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Proposition II.7.2

Proposition II.7.2

Proposition II.7.2. Every finite p-group is nilpotent.

Proof. Let G be the p-group. Then G and all of its nontrivial subgroups
are p-groups by the First Sylow Theorem (Theorem II.5.7).

Then G and
its nontrivial subgroups have nontrivial centers by Corollary II.5.4. Now if
G 6= Ci (G ) then G/Ci (G ) is a nontrivial p-group and C (G/Ci (G )) is
nontrivial. So Ci (G ) is strictly contained in Ci+1(G ). Since G is finite,
Cn(G ) must be G for some n and so G is nilpotent.
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Proposition II.7.3

Proposition II.7.3

Proposition II.7.3. The direct product of a finite number of nilpotent
groups is nilpotent.
Proof. We give the proof for a product of two nilpotent groups and then
the general result follows by induction. Let G = H × K . Temporarily
assume that Ci (G ) = Ci (H)× Ci (K ).

Let πH be the canonical
epimorphism mapping H → H/Ci (H) and let πK be the canonical
epimorphism mapping K → K/Ci (K ). Then π = πH × πK mapping
H × K → H/Ci (H)× K/Ci (K ) is an epimorphism by Theorem I.8.10. Let
ψ be the isomorphism of Corollary I.8.11 which maps
H/Ci (H)× K/Ci (K ) → (H × K )/(Ci (H)× Ci (K )). Define
ϕ : G → G/Ci (G ) as ϕ = π ◦ ψ, so that

G = H × K
π→ H/Ci (H)× K/Ci (K )
ϕ→ (H × K )/(Ci (H)× Ci (K ))

= (H × K )/Ci (H × K ) by assumption

= G/Ci (G ).
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Proposition II.7.3

Proposition II.7.3 (continued 1)

Proposition II.7.3. The direct product of a finite number of nilpotent
groups is nilpotent.

Proof (continued). Now if g ∈ G , say g = (h, k), then

ϕ(g) = ψ(π(g)) = ψ(π((h, k)) = ψ(πH(h)× πK (k))

= ψ(hCi (H)× kCi (K )) since πH and πK are

canonical epimorphisms

= (h, k)Ci (H)× Ci (K ) by the definition of ψ

= (h, k)Ci (H × K ) by assumption

= gCi (G ).

So g ∈ G is mapped to coset gCi (G ) ∈ G/Ci (G ) and ϕ is the canonical
epimorphism mapping G → G/Ci (G ).
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Proposition II.7.3

Proposition II.7.3 (continued 2)

Proposition II.7.3. The direct product of a finite number of nilpotent
groups is nilpotent.

Proof (continued). Now

C (H × K ) = {(h, k) ∈ H × K | (h, k)(x , y) = (x , y)(h, k)

for all (x , y) ∈ H × K}
= {(h, k) ∈ H × K | (hx , ky) = (xh, yk)

for all (x , y) ∈ H × K}
= {h ∈ H | hx = xh for all x ∈ H}

×{k ∈ K | ky = yk for all y ∈ K}
= C (H)× C (K ) (∗)

and this holds for any H and K .
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Proposition II.7.3

Proposition II.7.3 (continued 3)

Proposition II.7.3. The direct product of a finite number of nilpotent
groups is nilpotent.

Proof (continued). Consequently

Ci+1(G ) = ϕ−1[C (G/Ci (G )]

= π−1ϕ−1[C (G/Ci (G ))]

= π−1φ−1[C ((H × K )/Ci (H × H))]

= π−1[C (H/Ci (H)× K/Ci (K ))] by the definition of ϕ

= π−1[C (H/Ci (H))× C (K/Ci (K ))] by (∗)
= π−1

H [C (H/Ci (H))]× π−1
K [C (K/Ci (K ))]

= Ci+1(H)× Ci+1(K ).

And so by induction on i , Ci (G ) = Ci (H)× Ci (K ) for all i ∈ N.
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Proposition II.7.3

Proposition II.7.3 (continued 4)

Proposition II.7.3. The direct product of a finite number of nilpotent
groups is nilpotent.

