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Proposition II.8.4

Proposition II.8.4

Theorem II.8.4.

(i) Every finite group G has a composition series.
(ii) Every refinement of a solvable series is a solvable series.
(iii) A subnormal series is a composition series if and only if it

has no proper refinements.

Proof. (i) Let G1 be a maximal normal subgroup of G ({e} is a normal
subgroup, so the finite collection of normal subgroups is nonempty and a
maximal normal subgroup of a finite group must exist).

Then G/G1 is
simple by Corollary I.5.12 (Corollary I.5.12 implies that if N / G then every
normal subgroup of G/N is of the form H/N where H is a normal
subgroup of G which contains N. Therefore, when G 6= N, G/N is simple
and has no normal subgroups itself if and only if N is a maximal normal
subgroup of G .) Let G2 be a maximal normal subgroup of G1, and so on.
Since G is finite, this process must end with Gn = {e}. The series we have
created, G > G1 > G2 > · · · > Gn = {e} is a composition series since each
Gi/Gi+1 is simple.
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Proposition II.8.4

Proposition II.8.4(ii)

Theorem II.8.4.

(i) Every finite group G has a composition series.

(ii) Every refinement of a solvable series is a solvable series.

(iii) A subnormal series is a composition series if and only if it
has no proper refinements.

Proof. (ii) In a solvable series G = G1 > G2 > · · · > Gn, Gi/Gi+1 is
abelian (by definition). If Gi+1 / H / Gi is a part of a refinement of a
solvable series, then H/Gi+1 is abelian since H/Gi+1 is a subgroup of
Gi/Gi+1.

Also, Gi/H is abelian since, by the Third Isomorphism Theorem
(Theorem I.5.10), Gi/H ∼= (Gi/Gi+1)/(H/Gi+1) (a quotient of abelian
groups). So the one-step refinement is a solvable series and by induction,
any refinement is solvable.
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Proposition II.8.4(ii)

Theorem II.8.4.

(i) Every finite group G has a composition series.

(ii) Every refinement of a solvable series is a solvable series.

(iii) A subnormal series is a composition series if and only if it
has no proper refinements.

Proof. (iii) Let G = G0 > G1 > · · · > Gn be a subnormal series. If
Gi+1 / H / Gi where the normal subgroups inclusions are proper inclusions,
then H/Gi+1 is a proper normal subgroup of Gi/Gi+1 and every proper
normal subgroup of Gi/Gi+1 is of this form by Corollary I.5.12. So the
subnormal series has a refinement if and only if such a subgroup H exists.

If the subnormal series is a composition series then each Gi/Gi+1 is simple
(by definition) and no such H exists, then Gi/Gi+1 is simple (by Corollary
I.5.12, Gi/Gi+1 has no normal subgroup without subgroup H) and the
subnormal series is a composition series.
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Proposition II.8.5

Proposition II.8.5

Theorem II.8.5. A group G is solvable if and only if it has a solvable
series.

Proof. Suppose G is solvable. Then by the definition of “solvable,” in the
derived series of commutator subgroups we have G (n) = {e} for some
n ∈ N.

By Theorem II.7.8, in the series
G > G (1) > G (2) > · · · > G (n) = {e} we have that G (i+1) is normal in
G (i) and G (i)/G (i+1) is abelian. So the series is subnormal (because each
subgroup is normal in each previous subgroup) and is also solvable (since
the quotient groups are abelian).

Now suppose G = G0 > G1 > · · · > Gn = {e} is a solvable series. Then
Gi/Gi+1 is abelian (by definition of solvable series) for 0 ≤ i ≤ n − 1. By
Theorem II.7.8, Gi+1 > (Gi )

′ for 0 ≤ i ≤ n − 1; Gi/Gi+1 abelian implies
(G1)

′ > G (i+1).
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Proposition II.8.5

Proposition II.8.5 (continued)

Theorem II.8.5. A group G is solvable if and only if it has a solvable
series.
Proof (continued). Since in the derived series of commutator subgroups
we have G > G (1) > G (2) > · · · > G (n), then

G1 > G ′
0 > G ′ = G (1) (i = 0)

G2 > G ′
1 > (G (1))′ = G (2) (i = 1, i = 0)

G3 > G ′
2 > (G (2))′ = G (3) (i = 2, i = 1)

...

Gi+1 > G ′
i > (G (i))′ = G (i+1)

...

Gn > G ′
n−1 > (G (n−1))′ = G (n).

But Gn = {e} so it must be that G (n) = {e} and G is solvable.
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Proposition II.8.6

Proposition II.8.6

Proposition II.8.6. A finite group G is solvable if and only if G has a
composition series whose factors are cyclic and of prime order.

Proof. Suppose G has a composition series whose factors are cyclic and
each prime order. Then, since cyclic groups are abelian, then the factor
groups are abelian and G is solvable.

