Modern Algebra

Chapter II. The Structure of Groups

II.7. Nilpotent and Solvable Groups—Proofs of Theorems

Table of contents

[Proposition II.7.2](#page-2-0)

[Proposition II.7.3](#page-6-0)

- [Lemma II.7.4](#page-19-0)
- [Proposition II.7.5](#page-26-0)
- [Theorem II.7.8](#page-36-0)
- [Proposition II.7.10](#page-45-0)
- [Theorem II.7.11](#page-53-0)

[Lemma II.7.13](#page-61-0)

Proposition II.7.2. Every finite *p*-group is nilpotent.

Proof. Let G be the p-group. Then G and all of its nontrivial subgroups are p-groups by the First Sylow Theorem (Theorem II.5.7).

Proposition II.7.2. Every finite *p*-group is nilpotent.

Proof. Let G be the p-group. Then G and all of its nontrivial subgroups are p-groups by the First Sylow Theorem (Theorem II.5.7). Then G and its nontrivial subgroups have nontrivial centers by Corollary II.5.4. Now if $G \neq C_i(G)$ then $G/C_i(G)$ is a nontrivial p-group and $C(G/C_i(G))$ is nontrivial.

Proposition II.7.2. Every finite *p*-group is nilpotent.

Proof. Let G be the p-group. Then G and all of its nontrivial subgroups are p-groups by the First Sylow Theorem (Theorem II.5.7). Then G and its nontrivial subgroups have nontrivial centers by Corollary II.5.4. Now if $G \neq C_i(G)$ then $G/C_i(G)$ is a nontrivial p-group and $C(G/C_i(G))$ is **nontrivial.** So $C_i(G)$ is strictly contained in $C_{i+1}(G)$. Since G is finite, $C_n(G)$ must be G for some *n* and so G is nilpotent.

Proposition II.7.2. Every finite *p*-group is nilpotent.

Proof. Let G be the p-group. Then G and all of its nontrivial subgroups are p-groups by the First Sylow Theorem (Theorem II.5.7). Then G and its nontrivial subgroups have nontrivial centers by Corollary II.5.4. Now if $G \neq C_i(G)$ then $G/C_i(G)$ is a nontrivial p-group and $C(G/C_i(G))$ is nontrivial. So $C_i(G)$ is strictly contained in $C_{i+1}(G)$. Since G is finite, $C_n(G)$ must be G for some n and so G is nilpotent.

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof. We give the proof for a product of two nilpotent groups and then the general result follows by induction. Let $G = H \times K$. Temporarily assume that $C_i(G) = C_i(H) \times C_i(K)$.

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof. We give the proof for a product of two nilpotent groups and then the general result follows by induction. Let $G = H \times K$. Temporarily **assume that** $C_i(G) = C_i(H) \times C_i(K)$ **.** Let π_H be the canonical epimorphism mapping $H \to H/C_i(H)$ and let π_K be the canonical epimorphism mapping $K \to K/C_i(K)$. Then $\pi = \pi_H \times \pi_K$ mapping $H \times K \rightarrow H/C_i(H) \times K/C_i(K)$ is an epimorphism by Theorem 1.8.10. Let ψ be the isomorphism of Corollary 1.8.11 which maps $H/C_i(H) \times K/C_i(K) \rightarrow (H \times K)/(C_i(H) \times C_i(K)).$

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof. We give the proof for a product of two nilpotent groups and then the general result follows by induction. Let $G = H \times K$. Temporarily assume that $C_i(G) = C_i(H) \times C_i(K)$. Let π_H be the canonical epimorphism mapping $H \to H/C_i(H)$ and let π_K be the canonical epimorphism mapping $K \to K/C_i(K)$. Then $\pi = \pi_H \times \pi_K$ mapping $H \times K \to H/C_i(H) \times K/C_i(K)$ is an epimorphism by Theorem 1.8.10. Let ψ be the isomorphism of Corollary 1.8.11 which maps $H/C_i(H) \times K/C_i(K) \to (H \times K)/(C_i(H) \times C_i(K))$. Define $\varphi: G \to G/C_i(G)$ as $\varphi = \pi \circ \psi$, so that

$$
G = H \times K \stackrel{\pi}{\rightarrow} H/C_i(H) \times K/C_i(K)
$$

\n
$$
\stackrel{\varphi}{\rightarrow} (H \times K)/(C_i(H) \times C_i(K))
$$

\n
$$
= (H \times K)/C_i(H \times K)
$$
 by assumption
\n
$$
= G/C_i(G).
$$

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof. We give the proof for a product of two nilpotent groups and then the general result follows by induction. Let $G = H \times K$. Temporarily assume that $C_i(G) = C_i(H) \times C_i(K)$. Let π_H be the canonical epimorphism mapping $H \to H/C_i(H)$ and let π_K be the canonical epimorphism mapping $K \to K/C_i(K)$. Then $\pi = \pi_H \times \pi_K$ mapping $H \times K \to H/C_i(H) \times K/C_i(K)$ is an epimorphism by Theorem 1.8.10. Let ψ be the isomorphism of Corollary 1.8.11 which maps $H/C_i(H) \times K/C_i(K) \to (H \times K)/(C_i(H) \times C_i(K))$. Define $\varphi: G \to G/C_i(G)$ as $\varphi = \pi \circ \psi$, so that

$$
G = H \times K \xrightarrow{\pi} H/C_i(H) \times K/C_i(K)
$$

\n
$$
\xrightarrow{\varphi} (H \times K)/(C_i(H) \times C_i(K))
$$

\n
$$
= (H \times K)/C_i(H \times K) \text{ by assumption}
$$

\n
$$
= G/C_i(G).
$$

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof (continued). Now if $g \in G$, say $g = (h, k)$, then

$$
\varphi(g) = \psi(\pi(g)) = \psi(\pi((h, k)) = \psi(\pi_H(h) \times \pi_K(k))
$$

=
$$
\psi(hC_i(H) \times kC_i(K))
$$
 since π_H and π_K are
canonical epimorphisms

$$
= (h, k) C_i(H) \times C_i(K)
$$
 by the definition of ψ

$$
= (h, k)Ci(H \times K) by assumption\n= gCi(G).
$$

So $g \in G$ is mapped to coset $gC_i(G) \in G/C_i(G)$ and φ is the canonical epimorphism mapping $G \to G/C_i(G)$.

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof (continued). Now if $g \in G$, say $g = (h, k)$, then

$$
\varphi(g) = \psi(\pi(g)) = \psi(\pi((h, k)) = \psi(\pi_H(h) \times \pi_K(k))
$$

=
$$
\psi(hC_i(H) \times kC_i(K))
$$
 since π_H and π_K are
canonical epimorphisms
= $(h, k)C_i(H) \times C_i(K)$ by the definition of ψ

=
$$
(h, k)C_i(H \times K)
$$
 by assumption
= $gC_i(G)$.

