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Proposition II.6.1

Proposition II.6.1

Proposition II.6.1. Let p and q be primes such that p > q.

(i) If q - p − 1 then every group of order pq is isomorphic to the
cyclic group Zpq.

(ii) If q | p − 1 then there are (up to isomorphism) exactly two
distinct groups of order pq: the cyclic group Zpq and a
nonabelian group K generated by elements c and d such
that these elements have orders |c | = p and |d | = q. Also
dc = csd where s 6≡ 1 (mod p) and sq ≡ 1 (mod p). This
nonabelian group is called a metacyclic group (see Exercise
II.6.2).

Proof. In both cases, the only abelian group of order pq is (up to
isomorphism) Zpq

∼= Zp ⊕ Zq by Theorem II.2.6 and Lemma II.2.3. By
Cauchy’s Theorem (Theorem II.5.2), G contains elements a and b with
orders |a| = p and |b| = q. Furthermore, S = 〈a〉 is normal in G by
Corollary II.4.10, so the quotient group G/S exists and is of order
|G/S | = |G |/|S | = q by Lagrange’s Theorem (Corollary I.4.6).
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Proposition II.6.1

Proposition II.6.1 (continued 1)

Proof (continued). Since q is prime, G/S is cyclic (Exercise I.4.3(iii)).
Now coset bS is of order q in group G/S . (Notice that b 6∈ 〈a〉 = S or
else 〈a〉 ∩ 〈b〉 6= {e} and we would have a subgroup of G of an order
different from 1, p, q, and pq, contradicting Lagrange’s Theorem. Since
the order of element bS must divide |G/S | = q and the order of bS is not
1, then the order of bS must be q.) So G/S = 〈bS〉. Now the cosets of S
partition group G , so every g ∈ G is in some biS and since S = 〈a〉 then
g = biaj for some i , j ≥ 0. That is, G = 〈a, b〉. The number of Sylow
q-subgroups is kq + 1 for some k ≥ 0 and divides |G | = pq by the Third
Sylow Theorem (Theorem II.5.10). So there are either 1 or p Sylow
q-subgroups of G . If there is one such subgroup, which must be the case if
q - (p − 1) (since q - (p − 1) and (kq + 1) | (pq) imply that either
kq +1 = 1, kq +1 = p, or kq +1 = q; if kq +1 = 1 then k = 0; for k ≥ 1,
we cannot have kq + 1 = q; if kq + 1 = p then kq = p− 1 and q | (p− 1);
so if q - (p − 1) then k = 0 and there is one Sylow q-subgroup) then this
unique Sylow q-subgroup 〈b〉 is a normal subgroup by Corollary II.5.8(iii).
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Proposition II.6.1

Proposition II.6.1 (continued 2)

Proof (continued). As described above, 〈a〉 ∩ 〈b〉 = {e}. By Theorem
I.3.2, S = 〈a〉 ∼= Zp and 〈b〉 ∼= Zq and these are normal subgroups of G by
the above arguments. So the hypotheses of Theorem I.8.6 are satisfied
and G is the weak direct product of 〈a〉 and 〈b〉. Since for finite products,
the weak direct product and direct product coincide, then we can also say
that G is the direct product of 〈a〉 and 〈b〉. Now define f1 : 〈a〉 → Zp such
that f1(a) = 1 and define f2 : 〈b〉 → Zq such that f2(b) = 1. Then f1 and
f2 are isomorphisms and f mapping 〈a〉 × 〈b〉 to Zp ⊕ Zq defined as
f = f1 × f2 is an isomorphism by Theorem I.8.10. By Exercise I.8.5, since
p and q are relatively prime, then Zp ⊕ Zq

∼= Zpq. Hence

G = 〈a〉 × 〈b〉 ∼= Zp ⊕ Zq
∼= Zpq,

and if G has only one Sylow q-subgroup then G ∼= Zpq. So (i) holds and
(ii) holds in the event that G has only one Sylow q-subgroup.
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Proposition II.6.1

Proposition II.6.1 (continued 3)