Conversely, assume G = G0 > G1 > · · · > Gn = {e} is a solvable series for
G (so this is a subnormal series of G ). If G0 6= G1, let H1 be a maximal
normal subgroup of G = G0 which contains G1. If H1 6= G1, let H2 be a
maximal normal subgroup of H1 which contains G1, and so on. Since G is
finite, this gives a series G = G0 > H1 > H2 > · · · > Hk > G1 with each
subgroup a maximal normal subgroup of the preceding. Whence each
factor is simple by Note A above. Repeat this process for each pair
(Gi ,Gi+1) to get the series refinement G = N0 > N1 > · · · > Hr = {e} of
the original solvable series. By Theorem II.8.4(ii), this refinement series is
solvable. So, by definition of solvable series, each factor is abelian.
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Proposition II.8.6

Proposition II.8.6 (continued)

Proposition II.8.6. A finite group G is solvable if and only if G has a
composition series whose factors are cyclic and of prime order.

Proof (continued). So the factors are abelian and simple; but, since
every subgroup of an abelian group is normal, then the only simple abelian
groups (by Corollary II.2.4) are those of prime order. So each factor group
is isomorphic to Zp for some p (by Exercise I.4.3). Since the factors are
simple, the series is a composition series (by the definition of composition
series). So group G has a composition series whose factors are cyclic of
prime order.
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Lemma II.8.8

Lemma II.8.8

Lemma II.8.8. If S is a composition series of a group G , then any
refinement of S is equivalent to S .

Proof. Let the composition series S be denoted
G = G0 > G1 > · · · > Gn = {e}. By Theorem II.8.4(iii) S has no proper
refinements.

So the only refinements of S are obtained by inserting
additional copies of each Gi . Consequently, any refinement of S has
exactly the same nontrivial factors as S . So any refinement of S is
equivalent to S .
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Lemma II.8.9. Zassenhaus’ Lemma/The Butterfly Lemma

Lemma II.8.9. Zassenhaus’ Lemma/The Butterfly Lemma

Lemma II.8.9. Zassenhaus’ Lemma/The Butterfly Lemma.
Let A∗, A, B∗, B be subgroups of a group G such that A∗ is normal in A
and B∗ is normal in B.

(i) A∗(A ∩ B∗) is a normal subgroup of A∗(A ∩ B).

(ii) B∗(A∗ ∩ B) is a normal subgroup of B∗(A ∩ B).

(iii) A∗(A ∩ B)/A∗(A ∩ B∗) ∼= B∗(A ∩ B)/B∗(A∗ ∩ B).
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Lemma II.8.9. Zassenhaus’ Lemma/The Butterfly Lemma

Lemma II.8.9. Zassenhaus’ Lemma (continued 1)

Lemma II.8.9. Zassenhaus’ Lemma/The Butterfly Lemma.
Let A∗, A, B∗, B be subgroups of a group G such that A∗ is normal in A
and B∗ is normal in B.

(i) A∗(A ∩ B∗) is a normal subgroup of A∗(A ∩ B).
(ii) B∗(A∗ ∩ B) is a normal subgroup of B∗(A ∩ B).
(iii) A∗(A ∩ B)/A∗(A ∩ B∗) ∼= B∗(A ∩ B)/B∗(A∗ ∩ B).

Proof. In Theorem I.5.3(i) with G = B, N = B∗ normal in G = B, and
K = A∩B a subgroup of G = B, we have that N ∩K = B∗ ∩ (A∩B) is a
normal subgroup of K = A ∩ B. Since M∗ ⊂ B, we have
A ∩ B∗ = (A ∩ B) ∩ B∗ and so A ∩ B∗ is normal in A ∩ B. Similarly
(interchanging A and B), A∗ ∩ B is normal in A ∩ B.

By Exercise I.5.13,
(A∗ ∩ B) ∨ (A ∩ B∗) (where ∨ denotes the join) is a normal subgroup of
A∩B. By Theorem I.5.3(iii), (A∗ ∩B)∨ (A∩B∗) = (A∗ ∩B)(A∩B∗), and
so D = (A∗ ∩B)(A∩B∗) is a normal subgroup of A∩B. Since A∩B < A
and A∗ / G , then by Theorem I.5.3(iii) (again), A∗ ∨ (A ∩ B) = A∗(A ∩ B)
is a subgroup of A; similarly B∗(A ∩ B) is a subgroup of B.
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Proof (continued). In the next paragraph, we will define an epimorphism
(onto homomorphism) f : A∗(A ∩ B) → (A ∩ B)/D with kernel
A∗(A ∩ B∗). Since the kernel of a homomorphism is a normal subgroup
(Theorem I.5.5), then this will imply that A∗(A ∩ B∗) is normal in
A∗(A ∩ B). By the First Isomorphism Theorem (Corollary I.5.7) we have
that A∗(A ∩ B)/A∗(A ∩ B∗) ∼= (A ∩ B)/D.