So $g \in G$ is mapped to coset $gC_i(G) \in G/C_i(G)$ and φ is the canonical epimorphism mapping $G \to G/C_i(G)$.

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof (continued). Now

$$
C(H \times K) = \{(h, k) \in H \times K \mid (h, k)(x, y) = (x, y)(h, k) \text{ for all } (x, y) \in H \times K\}
$$

\n
$$
= \{(h, k) \in H \times K \mid (hx, ky) = (xh, yk) \text{ for all } (x, y) \in H \times K\}
$$

\n
$$
= \{h \in H \mid hx = xh \text{ for all } x \in H\}
$$

\n
$$
\times \{k \in K \mid ky = yk \text{ for all } y \in K\}
$$

\n
$$
= C(H) \times C(K) \qquad (*)
$$

and this holds for any H and K.

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof (continued). Now

$$
C(H \times K) = \{(h,k) \in H \times K \mid (h,k)(x,y) = (x,y)(h,k)
$$

for all $(x,y) \in H \times K\}$

$$
= \{(h,k) \in H \times K \mid (hx,ky) = (xh,yk)
$$

for all $(x,y) \in H \times K\}$

$$
= \{h \in H \mid hx = xh \text{ for all } x \in H\}
$$

$$
\times \{k \in K \mid ky = yk \text{ for all } y \in K\}
$$

$$
= C(H) \times C(K) \qquad (*)
$$

and this holds for any H and K .

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof (continued). Consequently

$$
C_{i+1}(G) = \varphi^{-1}[C(G/C_i(G)]
$$

\n
$$
= \pi^{-1}\varphi^{-1}[C(G/C_i(G))]
$$

\n
$$
= \pi^{-1}\varphi^{-1}[C((H \times K)/C_i(H \times H))]
$$

\n
$$
= \pi^{-1}[C(H/C_i(H) \times K/C_i(K))]
$$
 by the definition of φ
\n
$$
= \pi^{-1}[C(H/C_i(H)) \times C(K/C_i(K))]
$$
 by (*)
\n
$$
= \pi_H^{-1}[C(H/C_i(H))] \times \pi_K^{-1}[C(K/C_i(K))]
$$

\n
$$
= C_{i+1}(H) \times C_{i+1}(K).
$$

And so by induction on *i*, $C_i(G) = C_i(H) \times C_i(K)$ for all $i \in \mathbb{N}$.

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof (continued). Consequently

$$
C_{i+1}(G) = \varphi^{-1}[C(G/C_i(G)]
$$

\n
$$
= \pi^{-1}\varphi^{-1}[C(G/C_i(G))]
$$

\n
$$
= \pi^{-1}\varphi^{-1}[C((H \times K)/C_i(H \times H))]
$$

\n
$$
= \pi^{-1}[C(H/C_i(H) \times K/C_i(K))]
$$
 by the definition of φ
\n
$$
= \pi^{-1}[C(H/C_i(H)) \times C(K/C_i(K))]
$$
 by (*)
\n
$$
= \pi_H^{-1}[C(H/C_i(H))] \times \pi_K^{-1}[C(K/C_i(K))]
$$

\n
$$
= C_{i+1}(H) \times C_{i+1}(K).
$$

And so by induction on i, $C_i(G) = C_i(H) \times C_i(K)$ for all $i \in \mathbb{N}$.

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof (continued). [Notice that we assumed this above simply to have a setting for the mappings π and ψ . The proof by induction on *i* uses the properties of mappings π and ψ in this setting, but the induction on *i* is really accomplished by property (∗).]

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof (continued). [Notice that we assumed this above simply to have a setting for the mappings π and ψ . The proof by induction on *i* uses the properties of mappings π and ψ in this setting, but the induction on *i* is really accomplished by property $(*)$. Since H and K are nilpotent, then there are $n \in \mathbb{N}$ such that $C_n(H) = H$ and $C_n(K) = K$. So $C_n(G) = C_n(H) \times C_n(K) = H \times K = G$, and G is nilpotent.

Proposition II.7.3. The direct product of a finite number of nilpotent groups is nilpotent.

Proof (continued). [Notice that we assumed this above simply to have a setting for the mappings π and ψ . The proof by induction on *i* uses the properties of mappings π and ψ in this setting, but the induction on *i* is really accomplished by property $(*)$.] Since H and K are nilpotent, then there are $n \in \mathbb{N}$ such that $C_n(H) = H$ and $C_n(K) = K$. So $C_n(G) = C_n(H) \times C_n(K) = H \times K = G$, and G is nilpotent.

Lemma II.7.4

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G, then H is a proper subgroup of its normalizer $N_G(H)$.

Proof. Recall that $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$. Denote $C_0(G) = \{e\}$. Then $C_1(G) = \pi^{-1}(C(G/C_0(G))) = \pi^{-1}(C(G/\{e\})) = C(G)$ as expected.

Lemma II.7.4

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G, then H is a proper subgroup of its normalizer $N_G(H)$.

Proof. Recall that $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$. Denote $C_0(G) = \{e\}$. Then $C_1(G) = \pi^{-1}(C(G/C_0(G))) = \pi^{-1}(C(G/\{e\})) = C(G)$ as expected. Let n be the largest index such that $C_n(G) < H$ (there is such an n since G is nilpotent and $C_0(G) < H$). Choose $a \in C_{n+1}(G)$ where $a \notin H$.

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G , then H is a proper subgroup of its normalizer $N_G(H)$.

Proof. Recall that $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$. Denote $C_0(G) = \{e\}$. Then $\mathcal{C}_1(\mathit{G}) = \pi^{-1}(\mathcal{C}(\mathit{G}/\mathcal{C}_0(\mathit{G}))) = \pi^{-1}(\mathcal{C}(\mathit{G}/\{e\})) = \mathcal{C}(\mathit{G})$ as expected. Let *n* be the largest index such that $C_n(G) < H$ (there is such an *n* since G is nilpotent and $C_0(G) < H$). Choose $a \in C_{n+1}(G)$ where $a \notin H$. Since $C_{n+1}(G)$ is the inverse image of $C(G/C_n(G))$ under the canonical epimorphism, then $aC_n(G) \in C(G/C_n(G))$ and in $G/C_n(G)$ we have that the cosets satisfy $(aC_n(G))(gC_n(G)) = (gC_n(G))(aC_n(G))$ for all $g \in G$.

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G , then H is a proper subgroup of its normalizer $N_G(H)$.

Proof. Recall that $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$. Denote $C_0(G) = \{e\}$. Then $\mathcal{C}_1(\mathit{G}) = \pi^{-1}(\mathcal{C}(\mathit{G}/\mathcal{C}_0(\mathit{G}))) = \pi^{-1}(\mathcal{C}(\mathit{G}/\{e\})) = \mathcal{C}(\mathit{G})$ as expected. Let *n* be the largest index such that $C_n(G) < H$ (there is such an *n* since G is nilpotent and $C_0(G) < H$). Choose $a \in C_{n+1}(G)$ where $a \notin H$. Since $C_{n+1}(G)$ is the inverse image of $C(G/C_n(G))$ under the canonical epimorphism, then $aC_n(G) \in C(G/C_n(G))$ and in $G/C_n(G)$ we have that the cosets satisfy $(aC_n(G))(gC_n(G)) = (gC_n(G))(aC_n(G))$ for all $g \in G$.