Proof (continued). [Notice that we assumed this above simply to have a
setting for the mappings π and ψ. The proof by induction on i uses the
properties of mappings π and ψ in this setting, but the induction on i is
really accomplished by property (∗).]

Since H and K are nilpotent, then
there are n ∈ N such that Cn(H) = H and Cn(K ) = K . So
Cn(G ) = Cn)H)× Cn(K ) = H × K = G , and G is nilpotent.
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Lemma II.7.4

Lemma II.7.4

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G , then H
is a proper subgroup of its normalizer NG (H).

Proof. Recall that NG (H) = {g ∈ G | gHg−1 = H}. Denote
C0(G ) = {e}. Then
C1(G ) = π−1(C (G/C0(G ))) = π−1(C (G/{e})) = C (G ) as expected.

Let
n be the largest index such that Cn(G ) < H (there is such an n since G is
nilpotent and C0(G ) < H). Choose a ∈ Cn+1(G ) where a 6∈ H. Since
Cn+1(G ) is the inverse image of C (G/Cn(G )) under the canonical
epimorphism, then aCn(G ) ∈ C (G/Cn(G )) and in G/Cn(G ) we have that
the cosets satisfy (aCn(G ))(gCn(G )) = (gCn(G ))(aCn(G )) for all g ∈ G .
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Lemma II.7.4

Lemma II.7.4 (continued)

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G , then H
is a proper subgroup of its normalizer NG (H).

Proof (continued). Then for every h ∈ H, in G/Cn(G ) we have

Cn(G )ah = (Cn(G )a)(Cn(G )h) by the definition of coset multiplication

= (Cn(G )h)(Cn(G )a) by the comment above

(since a ∈ Cn+1(G ))

= Cn(G )ha.

Thus ah = h′ha for some h′ ∈ Cn(G ) < H. Hence aha−1 = h′h ∈ H and
so a ∈ NG (H).

Since a 6∈ H, H is a proper subgroup of NG (H).
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Proposition II.7.5

Proposition II.7.5

Proposition II.7.5. A finite group is nilpotent if and only if it is
(isomorphic to) the direct product of its Sylow subgroups.
Proof. If G is the direct product of its Sylow p-subgroups, then by
Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem
II.7.3 the product is nilpotent. That is, G is nilpotent.

Now suppose G is nilpotent and let P be a Sylow p-subgroup of G for
some prime p. If P = G , we are done. So WLOG suppose P is a proper
subgroup of G . By Lemma II.7.4, P is a proper subgroup of its normalizer
NG (P). By Theorem II.5.11, NG (NG (P)) = NG (P). With H = NG (P) in
Lemma II.7.4, we see that if NG (P) is a proper subgroup of G then it
would hold that NG (P) is a proper subgroup of NG (NG (P)). Since this
later case does not hold, it must be that NG (P) = G . Thus P is a normal
subgroup of G . By the Second Sylow Theorem (Theorem II.5.9), any
other Sylow p-subgroup of G is conjugate with P. But since P is a normal
subgroup of G , then it is self conjugate and hence P is the unique Sylow
p-subgroup of G .

() Modern Algebra January 24, 2018 11 / 21



Proposition II.7.5

Proposition II.7.5

Proposition II.7.5. A finite group is nilpotent if and only if it is
(isomorphic to) the direct product of its Sylow subgroups.
Proof. If G is the direct product of its Sylow p-subgroups, then by
Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem
II.7.3 the product is nilpotent. That is, G is nilpotent.
Now suppose G is nilpotent and let P be a Sylow p-subgroup of G for
some prime p. If P = G , we are done. So WLOG suppose P is a proper
subgroup of G .

