dihedral group D_6 , the alternating group A_4 , and a group T generated by elements a and b such that $|a|=6$. $b^2 = a^3$, and $ba = a^{-1}b$.

Proof. In Exercise II.6.5 it is shown that the group T actually exists and in Exercise II.6.6 it is shown that no two of D_6 , A_4 , T are isomorphic. If G is a nonabelian group of order 12, then G has a Sylow 3-subgroup P by the First Sylow Theorem (Theorem II.5.7). Then $|P| = 3$ and $[G : P] = |G|/|P| = 4$. By Proposition II.4.8 there is a homomorphism $f: G \to A(S)$ (where $A(S)$ is the group of all permutations of the set of left cosets of P; since there a 4 left cosets of P then $A(S) \cong S_4$) whose kernel K is contained in P. Whence $K = P$ or $K = \{e\}$ (since the kernel is a subgroup by Exercise I.2.9(a) and $|P| = 3$). If $K = \{e\}$ then f is one to one (Theorem I.2.3(i)) and G is isomorphic to a subgroup of order 12 of S_4 (namely $Im(f) = f[G]$), which must be A_4 by Theorem 1.6.8 (and the first possible structure of G is established).

Proposition II.6.4 (continued 1)

Proof (continued). Otherwise $K = P$ and P is normal in G (Theorem 1.5.5). In this case, P is the unique Sylow 3-subgroup (since all Sylow p-subgroups of G are conjugates by the Second Sylow Theorem [Theorem II.5.9] and a normal subgroup is self conjugate by Theorem $I.5.1(v)$. Hence G contains only two elements of order 3 (the two nonidentity **elements in P).** If c is one of these order 3 elements, then $[G : C_G(c)]$ is the number of conjugates of c (by Corollary II.4.4(i); $C_G(c) = \{g \in G \mid gcg^{-1} = c\}$ is the "centralizer" of c) and every conjugate of $\,c\,$ has order $3\,$ (consider $(gcg^{-1})^3);$ so $\,[\,G:\,C_G(c)]=1\,$ or $\,2$ (either c is self conjugate or c and the other element of G of order 3 are conjugates, respectively).

Proposition II.6.4 (continued 1)

Proof (continued). Otherwise $K = P$ and P is normal in G (Theorem 1.5.5). In this case, P is the unique Sylow 3-subgroup (since all Sylow p-subgroups of G are conjugates by the Second Sylow Theorem [Theorem II.5.9] and a normal subgroup is self conjugate by Theorem $I.5.1(v)$. Hence G contains only two elements of order 3 (the two nonidentity elements in P). If c is one of these order 3 elements, then $[G : C_G(c)]$ is the number of conjugates of c (by Corollary II.4.4(i); $C_G(c) = \{g \in G \mid gcg^{-1} = c\}$ is the "centralizer" of c) and every conjugate of $\it c$ has order $\rm 3$ (consider $(gcg^{-1})^{\rm 3})$; so $[G:C_G(c)]=1$ or $\rm 2$ (either c is self conjugate or c and the other element of G of order 3 are conjugates, respectively). Since $[G : C_G(c)] = |G|/|C_G(c)|$ (Lagrange's Theorem, Corollary I.4.6) then $|C_G(c)| = 12$ or 6 (respectively). In either case there is $d \in C_G(c)$ of order 2 by Cauchy's Theorem (Theorem II.5.2). Since $cd \in C_G(c)$ then $|cd|$ is 1, 2, 3, 4, or 6. Since $d \in C_G(c)$ then $dcd^{-1} = c$ or $dc = cd$. Now if $cd = e$ then $e = e^2 = (cd)^2 = (cd)(dc)$ $= cd^2c = cec = c^2$, a contradiction since $|c| = 3$.

Proposition II.6.4 (continued 1)

Proof (continued). Otherwise $K = P$ and P is normal in G (Theorem 1.5.5). In this case, P is the unique Sylow 3-subgroup (since all Sylow p-subgroups of G are conjugates by the Second Sylow Theorem [Theorem II.5.9] and a normal subgroup is self conjugate by Theorem $I.5.1(v)$. Hence G contains only two elements of order 3 (the two nonidentity elements in P). If c is one of these order 3 elements, then $[G : C_G(c)]$ is the number of conjugates of c (by Corollary II.4.4(i); $C_G(c) = \{g \in G \mid gcg^{-1} = c\}$ is the "centralizer" of c) and every conjugate of $\it c$ has order $\rm 3$ (consider $(gcg^{-1})^{\rm 3})$; so $[G:C_G(c)]=1$ or $\rm 2$ (either c is self conjugate or c and the other element of G of order 3 are conjugates, respectively). Since $[G : C_G(c)] = |G|/|C_G(c)|$ (Lagrange's Theorem, Corollary I.4.6) then $|C_G(c)| = 12$ or 6 (respectively). In either case there is $d \in C_G(c)$ of order 2 by Cauchy's Theorem (Theorem II.5.2). Since $cd \in C_G(c)$ then $|cd|$ is 1, 2, 3, 4, or 6. Since $d \in C_G(c)$ then $dcd^{-1}=c$ or $dc=cd$. Now if $cd=e$ then $e=e^2=(cd)^2=(cd)(dc)$ $=c d^2 c=c e c=c^2$, a contradiction since $\vert c\vert=3.$