Lemma II.7.4 (continued)

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G, then H is a proper subgroup of its normalizer $N_G(H)$.

Proof (continued). Then for every $h \in H$, in $G/C_n(G)$ we have

 $C_n(G)$ ah = $(C_n(G)a)(C_n(G)h)$ by the definition of coset multiplication $= (C_n(G)h)(C_n(G)a)$ by the comment above (since $a \in C_{n+1}(G)$) $= C_n(G)$ ha.

Thus $ah=h'$ ha for some $h'\in\mathcal{C}_n(\mathcal{G})< H.$ Hence $aha^{-1}=h'h\in H$ and so $a \in N_G(H)$.

Lemma II.7.4 (continued)

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G, then H is a proper subgroup of its normalizer $N_G(H)$.

Proof (continued). Then for every $h \in H$, in $G/C_n(G)$ we have

$$
C_n(G)ah = (C_n(G)a)(C_n(G)h)
$$
 by the definition of coset multiplication
= $(C_n(G)h)(C_n(G)a)$ by the comment above
(since $a \in C_{n+1}(G)$)
= $C_n(G)ha$.

Thus $ah=h'$ ha for some $h'\in\mathcal{C}_n(\mathcal{G})< H.$ Hence $aha^{-1}=h'h\in H$ and so $a \in N_G(H)$. Since $a \notin H$, H is a proper subgroup of $N_G(H)$.

Lemma II.7.4 (continued)

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G, then H is a proper subgroup of its normalizer $N_G(H)$.

Proof (continued). Then for every $h \in H$, in $G/C_n(G)$ we have

$$
C_n(G)ah = (C_n(G)a)(C_n(G)h)
$$
 by the definition of coset multiplication
= $(C_n(G)h)(C_n(G)a)$ by the comment above
(since $a \in C_{n+1}(G)$)
= $C_n(G)ha$.

Thus $ah=h'$ ha for some $h'\in\mathcal{C}_n(\mathcal{G})< H.$ Hence $aha^{-1}=h'h\in H$ and so $a \in N_G(H)$. Since $a \notin H$, H is a proper subgroup of $N_G(H)$.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups.

Proof. If G is the direct product of its Sylow p-subgroups, then by Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem II.7.3 the product is nilpotent. That is, G is nilpotent.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups. **Proof.** If G is the direct product of its Sylow p-subgroups, then by Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem II.7.3 the product is nilpotent. That is, G is nilpotent.

Now suppose G is nilpotent and let P be a Sylow p-subgroup of G for some prime p. If $P = G$, we are done. So WLOG suppose P is a proper subgroup of G.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups. **Proof.** If G is the direct product of its Sylow p-subgroups, then by Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem II.7.3 the product is nilpotent. That is, G is nilpotent. Now suppose G is nilpotent and let P be a Sylow p-subgroup of G for some prime p. If $P = G$, we are done. So WLOG suppose P is a proper subgroup of G. By Lemma II.7.4, P is a proper subgroup of its normalizer $N_G(P)$. By Theorem II.5.11, $N_G(N_G(P)) = N_G(P)$. With $H = N_G(P)$ in Lemma II.7.4, we see that if $N_G(P)$ is a proper subgroup of G then it would hold that $N_G(P)$ is a proper subgroup of $N_G(N_G(P))$. Since this later case does not hold, it must be that $N_G(P) = G$.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups. **Proof.** If G is the direct product of its Sylow p-subgroups, then by Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem II.7.3 the product is nilpotent. That is, G is nilpotent. Now suppose G is nilpotent and let P be a Sylow p -subgroup of G for some prime p. If $P = G$, we are done. So WLOG suppose P is a proper subgroup of G . By Lemma II.7.4, P is a proper subgroup of its normalizer $N_G(P)$. By Theorem II.5.11, $N_G(N_G(P)) = N_G(P)$. With $H = N_G(P)$ in Lemma II.7.4, we see that if $N_G(P)$ is a proper subgroup of G then it would hold that $N_G(P)$ is a proper subgroup of $N_G(N_G(P))$. Since this later case does not hold, it must be that $N_G(P) = G$. Thus P is a normal subgroup of G. By the Second Sylow Theorem (Theorem II.5.9), any other Sylow p-subgroup of G is conjugate with P . But since P is a normal subgroup of G , then it is self conjugate and hence P is the unique Sylow p-subgroup of G.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups. **Proof.** If G is the direct product of its Sylow p-subgroups, then by Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem II.7.3 the product is nilpotent. That is, G is nilpotent. Now suppose G is nilpotent and let P be a Sylow p-subgroup of G for some prime p. If $P = G$, we are done. So WLOG suppose P is a proper subgroup of G . By Lemma II.7.4, P is a proper subgroup of its normalizer $N_G(P)$. By Theorem II.5.11, $N_G(N_G(P)) = N_G(P)$. With $H = N_G(P)$ in Lemma II.7.4, we see that if $N_G(P)$ is a proper subgroup of G then it would hold that $N_G(P)$ is a proper subgroup of $N_G(N_G(P))$. Since this later case does not hold, it must be that $N_G(P) = G$. Thus P is a normal subgroup of G. By the Second Sylow Theorem (Theorem II.5.9), any other Sylow p-subgroup of G is conjugate with P . But since P is a normal subgroup of G , then it is self conjugate and hence P is the unique Sylow p-subgroup of G.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups.

Proof (continued). Let $|G| = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$ where the p_i are distinct primes and each $n_i > 0$.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups.

Proof (continued). Let $|G| = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$ where the p_i are distinct **primes and each** $n_i > 0$ **.** Let P_1, P_2, \ldots, P_k be the corresponding (proper normal) Sylow subgroups of G. Since $|P_i|=p_i^{n_i}$ for each i then each element of P_i is of an order which is a power of p_i by Corollary I.4.6 (Lagrange's Theorem). So $P_i \cap P_j = \{e\}$ for $i \neq j$.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups.