By Lemma II.7.4, P is a proper subgroup of its normalizer
NG (P). By Theorem II.5.11, NG (NG (P)) = NG (P). With H = NG (P) in
Lemma II.7.4, we see that if NG (P) is a proper subgroup of G then it
would hold that NG (P) is a proper subgroup of NG (NG (P)). Since this
later case does not hold, it must be that NG (P) = G . Thus P is a normal
subgroup of G . By the Second Sylow Theorem (Theorem II.5.9), any
other Sylow p-subgroup of G is conjugate with P. But since P is a normal
subgroup of G , then it is self conjugate and hence P is the unique Sylow
p-subgroup of G .

() Modern Algebra January 24, 2018 11 / 21



Proposition II.7.5

Proposition II.7.5

Proposition II.7.5. A finite group is nilpotent if and only if it is
(isomorphic to) the direct product of its Sylow subgroups.
Proof. If G is the direct product of its Sylow p-subgroups, then by
Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem
II.7.3 the product is nilpotent. That is, G is nilpotent.
Now suppose G is nilpotent and let P be a Sylow p-subgroup of G for
some prime p. If P = G , we are done. So WLOG suppose P is a proper
subgroup of G . By Lemma II.7.4, P is a proper subgroup of its normalizer
NG (P). By Theorem II.5.11, NG (NG (P)) = NG (P). With H = NG (P) in
Lemma II.7.4, we see that if NG (P) is a proper subgroup of G then it
would hold that NG (P) is a proper subgroup of NG (NG (P)). Since this
later case does not hold, it must be that NG (P) = G .

Thus P is a normal
subgroup of G . By the Second Sylow Theorem (Theorem II.5.9), any
other Sylow p-subgroup of G is conjugate with P. But since P is a normal
subgroup of G , then it is self conjugate and hence P is the unique Sylow
p-subgroup of G .

() Modern Algebra January 24, 2018 11 / 21



Proposition II.7.5

Proposition II.7.5

Proposition II.7.5. A finite group is nilpotent if and only if it is
(isomorphic to) the direct product of its Sylow subgroups.
Proof. If G is the direct product of its Sylow p-subgroups, then by
Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem
II.7.3 the product is nilpotent. That is, G is nilpotent.
Now suppose G is nilpotent and let P be a Sylow p-subgroup of G for
some prime p. If P = G , we are done. So WLOG suppose P is a proper
subgroup of G . By Lemma II.7.4, P is a proper subgroup of its normalizer
NG (P). By Theorem II.5.11, NG (NG (P)) = NG (P). With H = NG (P) in
Lemma II.7.4, we see that if NG (P) is a proper subgroup of G then it
would hold that NG (P) is a proper subgroup of NG (NG (P)). Since this
later case does not hold, it must be that NG (P) = G . Thus P is a normal
subgroup of G . By the Second Sylow Theorem (Theorem II.5.9), any
other Sylow p-subgroup of G is conjugate with P. But since P is a normal
subgroup of G , then it is self conjugate and hence P is the unique Sylow
p-subgroup of G .

() Modern Algebra January 24, 2018 11 / 21



Proposition II.7.5

Proposition II.7.5

Proposition II.7.5. A finite group is nilpotent if and only if it is
(isomorphic to) the direct product of its Sylow subgroups.
Proof. If G is the direct product of its Sylow p-subgroups, then by
Theorem II.7.2 each of these p-subgroups is nilpotent and by Theorem
II.7.3 the product is nilpotent. That is, G is nilpotent.
Now suppose G is nilpotent and let P be a Sylow p-subgroup of G for
some prime p. If P = G , we are done. So WLOG suppose P is a proper
subgroup of G . By Lemma II.7.4, P is a proper subgroup of its normalizer
NG (P). By Theorem II.5.11, NG (NG (P)) = NG (P). With H = NG (P) in
Lemma II.7.4, we see that if NG (P) is a proper subgroup of G then it
would hold that NG (P) is a proper subgroup of NG (NG (P)). Since this
later case does not hold, it must be that NG (P) = G . Thus P is a normal
subgroup of G . By the Second Sylow Theorem (Theorem II.5.9), any
other Sylow p-subgroup of G is conjugate with P. But since P is a normal
subgroup of G , then it is self conjugate and hence P is the unique Sylow
p-subgroup of G .