Proof (continued). If the number of Sylow q-subgroups is p (which can
only occur if q | (p − 1), as explained above), then bab−1 = ar for some
ar ∈ 〈a〉, since S = 〈a〉 / G , where

r 6≡ 1 (mod p) (∗)
(for if r ≡ 1 (mod p) then ar = a by Theorem I.3.4(v) and then
bab−1 = a or ba = ab; but then, since every element of G is of the form
biaj as explained above, then G would be abelian and so have only one
Sylow q-subgroup, not p, a contradiction). Since bab−1 = ar , it follows by

induction that bjab−j = ar j
, as we now explain. The result is true for

j = 1, by hypothesis. Next, bjab−j = ar j
implies

bj+1ab−(j+1) = b(bjab−j)b−1 = bar j
b−1 = b aa · · · a︸ ︷︷ ︸

r j times

b−1 =

= (bab−1)(bab−1) · · · (bab−1)︸ ︷︷ ︸
r j times

= (ar )r
j
= ar j+1

since bab−1 = ar .
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Proposition II.6.1

Proposition II.6.1 (continued 4)

Proof (continued). In particular for j = q, bqab−q = a = arq
(since

|b| = q) and by Theorem I.3.4(v)

rq ≡ 1 (mod p). (∗∗)

To complete the proof, we must show that if q | (p − 1) and G is the
nonabelian group described in the previous paragraph, then G is
isomorphic to group K in the statement of the theorem. We need two
results from number theory. Hungerford references J.E. Schockley’s
Introduction to Number Theory (Holt, Rinehart, and Winston, 1967):
Result 1. The congruence xq ≡ 1 (mod p) has exactly q distinct solutions
modulo p. [Shockley, Corollary 6.1, page 67]
Result 2. If r is a solution to xq ≡ 1 (mod p) and k is the least positive
integer such that rk ≡ q (mod p), then k | p. [Shockley, Theorem 8, page
70]
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Proposition II.6.1

Proposition II.6.1 (continued 5)

Proof (continued). In our case r 6≡ 1 (mod p) (see (∗)) and rq ≡ 1
(mod p) (see (∗∗)), so the condition k | q of Result 2 implies that k = q
since q is prime. So the q distinct solutions modulo p to the equation
xq ≡ 1 (mod p) of Result 1 are 1, r , r2, . . . , rq−1. Consider any s ∈ N with
s ≡ r t (mod p) for some t where 1 ≤ t ≤ q − 1 (so s 6≡ 1 (mod p) since
these powers of r are distinct from Result 1). Also,
sq ≡ r tq (mod p) ≡ (rq)t (mod p) ≡ 1 (mod p). Define b1 = bt ∈ G .
Since the order of b is |b| = q and 1 ≤ t ≤ q − 1, then the order of b1

must be |b1| = q also (and 〈b〉 = 〈b1〉 are both subgroups of G of order
q). As argued at the beginning of the proof (with b replaced with b1),
G = 〈a, b1〉 and every element of G can be written in the form bi

1a
j , that

|a| = p, and that b1ab
−1
1 = as for some as ∈ 〈a〉 where s 6≡ 1 (mod p) and

sq ≡ 1 (mod p) (see (∗∗) above; s here plays the role of r in the argument
above).
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Proposition II.6.1

Proposition II.6.1 (continued 6)

Proposition II.6.1. Let p and q be primes such that p > q.

(i) If q - p − 1 then every group of order pq is isomorphic to the
cyclic group Zpq.

(ii) If q | p − 1 then there are (up to isomorphism) exactly two
distinct groups of order pq: the cyclic group Zpq and a
nonabelian group K generated by elements c and d such
that these elements have orders |c | = p and |d | = q. Also
dc = csd where s 6≡ 1 (mod p) and sq ≡ 1 (mod p). This
nonabelian group is called a metacyclic group (see Exercise
II.6.2).

Proof (continued). So CHOOSE s ∈ N where b1ab
−1
1 = as , s 6≡ 1 (mod

p) and sq ≡ 1 (mod p). Now b1ab
−1
1 = as gives b1a = asb1. For the

isomorphism between G = 〈a, b1〉 and K = 〈c , d〉, define the mapping
a 7→ c and b1 7→ d .
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Corollary II.6.2

Corollary II.6.2

Corollary II.6.2. If p is an odd prime, then every group of order 2p is
isomorphic either to the cyclic group Z2p or the dihedral group Dp.

Proof. By Proposition II.6.1 with q = 2 (in which case q | (p − 1)) there
are two distinct groups of order pq = 2p, one of which is the cyclic group
Z2p. The other group, say G , has parameter s satisfying s 6≡ 1 (mod p)
and s2 ≡ 1 (mod p). So s ≡ −1 (mod p). Hence G = 〈c , d〉 where
|d | = 2, |c | = p, and dc = csd or dc = cp−1d = c−1d . By Theorem
I.6.13, G ∼= Dp
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Proposition II.6.3

Proposition II.6.3

Proposition II.6.3. There are (up to isomorphism) exactly two distinct
nonabelian groups of order 8: the quaternion group Q8 (see Exercise I.2.3)
and the dihedral group D4.