Proof (continued). Let $|G| = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$ where the p_i are distinct primes and each $n_i > 0$. Let P_1, P_2, \ldots, P_k be the corresponding (proper normal) Sylow subgroups of G. Since $|P_i|=p_i^{n_i}$ for each i then each element of P_i is of an order which is a power of p_i by Corollary I.4.6 (Lagrange's Theorem). So $P_i \cap P_j = \{e\}$ for $i \neq j$. By Theorem I.5.3(iv), $xy=yx$ for all $x\in P_i,$ $y\in P_j$ and $i\neq j.$ This commutivity implies that each element of $P_1P_2 \cdots P_{i-1}P_{i+1} \cdots P_k$ has an order dividing $p_1^{n_1} p_2^{n_2} \cdots p_{i-1}^{n_{i-1}}$ $\prod_{i=1}^{n_{i-1}} p_{i+1}^{n_{i+1}} \cdots p_k^{n_k}$ (for each *i*). Consequently $P_i \cap (P_1P_2 \cdots P_{i-1}P_{i+1} \cdots P_k) = \{e\}$ (as above) and so by Corollary I.8.7 $P_1P_2\cdots P_k\cong P_1\times P_2\times\cdots\times P_k.$

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups.

Proof (continued). Let $|G| = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$ where the p_i are distinct primes and each $n_i > 0$. Let P_1, P_2, \ldots, P_k be the corresponding (proper normal) Sylow subgroups of G. Since $|P_i|=p_i^{n_i}$ for each i then each element of P_i is of an order which is a power of p_i by Corollary I.4.6 (Lagrange's Theorem). So $P_i \cap P_j = \{e\}$ for $i \neq j$. By Theorem I.5.3(iv), $\mathsf{x}\mathsf{y}=\mathsf{y}\mathsf{x}$ for all $\mathsf{x}\in\mathsf{P}_i$, $\mathsf{y}\in\mathsf{P}_j$ and $i\neq j$. This commutivity implies that each element of $P_1P_2 \cdots P_{i-1}P_{i+1} \cdots P_k$ has an order dividing $p_1^{n_1} p_2^{n_2} \cdots p_{i-1}^{n_{i-1}}$ $\prod_{i=1}^{n_{i-1}} p_{i+1}^{n_{i+1}} \cdots p_k^{n_k}$ (for each *i*). Consequently $P_i \cap (P_1P_2 \cdots P_{i-1}P_{i+1} \cdots P_k) = \{e\}$ (as above) and so by Corollary I.8.7 $P_1 P_2 \cdots P_k \cong P_1 \times P_2 \times \cdots \times P_k$. Since $|G| = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} = |P_1 \times P_2 \times \cdots \times P_k| = |P_1 P_2 \cdots P_k|$ then we must have $G = P_1 P_2 \cdots P_k \cong P_1 \times P_2 \times \cdots \times P_k$.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to) the direct product of its Sylow subgroups.

Proof (continued). Let $|G| = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$ where the p_i are distinct primes and each $n_i > 0$. Let P_1, P_2, \ldots, P_k be the corresponding (proper normal) Sylow subgroups of G. Since $|P_i|=p_i^{n_i}$ for each i then each element of P_i is of an order which is a power of p_i by Corollary I.4.6 (Lagrange's Theorem). So $P_i \cap P_j = \{e\}$ for $i \neq j$. By Theorem I.5.3(iv), $\mathsf{x}\mathsf{y}=\mathsf{y}\mathsf{x}$ for all $\mathsf{x}\in\mathsf{P}_i$, $\mathsf{y}\in\mathsf{P}_j$ and $i\neq j$. This commutivity implies that each element of $P_1P_2 \cdots P_{i-1}P_{i+1} \cdots P_k$ has an order dividing $p_1^{n_1} p_2^{n_2} \cdots p_{i-1}^{n_{i-1}}$ $\prod_{i=1}^{n_{i-1}} p_{i+1}^{n_{i+1}} \cdots p_k^{n_k}$ (for each *i*). Consequently $P_i \cap (P_1P_2 \cdots P_{i-1}P_{i+1} \cdots P_k) = \{e\}$ (as above) and so by Corollary I.8.7 $P_1 P_2 \cdots P_k \cong P_1 \times P_2 \times \cdots \times P_k$. Since $|G| = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} = |P_1 \times P_2 \times \cdots \times P_k| = |P_1 P_2 \cdots P_k|$ then we must have $G = P_1 P_2 \cdots P_k \cong P_1 \times P_2 \times \cdots \times P_k$.
Theorem II.7.8. If G is a group, then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N is a normal subgroup of G, then G/N is abelian if and only if N contains G' .

Proof. Let $f: G \to G$ be any automorphism of G. Then by the homomorphism property

$$
f(aba^{-1}b^{-1}) = f(a)f(b)f(a^{-1})f(b^{-1}) = f(a)f(b)(f(a))^{-1}(f(b))^{-1} \in G'.
$$

Theorem II.7.8. If G is a group, then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N is a normal subgroup of G, then G/N is abelian if and only if N contains G' .

Proof. Let $f: G \to G$ be any automorphism of G. Then by the homomorphism property

$$
f(aba^{-1}b^{-1}) = f(a)f(b)f(a^{-1})f(b^{-1}) = f(a)f(b)(f(a))^{-1}(f(b))^{-1} \in G'.
$$

By Theorem I.2.8, every element of G' is a finite product of powers of commutators $aba^{-1}b^{-1}$ (where $a,b\in G)$ and so $f(G')< G'.$ Let f_a be the automorphism of G given by conjugation by a. Then $aG'a^{-1} = f_a(G') < G'.$

Theorem II.7.8. If G is a group, then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N is a normal subgroup of G, then G/N is abelian if and only if N contains G' .

Proof. Let $f: G \to G$ be any automorphism of G. Then by the homomorphism property

$$
f(aba^{-1}b^{-1}) = f(a)f(b)f(a^{-1})f(b^{-1}) = f(a)f(b)(f(a))^{-1}(f(b))^{-1} \in G'.
$$

By Theorem 1.2.8, every element of G' is a finite product of powers of commutators $aba^{-1}b^{-1}$ (where $a,b\in G)$ and so $f(G')< G'.$ Let f_a be the automorphism of G given by conjugation by a . Then $\mathsf{a} G'\mathsf{a}^{-1} = \mathsf{f}_{\mathsf{a}}(G') < G'.$ So every conjugate $\mathsf{a} G'\mathsf{a}^{-1}$ is a subgroup of G' and by Theorem I.5.1(iv), G' is a normal subgroup of G. Since all $a, b \in G$, we have $a^{-1},b^{-1}\in G$ and so $a^{-1}b^{-1}(a^{-1})^{-1}(b^{-1})^{-1}=a^{-1}b^{-1}ab\in G'$ and so $a^{-1}b^{-1}abG' = G'$ or $abG' = baG'.$

Theorem II.7.8. If G is a group, then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N is a normal subgroup of G, then G/N is abelian if and only if N contains G' .