() Modern Algebra January 24, 2018 11 / 21



Proposition II.7.5

Proposition II.7.5 (continued)

Proposition II.7.5. A finite group is nilpotent if and only if it is
(isomorphic to) the direct product of its Sylow subgroups.

Proof (continued). Let |G | = pn1
1 pn2

2 · · · pnk
k where the pi are distinct

primes and each ni > 0.

Let P1,P2, . . . ,Pk be the corresponding (proper
normal) Sylow subgroups of G . Since |Pi | = pni

i for each i then each
element of Pi is of an order which is a power of pi by Corollary I.4.6
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Theorem II.7.8

Theorem II.7.8

Theorem II.7.8. If G is a group, then the commutator subgroup G ′ is a
normal subgroup of G and G/G ′ is abelian. If N is a normal subgroup of
G , then G/N is abelian if and only if N contains G ′.

Proof. Let f : G → G be any automorphism of G . Then by the
homomorphism property

f (aba−1b−1) = f (a)f (b)f (a−1)f (b−1) = f (a)f (b)(f (a))−1(f (b))−1 ∈ G ′.

By Theorem I.2.8, every element of G ′ is a finite product of powers of
commutators aba−1b−1 (where a, b ∈ G ) and so f (G ′) < G ′. Let fa be
the automorphism of G given by conjugation by a. Then
aG ′a−1 = fa(G

′) < G ′. So every conjugate aG ′a−1 is a subgroup of G ′ and
by Theorem I.5.1(iv), G ′ is a normal subgroup of G . Since all a, b ∈ G , we
have a−1, b−1 ∈ G and so a−1b−1(a−1)−1(b−1)−1 = a−1b−1ab ∈ G ′ and
so a−1b−1abG ′ = G ′ or abG ′ = baG ′. But then by the definition of coset
multiplication, (aG ′)(bG ′) = abG ′ = baG ′ = (bG ′)(aG ′) and so coset
multiplication is commutative and G/G ′ is abelian.

() Modern Algebra January 24, 2018 13 / 21



Theorem II.7.8

Theorem II.7.8

Theorem II.7.8. If G is a group, then the commutator subgroup G ′ is a
normal subgroup of G and G/G ′ is abelian. If N is a normal subgroup of
G , then G/N is abelian if and only if N contains G ′.

Proof. Let f : G → G be any automorphism of G . Then by the
homomorphism property

f (aba−1b−1) = f (a)f (b)f (a−1)f (b−1) = f (a)f (b)(f (a))−1(f (b))−1 ∈ G ′.

By Theorem I.2.8, every element of G ′ is a finite product of powers of
commutators aba−1b−1 (where a, b ∈ G ) and so f (G ′) < G ′. Let fa be
the automorphism of G given by conjugation by a. Then
aG ′a−1 = fa(G

′) < G ′.

So every conjugate aG ′a−1 is a subgroup of G ′ and
by Theorem I.5.1(iv), G ′ is a normal subgroup of G . Since all a, b ∈ G , we
have a−1, b−1 ∈ G and so a−1b−1(a−1)−1(b−1)−1 = a−1b−1ab ∈ G ′ and
so a−1b−1abG ′ = G ′ or abG ′ = baG ′. But then by the definition of coset
multiplication, (aG ′)(bG ′) = abG ′ = baG ′ = (bG ′)(aG ′) and so coset
multiplication is commutative and G/G ′ is abelian.

() Modern Algebra January 24, 2018 13 / 21



Theorem II.7.8

Theorem II.7.8

Theorem II.7.8. If G is a group, then the commutator subgroup G ′ is a
normal subgroup of G and G/G ′ is abelian. If N is a normal subgroup of
G , then G/N is abelian if and only if N contains G ′.

Proof. Let f : G → G be any automorphism of G . Then by the
homomorphism property

f (aba−1b−1) = f (a)f (b)f (a−1)f (b−1) = f (a)f (b)(f (a))−1(f (b))−1 ∈ G ′.