Proof. By Exercise II.6.10, D4 6∼= Q8. If a group G of order 8 is nonabelian
then it cannot contain an element of order 8 (otherwise it would be cyclic).
Nor can such a group have every nonidentity element of order 2 (or else G
would be abelian by Exercise I.1.13). Hence G contains an element a of
order 4. Now group 〈a〉 is of index 2, |G |/|〈a〉| = 2, and so 〈a〉 is a normal
subgroup by Exercise I.5.1. Choose b 6∈ 〈a〉. Then b is in coset b〈a〉. So
G = 〈a〉 ∪ b〈a〉 and G = 〈a, b〉.

Since b 6∈ 〈a〉 then b2 6∈ b〈a〉. Since G is
partitioned into 〈a〉 and b〈a〉, b2 must be in 〈a〉. If b2 = a then 〈b2〉 = 〈a〉
and coset b〈b2〉 gives the elements in G \ 〈b2〉 and so 〈b〉 = G , a
contradiction. Since a is of order 4, 〈a〉 = 〈a3〉 and a similar contradiction
results if b2 = a3. So it must be that either b2 = a2 or b2 = e.
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Proposition II.6.3

Proposition II.6.3 (continued)

Proposition II.6.3. There are (up to isomorphism) exactly two distinct
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and the dihedral group D4.

Proof (continued). Since 〈a〉 is normal in G , then bab−1 ∈ 〈a〉 by
Theorem I.5.1(iv). If bab−1 = e then ba = b and a = e, a contradiction.
If bab−1 = a then ab = ba and since G = 〈a, b〉 then G is abelian, a
contradiction. If bab−1 = a2 then (bab−1)2 = a4 = e or ba2b−1 = e and
ba2 = b and a2 = e, a contradiction. So it must be that bab−1 = a3. So
ba = a3b = a−1b. Hence, we have two cases depending on the value of
b2. In one case we have |a| = 4, b2 = a2, ba = a−1b, and so by Exercise
I.4.14, G ∼= Q8. In the other case, |a| = 4, |b| = 2 (since b2 = e),
ba = a−1b and so by Theorem I.6.13, G ∼= D4.
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Proposition II.6.4

Proposition II.6.4

Proposition II.6.4. There are (up to isomorphism) exactly three distinct
nonabelian groups of order 12: the dihedral group D6, the alternating
group A4, and a group T generated by elements a and b such that |a| = 6,
b2 = a3, and ba = a−1b.

Proof. In Exercise II.6.5 it is shown that the group T actually exists and
in Exercise II.6.6 it is shown that no two of D6,A4,T are isomorphic. If G
is a nonabelian group of order 12, then G has a Sylow 3-subgroup P by
the First Sylow Theorem (Theorem II.5.7). Then |P| = 3 and
[G : P] = |G |/|P| = 4.

By Proposition II.4.8 there is a homomorphism
f : G → A(S) (where A(S) is the group of all permutations of the set of
left cosets of P; since there a 4 left cosets of P then A(S) ∼= S4) whose
kernel K is contained in P. Whence K = P or K = {e} (since the kernel
is a subgroup by Exercise I.2.9(a) and |P| = 3). If K = {e} then f is one
to one (Theorem I.2.3(i)) and G is isomorphic to a subgroup of order 12
of S4 (namely Im(f ) = f [G ]), which must be A4 by Theorem I.6.8 (and
the first possible structure of G is established).
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f : G → A(S) (where A(S) is the group of all permutations of the set of
left cosets of P; since there a 4 left cosets of P then A(S) ∼= S4) whose
kernel K is contained in P. Whence K = P or K = {e} (since the kernel
is a subgroup by Exercise I.2.9(a) and |P| = 3).

If K = {e} then f is one
to one (Theorem I.2.3(i)) and G is isomorphic to a subgroup of order 12
of S4 (namely Im(f ) = f [G ]), which must be A4 by Theorem I.6.8 (and
the first possible structure of G is established).
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Proposition II.6.4 (continued 1)

Proof (continued). Otherwise K = P and P is normal in G (Theorem
I.5.5). In this case, P is the unique Sylow 3-subgroup (since all Sylow
p-subgroups of G are conjugates by the Second Sylow Theorem [Theorem
II.5.9] and a normal subgroup is self conjugate by Theorem I.5.1(v)).
Hence G contains only two elements of order 3 (the two nonidentity
elements in P). If c is one of these order 3 elements, then [G : CG (c)] is
the number of conjugates of c (by Corollary II.4.4(i);
CG (c) = {g ∈ G | gcg−1 = c} is the “centralizer” of c) and every
conjugate of c has order 3 (consider (gcg−1)3); so [G : CG (c)] = 1 or 2
(either c is self conjugate or c and the other element of G of order 3 are
conjugates, respectively).