Proof. Let $f: G \to G$ be any automorphism of G. Then by the homomorphism property

$$
f(aba^{-1}b^{-1}) = f(a)f(b)f(a^{-1})f(b^{-1}) = f(a)f(b)(f(a))^{-1}(f(b))^{-1} \in G'.
$$

By Theorem 1.2.8, every element of G' is a finite product of powers of commutators $aba^{-1}b^{-1}$ (where $a,b\in G)$ and so $f(G')< G'.$ Let f_a be the automorphism of G given by conjugation by a . Then $aG'a^{-1}=f_a(G')< G'.$ So every conjugate $aG'a^{-1}$ is a subgroup of G' and by Theorem I.5.1(iv), G' is a normal subgroup of G. Since all $a, b \in G$, we have $a^{-1},b^{-1}\in G$ and so $a^{-1}b^{-1}(a^{-1})^{-1}(b^{-1})^{-1}=a^{-1}b^{-1}ab\in G'$ and $\mathsf{so}~ \mathsf{a}^{-1} \mathsf{b}^{-1} \mathsf{a} \mathsf{b} \mathsf{G}' = \mathsf{G}'$ or $\mathsf{a} \mathsf{b} \mathsf{G}' = \mathsf{b} \mathsf{a} \mathsf{G}'.$ But then by the definition of coset multiplication, $(aG')(bG') = abG' = baG' = (bG')(aG')$ and so coset multiplication is commutative and G/G' is abelian.

Theorem II.7.8. If G is a group, then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N is a normal subgroup of G, then G/N is abelian if and only if N contains G' .

Proof. Let $f: G \to G$ be any automorphism of G. Then by the homomorphism property

$$
f(aba^{-1}b^{-1}) = f(a)f(b)f(a^{-1})f(b^{-1}) = f(a)f(b)(f(a))^{-1}(f(b))^{-1} \in G'.
$$

By Theorem 1.2.8, every element of G' is a finite product of powers of commutators $aba^{-1}b^{-1}$ (where $a,b\in G)$ and so $f(G')< G'.$ Let f_a be the automorphism of G given by conjugation by a . Then $aG'a^{-1}=f_a(G')< G'.$ So every conjugate $aG'a^{-1}$ is a subgroup of G' and by Theorem I.5.1(iv), G' is a normal subgroup of G. Since all $a, b \in G$, we have $a^{-1},b^{-1}\in G$ and so $a^{-1}b^{-1}(a^{-1})^{-1}(b^{-1})^{-1}=a^{-1}b^{-1}ab\in G'$ and so $a^{-1}b^{-1}abG'=G'$ or $abG'=baG'.$ But then by the definition of coset multiplication, $(aG')(bG') = abG' = baG' = (bG')(aG')$ and so coset multiplication is commutative and G/G^\prime is abelian.

Theorem II.7.8. If G is a group, then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N is a normal subgroup of G, then G/N is abelian if and only if N contains G' .

Proof (continued). Let N be a normal subgroup of G. Suppose G/N is abelian.

Theorem II.7.8. If G is a group, then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N is a normal subgroup of G, then G/N is abelian if and only if N contains G' .

Proof (continued). Let N be a normal subgroup of G. Suppose G/N is **abelian.** Then $abN = baN$ for all $a, b \in G$. In particular, $a^{-1}b^{-1}N = b^{-1}a^{-1}N$ or $aba^{-1}b^{-1}N = N$ and $aba^{-1}b^{-1} \in N$. Therefore N contains all commutators $aba^{-1}b^{-1}$ $(a, b \in G)$ and $G' < N$.

Theorem II.7.8. If G is a group, then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N is a normal subgroup of G, then G/N is abelian if and only if N contains G' .

Proof (continued). Let N be a normal subgroup of G. Suppose G/N is abelian. Then $abN = baN$ for all $a, b \in G$. In particular, $a^{-1}b^{-1}N = b^{-1}a^{-1}N$ or $aba^{-1}b^{-1}N = N$ and $aba^{-1}b^{-1} \in N$. Therefore N contains all commutators $aba^{-1}b^{-1}$ $(a, b \in G)$ and $G' < N$. Conversely, suppose $G' < N$. Then for all $a,b \in G$ we have (as above) $a^{-1},$ $b^{-1} \in G$ and so $a^{-1}b^{-1}ab\in G'$, so $a^{-1}b^{-1}ab\in N$ and $a^{-1}b^{-1}abN=N$ or $abN = baN$ and then G/N is abelian.

Theorem II.7.8. If G is a group, then the commutator subgroup G' is a normal subgroup of G and G/G' is abelian. If N is a normal subgroup of G, then G/N is abelian if and only if N contains G' .

Proof (continued). Let N be a normal subgroup of G. Suppose G/N is abelian. Then $abN = baN$ for all $a, b \in G$. In particular, $a^{-1}b^{-1}N = b^{-1}a^{-1}N$ or $aba^{-1}b^{-1}N = N$ and $aba^{-1}b^{-1} \in N$. Therefore N contains all commutators $aba^{-1}b^{-1}$ $(a,b\in G)$ and $G' < N$. Conversely, suppose $G' < N$. Then for all $a,b \in G$ we have (as above) $a^{-1},$ $b^{-1} \in G$ and so $a^{-1}b^{-1}ab\in G'$, so $a^{-1}b^{-1}ab\in N$ and $a^{-1}b^{-1}abN=N$ or $abN = baN$ and then G/N is abelian.

Proposition II.7.10. Every nilpotent group is solvable.

Proof. By the definition of $C_i(G)$ as the inverse image of $C(G/C_{i-1}(G))$ under the canonical homomorphism π mapping $G \to G/C_{i-1}(G)$, we have $C_i(G)/C_{i-1}(G) = C(G/C_{i-1}(G))$. [Hmmm...]

Proposition II.7.10. Every nilpotent group is solvable.

Proof. By the definition of $C_i(G)$ as the inverse image of $C(G/C_{i-1}(G))$ under the canonical homomorphism π mapping $G \to G/C_{i-1}(G)$, we have $C_i(G)/C_{i-1}(G) = C(G/C_{i-1}(G))$. [Hmmm...]

Now the center of a group is the set of elements of the group which commute with all the elements of G, and so a center is an abelian group. So $C(G/C_{i-1}(G)) = C_i(G)/C_{i-1}(G)$ is abelian.

Proposition II.7.10. Every nilpotent group is solvable.

Proof. By the definition of $C_i(G)$ as the inverse image of $C(G/C_{i-1}(G))$ under the canonical homomorphism π mapping $G \to G/C_{i-1}(G)$, we have $C_i(G)/C_{i-1}(G) = C(G/C_{i-1}(G))$. [Hmmm...] Now the center of a group is the set of elements of the group which commute with all the elements of G, and so a center is an abelian group. So $C(G/C_{i-1}(G)) = C_i(G)/C_{i-1}(G)$ is abelian. By Theorem II.7.8, $C_{i-1}(G)$ contains $C_i(G)$ for all $i > 1$. Since $C(G)$ is abelian then the commutator subgroup $\mathcal{C}_1(\mathit{G})^\prime=\mathcal{C}(\mathit{G})=\{e\}$ by the comment made after the definition of commutator. Since G is nilpotent then, by definition, for some $n \in \mathbb{N}$ we have $C_n(G) = G$.

Proposition II.7.10. Every nilpotent group is solvable.