By Theorem I.2.8, every element of G ′ is a finite product of powers of
commutators aba−1b−1 (where a, b ∈ G ) and so f (G ′) < G ′. Let fa be
the automorphism of G given by conjugation by a. Then
aG ′a−1 = fa(G

′) < G ′. So every conjugate aG ′a−1 is a subgroup of G ′ and
by Theorem I.5.1(iv), G ′ is a normal subgroup of G . Since all a, b ∈ G , we
have a−1, b−1 ∈ G and so a−1b−1(a−1)−1(b−1)−1 = a−1b−1ab ∈ G ′ and
so a−1b−1abG ′ = G ′ or abG ′ = baG ′.

But then by the definition of coset
multiplication, (aG ′)(bG ′) = abG ′ = baG ′ = (bG ′)(aG ′) and so coset
multiplication is commutative and G/G ′ is abelian.

() Modern Algebra January 24, 2018 13 / 21



Theorem II.7.8

Theorem II.7.8

Theorem II.7.8. If G is a group, then the commutator subgroup G ′ is a
normal subgroup of G and G/G ′ is abelian. If N is a normal subgroup of
G , then G/N is abelian if and only if N contains G ′.

Proof. Let f : G → G be any automorphism of G . Then by the
homomorphism property

f (aba−1b−1) = f (a)f (b)f (a−1)f (b−1) = f (a)f (b)(f (a))−1(f (b))−1 ∈ G ′.

By Theorem I.2.8, every element of G ′ is a finite product of powers of
commutators aba−1b−1 (where a, b ∈ G ) and so f (G ′) < G ′. Let fa be
the automorphism of G given by conjugation by a. Then
aG ′a−1 = fa(G

′) < G ′. So every conjugate aG ′a−1 is a subgroup of G ′ and
by Theorem I.5.1(iv), G ′ is a normal subgroup of G . Since all a, b ∈ G , we
have a−1, b−1 ∈ G and so a−1b−1(a−1)−1(b−1)−1 = a−1b−1ab ∈ G ′ and
so a−1b−1abG ′ = G ′ or abG ′ = baG ′. But then by the definition of coset
multiplication, (aG ′)(bG ′) = abG ′ = baG ′ = (bG ′)(aG ′) and so coset
multiplication is commutative and G/G ′ is abelian.

() Modern Algebra January 24, 2018 13 / 21



Theorem II.7.8

Theorem II.7.8

Theorem II.7.8. If G is a group, then the commutator subgroup G ′ is a
normal subgroup of G and G/G ′ is abelian. If N is a normal subgroup of
G , then G/N is abelian if and only if N contains G ′.

Proof. Let f : G → G be any automorphism of G . Then by the
homomorphism property

f (aba−1b−1) = f (a)f (b)f (a−1)f (b−1) = f (a)f (b)(f (a))−1(f (b))−1 ∈ G ′.

By Theorem I.2.8, every element of G ′ is a finite product of powers of
commutators aba−1b−1 (where a, b ∈ G ) and so f (G ′) < G ′. Let fa be
the automorphism of G given by conjugation by a. Then
aG ′a−1 = fa(G

′) < G ′. So every conjugate aG ′a−1 is a subgroup of G ′ and
by Theorem I.5.1(iv), G ′ is a normal subgroup of G . Since all a, b ∈ G , we
have a−1, b−1 ∈ G and so a−1b−1(a−1)−1(b−1)−1 = a−1b−1ab ∈ G ′ and
so a−1b−1abG ′ = G ′ or abG ′ = baG ′. But then by the definition of coset
multiplication, (aG ′)(bG ′) = abG ′ = baG ′ = (bG ′)(aG ′) and so coset
multiplication is commutative and G/G ′ is abelian.

() Modern Algebra January 24, 2018 13 / 21



Theorem II.7.8

Theorem II.7.8 (continued)

Theorem II.7.8. If G is a group, then the commutator subgroup G ′ is a
normal subgroup of G and G/G ′ is abelian. If N is a normal subgroup of
G , then G/N is abelian if and only if N contains G ′.