Proposition II.6.4 (continued 2)

Proof (continued). Next, $(cd)^2 = (cd)(cd) = (cd)(dc) = cd^2c = cec$ $c=c^2\neq e$ since $|c|=3$. Also $(cd)^3=(cd)(cd)(cd)=(cd)(dc)(cd)$ $=c d^2 c^2 d=c e c^2 d=c^3 d=d\neq e.$ Similarly, $(c d)^4=(cd)^3(cd)$ $\epsilon = d(cd) = d(dc) = d^2c = ec = c \neq e.$ Also, $(cd)^6 = (cd)^3(cd)^3 = (d)(d) = d^2 = e.$ Hence $|cd| = 6.$ Let $a = cd$. Then, as in the proof of Proposition II.6.3, $\langle a \rangle$ is normal in G since $|G/\langle a\rangle| = 2$; there is $b\in G$ such that $b\not\in \langle a\rangle$, $b\neq e$, $b^2\in \langle a\rangle$. Since \langle a \rangle is normal, $bab^{-1}\in \langle$ a \rangle . We now consider the value of $bab^{-1}.$

• If $bab^{-1} = e$ then $ba = b$ and $a = e$, contradiction.

- If $bab^{-1} = a$ then $ba = ab$ and G is abelian $(G = \langle a, b \rangle)$ since $G = \langle a \rangle \cup b \langle a \rangle$, a contradiction.
- If $bab^{-1} = a^2$ then $(bab^{-1})^3 = (a^2)^3 = a^6 = e$ and $ba^3b^{-1} = e$ or $ba^3 = b$ or $a^3 = e$, a contradiction.
- If $bab^{-1} = a^3$ then $(bab^{-1})^2 = (a^3)^2$ or $ba^2b^{-1} = a^6 = e$ or $ba^2b^{-1} = e$ and $ba^2 = b$ or $a^2 = e$, a contradiction.

Proposition II.6.4 (continued 2)

Proof (continued). Next, $(cd)^2 = (cd)(cd) = (cd)(dc) = cd^2c = cec$ $c=c^2\neq e$ since $|c|=3$. Also $(cd)^3=(cd)(cd)(cd)=(cd)(dc)(cd)$ $=c d^2 c^2 d=c e c^2 d=c^3 d=d\neq e.$ Similarly, $(c d)^4=(cd)^3(cd)$ $\epsilon = d(cd) = d(dc) = d^2c = ec = c \neq e.$ Also, $(cd)^6 = (cd)^3(cd)^3 = (d)(d) = d^2 = e.$ Hence $|cd| = 6.$ Let $a = cd$. Then, as in the proof of Proposition II.6.3, $\langle a \rangle$ is normal in G since $|G/\langle a\rangle| = 2$; there is $b\in G$ such that $b\not\in \langle a\rangle$, $b\neq e$, $b^2\in \langle a\rangle$. Since \langle a \rangle is normal, $bab^{-1}\in \langle$ a \rangle . We now consider the value of $bab^{-1}.$

• If b ah⁻¹ = e then $ba = b$ and $a = e$, contradiction.

- If $bab^{-1} = a$ then $ba = ab$ and G is abelian ($G = \langle a, b \rangle$ since $G = \langle a \rangle \cup b\langle a \rangle$, a contradiction.
- If $bab^{-1} = a^2$ then $(bab^{-1})^3 = (a^2)^3 = a^6 = e$ and $ba^3b^{-1} = e$ or $ba^3 = b$ or $a^3 = e$, a contradiction.
- If $bab^{-1} = a^3$ then $(bab^{-1})^2 = (a^3)^2$ or $ba^2b^{-1} = a^6 = e$ or $ba^2b^{-1} = e$ and $ba^2 = b$ or $a^2 = e$, a contradiction.

Proposition II.6.4 (continued 3)

Proof (continued).

• If
$$
bab^{-1} = a^4
$$
 then $(bab^{-1})^3 = (a^4)^3 = a^{12} = e$ or
 $ba^3b^{-1} = e$ and $ba^3 = b$ or $a^3 = e$, a contradiction.

So it must be that $bab^{-1}=a^5=a^{-1}$. That is $ba=a^{-1}b$ or $aba=b$.