Proof. By the definition of $C_i(G)$ as the inverse image of $C(G/C_{i-1}(G))$ under the canonical homomorphism π mapping $G \to G/C_{i-1}(G)$, we have $C_i(G)/C_{i-1}(G) = C(G/C_{i-1}(G))$. [Hmmm...] Now the center of a group is the set of elements of the group which commute with all the elements of G, and so a center is an abelian group. So $C(G/C_{i-1}(G)) = C_i(G)/C_{i-1}(G)$ is abelian. By Theorem II.7.8, $C_{i-1}(G)$ contains $C_i(G)$ for all $i > 1$. Since $C(G)$ is abelian then the commutator subgroup $\mathcal{C}_1(\mathit{G})^\prime=\mathcal{C}(\mathit{G})=\{e\}$ by the comment made after the definition of commutator. Since G is nilpotent then, by definition, for some $n \in \mathbb{N}$ we have $C_n(G) = G$. Therefore (with $i = n$) $C(G/C_{n-1}(G)) = C_n(G)/C_{n-1}(G) = G/C_{n-1}(G)$ is abelian and hence, by Theorem II.7.8, $C_{n-1}(G)$ contains G' , or $G^{(1)}=G'< C_{n-1}(G).$

Proposition II.7.10. Every nilpotent group is solvable.

Proof. By the definition of $C_i(G)$ as the inverse image of $C(G/C_{i-1}(G))$ under the canonical homomorphism π mapping $G \to G/C_{i-1}(G)$, we have $C_i(G)/C_{i-1}(G) = C(G/C_{i-1}(G))$. [Hmmm...] Now the center of a group is the set of elements of the group which commute with all the elements of G, and so a center is an abelian group. So $C(G/C_{i-1}(G)) = C_i(G)/C_{i-1}(G)$ is abelian. By Theorem II.7.8, $C_{i-1}(G)$ contains $C_i(G)$ for all $i > 1$. Since $C(G)$ is abelian then the commutator subgroup $\mathcal{C}_1(\mathit{G})^\prime=\mathcal{C}(\mathit{G})=\{e\}$ by the comment made after the definition of commutator. Since G is nilpotent then, by definition, for some $n \in \mathbb{N}$ we have $C_n(G) = G$. Therefore (with $i = n$) $C(G/C_{n-1}(G)) = C_n(G)/C_{n-1}(G) = G/C_{n-1}(G)$ is abelian and hence, by Theorem II.7.8, $\mathcal{C}_{n-1}(G)$ contains G' , or $G^{(1)}=G'<\mathcal{C}_{n-1}(G).$

Proposition II.7.10 (continued)

Proposition II.7.10. Every nilpotent group is solvable.

Proof (continued). Now if A is a subgroup of B then the commutator group A' is a subgroup of the commutator group B' . So

 $G^{(2)} = G^{(1)}' < C_{n-1}(G)' < C_{n-2}(G)$ (by the above with $i = n - 1$).

Proposition II.7.10 (continued)

Proposition II.7.10. Every nilpotent group is solvable.

Proof (continued). Now if A is a subgroup of B then the commutator group A' is a subgroup of the commutator group B' . So

$$
G^{(2)} = G^{(1)} \cdot C_{n-1}(G)' < C_{n-2}(G)
$$
 (by the above with $i = n-1$).

Similarly $G^{(3)} < C_{n-2}(G)' < C_{n-3}(G), \ \ldots, \ G^{(n-1)} < C_2(G)' < C_1(G),$ and $G^{(n)} < C_1(G)' = C(G) = \{e\}$ since $C(G)$ is abelian. So $G^{(n)} = \{e\}$ and G is solvable.

Proposition II.7.10 (continued)

Proposition II.7.10. Every nilpotent group is solvable.

Proof (continued). Now if A is a subgroup of B then the commutator group A' is a subgroup of the commutator group B' . So

$$
G^{(2)} = G^{(1)} \cdot C_{n-1}(G)' < C_{n-2}(G)
$$
 (by the above with $i = n-1$).

Similarly $G^{(3)} < C_{n-2}(G)' < C_{n-3}(G), \ \ldots, \ G^{(n-1)} < C_2(G)' < C_1(G),$ and $G^{(n)} < C_1(G)' = C(G) = \{e\}$ since $C(G)$ is abelian. So $G^{(n)} = \{e\}$ and G is solvable.

Theorem II.7.11.

- (i) Every subgroup and every homomorphic image of a solvable group is solvable.
- (ii) If N is a normal subgroup of a group G such that N and G/N are solvable, then G is solvable.

Proof. (i) Let $f : G \to H$ be a homomorphism. Let G' and H' be the commutator subgroups of G and H.

Theorem II.7.11.

- (i) Every subgroup and every homomorphic image of a solvable group is solvable.
- (ii) If N is a normal subgroup of a group G such that N and G/N are solvable, then G is solvable.

Proof. (i) Let $f: G \to H$ be a homomorphism. Let G' and H' be the commutator subgroups of G and H . By Theorem 1.2.8, the elements of G' are finite products of powers of $(\overline{a}ba^{-1}b^{-1})$ where $a,b\in G.$ Applying f to such an element produces a finite product of powers of $f(aba^{-1}b^{-1}) = f(a)f(b)f(a)^{-1}f(b)^{-1}$. So $f(G') < H'$.

Theorem II.7.11.

- (i) Every subgroup and every homomorphic image of a solvable group is solvable.
- (ii) If N is a normal subgroup of a group G such that N and G/N are solvable, then G is solvable.

Proof. (i) Let $f: G \to H$ be a homomorphism. Let G' and H' be the commutator subgroups of G and H . By Theorem 1.2.8, the elements of G' are finite products of powers of $(\overline{a}ba^{-1}b^{-1})$ where $a,b\in G.$ Applying f to such an element produces a finite product of powers of $f(aba^{-1}b^{-1}) = f(a)f(b)f(a)^{-1}f(b)^{-1}$. So $f(G') < H'$. If f is onto (that is, an epimorphism) then $f(\mathit{G}') = H'$. Since $G^{(i)} = (G^{(i-1)})'$, it follows by induction that $f(\mathcal{G}^{(i)}) < H^{(i)}$ (with equality if f is an epimorphism) for all $i \in \mathbb{N}$.

Theorem II.7.11.

- (i) Every subgroup and every homomorphic image of a solvable group is solvable.
- (ii) If N is a normal subgroup of a group G such that N and G/N are solvable, then G is solvable.