Proof (continued). Let N be a normal subgroup of G . Suppose G/N is
abelian.

Then abN = baN for all a, b ∈ G . In particular,
a−1b−1N = b−1a−1N or aba−1b−1N = N and aba−1b−1 ∈ N. Therefore
N contains all commutators aba−1b−1 (a, b ∈ G ) and G ′ < N. Conversely,
suppose G ′ < N. Then for all a, b ∈ G we have (as above) a−1, b−1 ∈ G
and so a−1b−1ab ∈ G ′, so a−1b−1ab ∈ N and a−1b−1abN = N or
abN = baN and then G/N is abelian.
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Proposition II.7.10

Proposition II.7.10

Proposition II.7.10. Every nilpotent group is solvable.

Proof. By the definition of Ci (G ) as the inverse image of C (G/Ci−1(G ))
under the canonical homomorphism π mapping G → G/Ci−1(G ), we have
Ci (G )/Ci−1(G ) = C (G/Ci−1(G )). [Hmmm...]

Now the center of a group is the set of elements of the group which
commute with all the elements of G , and so a center is an abelian group.
So C (G/Ci−1(G )) = Ci (G )/Ci−1(G ) is abelian. By Theorem II.7.8,
Ci−1(G ) contains Ci (G ) for all i > 1. Since C (G ) is abelian then the
commutator subgroup C1(G )′ = C (G ) = {e} by the comment made after
the definition of commutator. Since G is nilpotent then, by definition, for
some n ∈ N we have Cn(G ) = G . Therefore (with i = n)
C (G/Cn−1(G )) = Cn(G )/Cn−1(G ) = G/Cn−1(G ) is abelian and hence, by
Theorem II.7.8, Cn−1(G ) contains G ′, or G (1) = G ′ < Cn−1(G ).
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Proposition II.7.10

Proposition II.7.10 (continued)

Proposition II.7.10. Every nilpotent group is solvable.

Proof (continued). Now if A is a subgroup of B then the commutator
group A′ is a subgroup of the commutator group B ′. So

G (2) = G (1)′ < Cn−1(G )′ < Cn−2(G ) (by the above with i = n − 1).

Similarly G (3) < Cn−2(G )′ < Cn−3(G ), . . . , G (n−1) < C2(G )′ < C1(G ),
and G (n) < C1(G )′ = C (G ) = {e} since C (G ) is abelian. So G (n) = {e}
and G is solvable.
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G (2) = G (1)′ < Cn−1(G )′ < Cn−2(G ) (by the above with i = n − 1).

Similarly G (3) < Cn−2(G )′ < Cn−3(G ), . . . , G (n−1) < C2(G )′ < C1(G ),
and G (n) < C1(G )′ = C (G ) = {e} since C (G ) is abelian. So G (n) = {e}
and G is solvable.
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Theorem II.7.11

Theorem II.7.11

Theorem II.7.11.

(i) Every subgroup and every homomorphic image of a solvable
group is solvable.

(ii) If N is a normal subgroup of a group G such that N and
G/N are solvable, then G is solvable.

Proof. (i) Let f : G → H be a homomorphism. Let G ′ and H ′ be the
commutator subgroups of G and H.

By Theorem I.2.8, the elements of G ′

are finite products of powers of (aba−1b−1) where a, b ∈ G . Applying f to
such an element produces a finite product of powers of
f (aba−1b−1) = f (a)f (b)f (a)−1f (b)−1. So f (G ′) < H ′. If f is onto (that
is, an epimorphism) then f (G ′) = H ′. Since G (i) = (G (i−1))′, it follows by
induction that f (G (i)) < H(i) (with equality if f is an epimorphism) for all
i ∈ N. Suppose f is onto (an epimorphism) and so H is a homomorphic
image of G . Also, suppose G is solvable. Then for some n,
{e} = f (e) = f (G (n)) = H(n) and so H is solvable.
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(ii) If N is a normal subgroup of a group G such that N and
G/N are solvable, then G is solvable.