Since [G : CG (c)] = |G |/|CG (c)| (Lagrange’s
Theorem, Corollary I.4.6) then |CG (c)| = 12 or 6 (respectively). In either
case there is d ∈ CG (c) of order 2 by Cauchy’s Theorem (Theorem II.5.2).
Since cd ∈ CG (c) then |cd | is 1, 2, 3, 4, or 6. Since d ∈ CG (c) then
dcd−1 = c or dc = cd . Now if cd = e then e = e2 = (cd)2 = (cd)(dc)
= cd2c = cec = c2, a contradiction since |c | = 3.
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Proposition II.6.4

Proposition II.6.4 (continued 2)

Proof (continued). Next, (cd)2 = (cd)(cd) = (cd)(dc) = cd2c = cec
= c2 6= e since |c | = 3. Also (cd)3 = (cd)(cd)(cd) = (cd)(dc)(cd)
= cd2c2d = cec2d = c3d = d 6= e. Similarly, (cd)4 = (cd)3(cd)
= d(cd) = d(dc) = d2c = ec = c 6= e. Also,
(cd)6 = (cd)3(cd)3 = (d)(d) = d2 = e. Hence |cd | = 6.

Let a = cd . Then, as in the proof of Proposition II.6.3, 〈a〉 is normal in G
since |G/〈a〉| = 2; there is b ∈ G such that b 6∈ 〈a〉, b 6= e, b2 ∈ 〈a〉.
Since 〈a〉 is normal, bab−1 ∈ 〈a〉. We now consider the value of bab−1.

• If bab−1 = e then ba = b and a = e, contradiction.

• If bab−1 = a then ba = ab and G is abelian (G = 〈a, b〉
since G = 〈a〉 ∪ b〈a〉), a contradiction.

• If bab−1 = a2 then (bab−1)3 = (a2)3 = a6 = e and
ba3b−1 = e or ba3 = b or a3 = e, a contradiction.

• If bab−1 = a3 then (bab−1)2 = (a3)2 or ba2b−1 = a6 = e or
ba2b−1 = e and ba2 = b or a2 = e, a contradiction.
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Proposition II.6.4 (continued 3)

Proof (continued).

• If bab−1 = a4 then (bab−1)3 = (a4)3 = a12 = e or
ba3b−1 = e and ba3 = b or a3 = e, a contradiction.

So it must be that bab−1 = a5 = a−1. That is ba = a−1b or aba = b.

We now consider the possible values of b2 ∈ 〈a〉 in terms of powers of a.

• If b2 = a2 then, since aba = b, we have (aba)2 = b2 or
(aba)(aba) = b2 or aba2ba = b2 or abb2ba = b2 or
ab4a = b2 or ab4a = a2 or b4 = e or a4 = e, a contradiction
since |a| = 6.

• If b2 = a4 = a−2 then, since aba = b or b = a−1ba−1, we
have b2 = (a−1ba−1)(a−1ba−1) = a−1ba−2ba−1 = a−1b4a−1

or (since b2 = a4) a4 = a−1b4a−1 or a6 = b4 or e = b4 or
e = a8 = a2, a contradiction since |a| = 6.
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Proof (continued).
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Proposition II.6.4 (continued 4)

Proof (continued).

• If b2 = a then b12 = a6 = e. Then b6 = a3 6= e,
b4 = a2 6= e, and b3 = ab 6= e since b 6= a−1 (or else
b ∈ 〈a〉) and so G = 〈b〉 which implies that G is cyclic and
hence abelian, a contradiction.

• If b2 = a5 then b12 = a30 = e (and b6 = a15 = a3 6= e,
b4 = a10 = a4 6= e, and b3 = b2b = a5b 6= e since b 6= a, or
else b ∈ 〈a〉). Then G = 〈b〉 which implies that G is cyclic
and hence abelian, a contradiction.

Therefore, the only possibilities are:

(i) |a| = 6, b2 = e, ba = a−1b, where G ∼= D6 by Theorem
I.6.13;

(ii) |a| = 6, b2 = a3, ba = a−1b, whence G ∼= T by Exercise
II.6.5(b).

So the other two possible structures of G are established.
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