Proof. (i) Let $f: G \to H$ be a homomorphism. Let G' and H' be the commutator subgroups of G and H . By Theorem 1.2.8, the elements of G' are finite products of powers of $(\overline{a}ba^{-1}b^{-1})$ where $a,b\in G.$ Applying f to such an element produces a finite product of powers of $f(aba^{-1}b^{-1})=f(a)f(b)f(a)^{-1}f(b)^{-1}.$ So $f(G')< H'.$ If f is onto (that is, an epimorphism) then $f(G') = H'$. Since $G^{(i)} = (G^{(i-1)})'$, it follows by induction that $f(G^{(i)}) < H^{(i)}$ (with equality if f is an epimorphism) for all $i \in \mathbb{N}$. Suppose f is onto (an epimorphism) and so H is a homomorphic image of G . Also, suppose G is solvable. Then for some n , ${e} = f(e) = f(G⁽ⁿ⁾) = H⁽ⁿ⁾$ and so H is solvable.

Theorem II.7.11.

- (i) Every subgroup and every homomorphic image of a solvable group is solvable.
- (ii) If N is a normal subgroup of a group G such that N and G/N are solvable, then G is solvable.

Proof. (i) Let $f: G \to H$ be a homomorphism. Let G' and H' be the commutator subgroups of G and H . By Theorem 1.2.8, the elements of G' are finite products of powers of $(\overline{a}ba^{-1}b^{-1})$ where $a,b\in G.$ Applying f to such an element produces a finite product of powers of $f(aba^{-1}b^{-1})=f(a)f(b)f(a)^{-1}f(b)^{-1}.$ So $f(G')< H'.$ If f is onto (that is, an epimorphism) then $f(G') = H'$. Since $G^{(i)} = (G^{(i-1)})'$, it follows by induction that $f(G^{(i)}) < H^{(i)}$ (with equality if f is an epimorphism) for all $i \in \mathbb{N}$. Suppose f is onto (an epimorphism) and so H is a homomorphic image of G. Also, suppose G is solvable. Then for some n , ${e} = f(e) = f(G⁽ⁿ⁾) = H⁽ⁿ⁾$ and so H is solvable.

Theorem II.7.11.

- (i) Every subgroup and every homomorphic image of a solvable group is solvable.
- (ii) If N is a normal subgroup of a group G such that N and G/N are solvable, then G is solvable.

Proof (i) (continued). Now if H is a subgroup of G, then $H' < G'$ and $H^{(i)} < G^{(i)}$ for all $i \in \mathbb{N}$. If G is solvable then for some $n, \, \{e\} = G^{(n)}$ and so $H^{(n)} = \{e\}$ and H is solvable. (ii) Let $f: G \to G/N$ be the canonical homomorphism (or "epimorphism"). Since G/N is solvable by hypothesis, then for some $n\in\mathbb{N}$ we have $f(\mathit{G}^{(n)})=(\mathit{G}/\mathit{N})^{(n)}$ as in the proof of (i) and $\mathit{G}^{(n)}=\{e\}$ so $f(\,G^{(n)})=(\,G/N)^{(n)}=\{e\}.$ So $\,G^{(n)}<$ Ker $(f)=N.$

Theorem II.7.11.

- (i) Every subgroup and every homomorphic image of a solvable group is solvable.
- (ii) If N is a normal subgroup of a group G such that N and G/N are solvable, then G is solvable.

Proof (i) (continued). Now if H is a subgroup of G, then $H' < G'$ and $H^{(i)} < G^{(i)}$ for all $i \in \mathbb{N}$. If G is solvable then for some $n, \, \{e\} = G^{(n)}$ and so $H^{(n)} = \{e\}$ and H is solvable. (ii) Let $f : G \to G/N$ be the canonical homomorphism (or "epimorphism"). Since G/N is solvable by hypothesis, then for some $n\in\mathbb{N}$ we have $f(\mathit{G}^{(n)})=(\mathit{G}/\mathit{N})^{(n)}$ as in the proof of (i) and $\mathit{G}^{(n)}=\{e\}$ ${\sf so} \,\, f(G^{(n)})=(G/N)^{(n)}=\{e\}.$ So $G^{(n)}<{\sf Ker}(f)=N.$ Since $G^{(n)}$ is a subgroup of N , then by part (i) $G^{(n)}$ is solvable. So for some $k\in\mathbb{N}$ we have $(G^{(n)})^{(k)}=\{e\}$ and so $G^{(n+k)}=(G^{(n)})^{(k)}=\{e\}$ and G is solvable.

Theorem II.7.11.

- (i) Every subgroup and every homomorphic image of a solvable group is solvable.
- (ii) If N is a normal subgroup of a group G such that N and G/N are solvable, then G is solvable.

Proof (i) (continued). Now if H is a subgroup of G, then $H' < G'$ and $H^{(i)} < G^{(i)}$ for all $i \in \mathbb{N}$. If G is solvable then for some $n, \, \{e\} = G^{(n)}$ and so $H^{(n)} = \{e\}$ and H is solvable. (ii) Let $f : G \to G/N$ be the canonical homomorphism (or "epimorphism"). Since G/N is solvable by hypothesis, then for some $n\in\mathbb{N}$ we have $f(\mathit{G}^{(n)})=(\mathit{G}/\mathit{N})^{(n)}$ as in the proof of (i) and $\mathit{G}^{(n)}=\{e\}$ so $f(\mathit{G}^{(n)})=(\mathit{G}/\mathit{N})^{(n)}=\{e\}.$ So $\mathit{G}^{(n)}<$ Ker $(f)=N.$ Since $\mathit{G}^{(n)}$ is a subgroup of N , then by part (i) $G^{(n)}$ is solvable. So for some $k\in\mathbb{N}$ we have $(G^{(n)})^{(k)}=\{e\}$ and so $G^{(n+k)}=(G^{(n)})^{(k)}=\{e\}$ and G is solvable.

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

- (i) If H is a characteristic subgroup of N, then H is normal in G.
- (i) Every normal Sylow p-subgroup of G is fully invariant.
- (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof. (i) Since $aNa^{-1} = N$ for all $a \in G$ because N is hypothesized as normal. So conjugation by a is an automorphism of N.

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

- (i) If H is a characteristic subgroup of N, then H is normal in G.
- (i) Every normal Sylow p-subgroup of G is fully invariant.
- (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof. (i) Since $aNa^{-1} = N$ for all $a \in G$ because N is hypothesized as normal. So conjugation by a is an automorphism of N. Since H is characteristic in N by hypothesis, then $aHa^{-1} < H$ for all $a \in G$. Hence H is normal in G by Theorem $1.5.1(iv)$.

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

- (i) If H is a characteristic subgroup of N, then H is normal in G.
- (i) Every normal Sylow p-subgroup of G is fully invariant.
- (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof. (i) Since $aNa^{-1} = N$ for all $a \in G$ because N is hypothesized as normal. So conjugation by a is an automorphism of N . Since H is characteristic in N by hypothesis, then $aHa^{-1} < H$ for all $a \in G$. Hence H is normal in G by Theorem I.5.1(iv). (ii) This is left as an exercise.