Proof (i) (continued). Now if H is a subgroup of G , then H ′ < G ′ and
H(i) < G (i) for all i ∈ N. If G is solvable then for some n, {e} = G (n) and
so H(n) = {e} and H is solvable.
(ii) Let f : G → G/N be the canonical homomorphism (or
“epimorphism”). Since G/N is solvable by hypothesis, then for some
n ∈ N we have f (G (n)) = (G/N)(n) as in the proof of (i) and G (n) = {e}
so f (G (n)) = (G/N)(n) = {e}. So G (n) < Ker(f ) = N.

Since G (n) is a
subgroup of N, then by part (i) G (n) is solvable. So for some k ∈ N we
have (G (n))(k) = {e} and so G (n+k) = (G (n))(k) = {e} and G is
solvable.
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Lemma II.7.13

Lemma II.7.13

Lemma II.7.13. let N be a normal subgroup of a finite group G and H
any subgroup of G .

(i) If H is a characteristic subgroup of N, then H is normal in G .

(ii) Every normal Sylow p-subgroup of G is fully invariant.

(iii) If G is solvable and N is a minimal normal subgroup, then N
is an abelian p-group for some prime p.

Proof. (i) Since aNa−1 = N for all a ∈ G because N is hypothesized as
normal. So conjugation by a is an automorphism of N.

Since H is
characteristic in N by hypothesis, then aHa−1 < H for all a ∈ G . Hence H
is normal in G by Theorem I.5.1(iv).
(ii) This is left as an exercise.
(iii) Consider the commutator subgroup of N, N ′, which is generated by
the set {aba−1b−1 | a, b ∈ N}. By Theorem I.2.8, the elements of N ′ are
finite products of powers of (aba−1b−1) where a, b ∈ N.
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Lemma II.7.13

Lemma II.7.13 (continued)

Lemma II.7.13. let N be a normal subgroup of a finite group G and H
any subgroup of G .

(iii) If G is solvable and N is a minimal normal subgroup, then N
is an abelian p-group for some prime p.

Proof (iii) (continued). So if f : G → N is a homomorphism (that is, f
is an endomorphism of N) then the image of an element in N ′ is again a
finite product of powers of commutators of elements of N (since
f (aba−1b−1) = f (a)f (b)f (a)−1f (b)−1). So f (N ′) < N ′ and N ′ is a fully
invariant subgroup of N. Since every fully invariant subgroup is
characteristic, then N ′ is a characteristic subgroup of N. By part (i), N ′ is
a normal subgroup of G . Since N is hypothesized to be a minimal normal
subgroup of G , then either N ′ = {e} or N ′ = N. Since N is a subgroup of
solvable group G then by Theorem II.7.11(i), N is solvable.

So N ′ 6= N
(otherwise the chain of derived subgroups of N would be
N > N > N > · · · and N would not be solvable; that is, we would have
N(i) = N for all i ∈ N and not have N(n) = {e} for some n ∈ N).
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Lemma II.7.13

Lemma II.7.13 (continued again)

Lemma II.7.13. let N be a normal subgroup of a finite group G and H
any subgroup of G .

(iii) If G is solvable and N is a minimal normal subgroup, then N
is an abelian p-group for some prime p.

Proof (iii) (continued). Hence N ′ = {e} 6= N and N is a nontrivial
abelian group (since any group G is abelian if and only if G ′ = {e}—see
the note after Definition II.7.9). Let P be a nontrivial Sylow p-subgroup of
N for some prime p (which exists by the First Sylow Theorem [Theorem
II.5.7]). Since N is abelian then P is normal in N. By part (ii), P is a fully
invariant subgroup of N and, since every fully invariant subgroup is
characteristic (see the note following the definition of “characteristic
subgroup”) then P is characteristic in N and so by part (i), P is normal in
G .

Since N is a minimal normal subgroup of G by hypothesis and P is a
nontrivial subgroup of N then P = N and so |N| = P for some prime
P.
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