We now consider the possible values of $b^2 \in \langle a \rangle$ in terms of powers of $a.$

- If $b^2 = a^2$ then, since $aba = b$, we have $(aba)^2 = b^2$ or $(aba)(aba) = b^2$ or $aba^2ba = b^2$ or $abb^2ba = b^2$ or $ab^4a = b^2$ or $ab^4a = a^2$ or $b^4 = e$ or $a^4 = e$, a contradiction since $|a| = 6$.
- If $b^2 = a^4 = a^{-2}$ then, since $aba = b$ or $b = a^{-1}ba^{-1}$, we have $b^2 = (a^{-1}ba^{-1})(a^{-1}ba^{-1}) = a^{-1}ba^{-2}ba^{-1} = a^{-1}b^4a^{-1}$ or (since $b^2=a^4$) $a^4=a^{-1}b^4a^{-1}$ or $a^6=b^4$ or $e=b^4$ or $e = a^8 = a^2$, a contradiction since $|a| = 6$.

Proposition II.6.4 (continued 3)

Proof (continued).

• If
$$
bab^{-1} = a^4
$$
 then $(bab^{-1})^3 = (a^4)^3 = a^{12} = e$ or $ba^3b^{-1} = e$ and $ba^3 = b$ or $a^3 = e$, a contradiction.

So it must be that $bab^{-1}=a^5=a^{-1}$. That is $ba=a^{-1}b$ or $aba=b$.

We now consider the possible values of $b^2 \in \langle a \rangle$ in terms of powers of a .

- If $b^2 = a^2$ then, since $aba = b$, we have $(aba)^2 = b^2$ or $\big(aba \big) (aba) = b^2$ or $aba^2ba = b^2$ or $abb^2ba = b^2$ or $ab^4a = b^2$ or $ab^4a = a^2$ or $b^4 = e$ or $a^4 = e$, a contradiction since $|a| = 6$.
- If $b^2 = a^4 = a^{-2}$ then, since $aba = b$ or $b = a^{-1}ba^{-1}$, we have $b^2 = (a^{-1}ba^{-1})(a^{-1}ba^{-1}) = a^{-1}ba^{-2}ba^{-1} = a^{-1}b^4a^{-1}$ or (since $b^2=a^4)$ $a^4=a^{-1}b^4a^{-1}$ or $a^6=b^4$ or $e=b^4$ or $e = a^8 = a^2$, a contradiction since $|a| = 6$.

Proposition II.6.4 (continued 4)

Proof (continued).

- If $b^2 = a$ then $b^{12} = a^6 = e$. Then $b^6 = a^3 \neq e$, $b^4 = a^2 \neq e$, and $b^3 = ab \neq e$ since $b \neq a^{-1}$ (or else $b \in \langle a \rangle$) and so $G = \langle b \rangle$ which implies that G is cyclic and hence abelian, a contradiction.
- If $b^2 = a^5$ then $b^{12} = a^{30} = e$ (and $b^6 = a^{15} = a^3 \neq e$, $b^4 = a^{10} = a^4 \neq e$, and $b^3 = b^2b = a^5b \neq e$ since $b \neq a$, or else $b \in \langle a \rangle$). Then $G = \langle b \rangle$ which implies that G is cyclic and hence abelian, a contradiction.

Therefore, the only possibilities are:

(i) $|a| = 6$, $b^2 = e$, $ba = a^{-1}b$, where $G \cong D_6$ by Theorem $1.6.13$;

(ii)
$$
|a| = 6
$$
, $b^2 = a^3$, $ba = a^{-1}b$, whence $G \cong T$ by Exercise 11.6.5(b).

So the other two possible structures of G are established.

Proposition II.6.4 (continued 4)

Proof (continued).

- If $b^2 = a$ then $b^{12} = a^6 = e$. Then $b^6 = a^3 \neq e$, $b^4 = a^2 \neq e$, and $b^3 = ab \neq e$ since $b \neq a^{-1}$ (or else $b \in \langle a \rangle$) and so $G = \langle b \rangle$ which implies that G is cyclic and hence abelian, a contradiction.
- If $b^2 = a^5$ then $b^{12} = a^{30} = e$ (and $b^6 = a^{15} = a^3 \neq e$, $b^4 = a^{10} = a^4 \neq e$, and $b^3 = b^2b = a^5b \neq e$ since $b \neq a$, or else $b \in \langle a \rangle$). Then $G = \langle b \rangle$ which implies that G is cyclic and hence abelian, a contradiction.

Therefore, the only possibilities are:

- (i) $|a|=6$, $b^2=e$, $ba=a^{-1}b$, where $G \cong D_6$ by Theorem I.6.13; (ii) $|a| = 6$, $b^2 = a^3$, $ba = a^{-1}b$, whence $G \cong T$ by Exercise
- $II.6.5(b)$. So the other two possible structures of G are established.