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

- (i) If H is a characteristic subgroup of N, then H is normal in G.
- (i) Every normal Sylow p-subgroup of G is fully invariant.
- (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof. (i) Since $aNa^{-1} = N$ for all $a \in G$ because N is hypothesized as normal. So conjugation by a is an automorphism of N . Since H is characteristic in N by hypothesis, then $aHa^{-1} < H$ for all $a \in G$. Hence H is normal in G by Theorem I.5.1(iv).

(ii) This is left as an exercise.

(iii) Consider the commutator subgroup of N , N' , which is generated by the set $\{aba^{-1}b^{-1} \mid a,b \in N\}$. By Theorem I.2.8, the elements of N' are finite products of powers of $(aba^{-1}b^{-1})$ where $a,b\in\mathcal{N}.$

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

- (i) If H is a characteristic subgroup of N, then H is normal in G .
- (i) Every normal Sylow p-subgroup of G is fully invariant.
- (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof. (i) Since $aNa^{-1} = N$ for all $a \in G$ because N is hypothesized as normal. So conjugation by a is an automorphism of N . Since H is characteristic in N by hypothesis, then $aHa^{-1} < H$ for all $a \in G$. Hence H is normal in G by Theorem I.5.1(iv).

(ii) This is left as an exercise.

(iii) Consider the commutator subgroup of N , N' , which is generated by the set $\{aba^{-1}b^{-1}\mid a,b\in \mathsf{N}\}$. By Theorem I.2.8, the elements of N' are finite products of powers of $(\overline{a}ba^{-1}b^{-1})$ where $a,b\in\mathcal{N}.$

Lemma II.7.13 (continued)

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

> (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof (iii) (continued). So if $f : G \to N$ is a homomorphism (that is, f is an endomorphism of $N)$ then the image of an element in N' is again a finite product of powers of commutators of elements of N (since $f(aba^{-1}b^{-1})=f(a)f(b)f(a)^{-1}f(b)^{-1}).$ So $f(N^{\prime}) < N^{\prime}$ and N^{\prime} is a fully **invariant subgroup of N.** Since every fully invariant subgroup is characteristic, then N' is a characteristic subgroup of N . By part (i), N' is a normal subgroup of G. Since N is hypothesized to be a minimal normal subgroup of G, then either $\mathcal{N}' = \{e\}$ or $\mathcal{N}' = \mathcal{N}$. Since $\mathcal N$ is a subgroup of solvable group G then by Theorem II.7.11(i), N is solvable.

Lemma II.7.13 (continued)

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

> (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof (iii) (continued). So if $f : G \to N$ is a homomorphism (that is, f is an endomorphism of $N)$ then the image of an element in N' is again a finite product of powers of commutators of elements of N (since $f(aba^{-1}b^{-1})=f(a)f(b)f(a)^{-1}f(b)^{-1}).$ So $f(N^{\prime}) < N^{\prime}$ and N^{\prime} is a fully invariant subgroup of N. Since every fully invariant subgroup is characteristic, then N' is a characteristic subgroup of N . By part (i), N' is a normal subgroup of G. Since N is hypothesized to be a minimal normal subgroup of G , then either $\mathcal{N}'=\{e\}$ or $\mathcal{N}'=\mathcal{N}$. Since $\mathcal N$ is a subgroup of solvable group G then by Theorem II.7.11(i), N is solvable. So $\bar N'\neq\bar N$ (otherwise the chain of derived subgroups of N would be $N > N > N > \cdots$ and N would not be solvable; that is, we would have $N^{(i)} = N$ for all $i \in \mathbb{N}$ and not have $N^{(n)} = \{e\}$ for some $n \in \mathbb{N}$).

Lemma II.7.13 (continued)

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

> (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof (iii) (continued). So if $f : G \to N$ is a homomorphism (that is, f is an endomorphism of $N)$ then the image of an element in N' is again a finite product of powers of commutators of elements of N (since $f(aba^{-1}b^{-1})=f(a)f(b)f(a)^{-1}f(b)^{-1}).$ So $f(N^{\prime}) < N^{\prime}$ and N^{\prime} is a fully invariant subgroup of N. Since every fully invariant subgroup is characteristic, then N' is a characteristic subgroup of N . By part (i), N' is a normal subgroup of G. Since N is hypothesized to be a minimal normal subgroup of G , then either $\mathcal{N}'=\{e\}$ or $\mathcal{N}'=\mathcal{N}$. Since $\mathcal N$ is a subgroup of solvable group G then by Theorem II.7.11(i), N is solvable. So $N'\neq N$ (otherwise the chain of derived subgroups of N would be $N > N > N > \cdots$ and N would not be solvable; that is, we would have $N^{(i)} = N$ for all $i \in \mathbb{N}$ and not have $N^{(n)} = \{e\}$ for some $n \in \mathbb{N}$).

Lemma II.7.13 (continued again)

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

> (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof (iii) (continued). Hence $N' = \{e\} \neq N$ and N is a nontrivial abelian group (since any group G is abelian if and only if $G'=\{e\}$ —see the note after Definition II.7.9). Let P be a nontrivial Sylow p-subgroup of N for some prime p (which exists by the First Sylow Theorem [Theorem] $[11.5.7]$). Since N is abelian then P is normal in N. By part (ii), P is a fully invariant subgroup of N and, since every fully invariant subgroup is characteristic (see the note following the definition of "characteristic subgroup") then P is characteristic in N and so by part (i), P is normal in G.

Lemma II.7.13 (continued again)

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

> (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof (iii) (continued). Hence $N' = \{e\} \neq N$ and N is a nontrivial abelian group (since any group G is abelian if and only if $G'=\{e\}$ —see the note after Definition II.7.9). Let P be a nontrivial Sylow p-subgroup of N for some prime p (which exists by the First Sylow Theorem [Theorem] II.5.7]). Since N is abelian then P is normal in N. By part (ii), P is a fully invariant subgroup of N and, since every fully invariant subgroup is characteristic (see the note following the definition of "characteristic subgroup") then P is characteristic in N and so by part (i), P is normal in **G**. Since N is a minimal normal subgroup of G by hypothesis and P is a nontrivial subgroup of N then $P = N$ and so $|N| = P$ for some prime P.

Lemma II.7.13 (continued again)

Lemma II.7.13. let N be a normal subgroup of a finite group G and H any subgroup of G.

> (iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian p -group for some prime p .

Proof (iii) (continued). Hence $N' = \{e\} \neq N$ and N is a nontrivial abelian group (since any group G is abelian if and only if $G'=\{e\}$ —see the note after Definition II.7.9). Let P be a nontrivial Sylow p-subgroup of N for some prime p (which exists by the First Sylow Theorem [Theorem] II.5.7]). Since N is abelian then P is normal in N. By part (ii), P is a fully invariant subgroup of N and, since every fully invariant subgroup is characteristic (see the note following the definition of "characteristic subgroup") then P is characteristic in N and so by part (i), P is normal in G. Since N is a minimal normal subgroup of G by hypothesis and P is a nontrivial subgroup of N then $P = N$ and so $|N| = P$ for some prime P.