Define f : A∗(A ∩ B) → A ∩ B)/D as follows. If a ∈ A∗ and c ∈ (A ∩ B)
then let f (ac) = Dc . Notice that f is well defined since ac = a1c1 (where
a, a1 ∈ A∗ and c , c2 ∈ A ∩ B) implies

c1c
−1 = a−1

1 a ∈ (A ∩ B) ∩ A∗ since c1c
−1 ∈ A ∩ B and a−1

1 a ∈ A∗

= A∗ ∩ B since A < A∗

< D.

Whence Dc1 = Dc since c1c
−1 ∈ D. Since f (ac) = Dc and c ranges over

all of A ∩ B then f is onto (A ∩ B)/D.
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Lemma II.8.9. Zassenhaus’ Lemma (continued 3)

Proof (continued). As above, by Theorem I.5.3(iii),
A∗(A ∩ B) = A∗ ∨ (A ∩ B) = (A ∩ B)A∗ so for any c1a2 ∈ (A ∩ B)A∗ we
have that c1a2 ∈ A∗(A ∩ B) and c1a2 = a3c1 for some a3 ∈ A∗. So f is a
homomorphism since

f ((a1c1)(a2c2)) = f (a1(c1a2)c2)

= f (a1a3c1c2) by above

= D(c1c2)

= (Dc1)(Dc2) by the definition of coset multiplication

= f ((a1c1))f ((a2c2)).

Finally ac ∈ Ker(f ) if and only if c ∈ D (that is, if and only if c = a1c1

with a1 ∈ A∗ ∩ B and c1 ∈ A ∩ B∗, since D = (A∗ ∩ B)(A ∩ B∗). Hence
ac ∈ Ker(f ) if and only if ac = a(a1c1) = (aa1)c1 ∈ A∗(A ∩ B∗).
Therefore, Ker(f ) = A∗(A ∩ B∗). As commented in the previous
paragraph, this implies that A∗(A ∩ B∗) is normal in A∗(A ∩ B), and (i)
follows.
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Lemma II.8.9. Zassenhaus’ Lemma/The Butterfly Lemma.
Let A∗, A, B∗, B be subgroups of a group G such that A∗ is normal in A
and B∗ is normal in B.

(i) A∗(A ∩ B∗) is a normal subgroup of A∗(A ∩ B).

(ii) B∗(A∗ ∩ B) is a normal subgroup of B∗(A ∩ B).

(iii) A∗(A ∩ B)/A∗(A ∩ B∗) ∼= B∗(A ∩ B)/B∗(A∗ ∩ B).

Proof (continued). A symmetric argument shows that B∗(A∗ ∩ B) is
normal in B∗(A ∩ B) and (ii) follows.
In both arguments, as described above, we have
A∗(A ∩ B)/A∗(A ∩ B∗) ∼= (A ∪ B)/D and
B∗(A ∩ B)/B∗(A∗ ∩ B) ∼= (A ∪ B)/D by Corollary I.5.7. Therefore,
A∗(A ∩ B)/A∗(A ∩ B∗) ∼= B∗(A ∩ B)/B∗(A∗ ∩ B), and (iii) follows.
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Theorem II.8.10. Schreier’s Theorem

Theorem II.8.10. Schreier’s Theorem

Theorem II.8.10. Schreier’s Theorem.
Any two subnormal series of a group G have subnormal refinements that
are equivalent. Any two normal series of a group G have normal
refinements that are equivalent.

Proof. Let G = G0 > G1 > · · · > Gn and G = H0 > H1 > · · · > Hn be
subnormal [normal] series, respectively. Let Gn+1 = Hm+1 = {e}.

For
0 ≤ i ≤ n consider the groups

Gi = Gi+1(Gi ∩ H0) > Gi+1(Gi ∩ H1) > · · · > Gi+1(Gi ∩ Hj)

> Gi+1(Gi ∩ Hj+1) > · · ·Gi+1(Gi ∩ Hm) ⊃ Gi+1(Gi ∩ Hm+1) = Gi+1

(the subgroup inclusion follows since each Hj > Hj+1). Since the two
series are subnormal [normal] then Gi+1 / Gi and Hj+1 / Hj . Applying the
Zassenhaus Lemma (Lemma II.8.9) with A = Gi , A∗ = Gi+1, B = Hj and
B∗ = Hj+1 we have that A∗(A ∩ B∗) = Gi+1(Gi ∩ Hj+1) is normal in
A∗(A ∩ B) = Gi+1(Gi ∩ Hj) for all 0 ≤ j ≤ m.
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Theorem II.8.10. Schreier’s Theorem

Theorem II.8.10. Schreier’s Theorem (continued 1)

Theorem II.8.10. Schreier’s Theorem.
Any two subnormal series of a group G have subnormal refinements that
are equivalent. Any two normal series of a group G have normal
refinements that are equivalent.
Proof (continued). [If the two original series were both normal, then
Gi ∩ Hj is a normal subgroup of G by Exercise I.5.2, Gi+1 ∨ (Gi ∩ Hj) is
normal by Exercise I.5.13, and Gi+1 ∨ (Gi ∩ Hj) = Gi+1(Gi ∩ Hj) by
Theorem I.5.3(iii). So Gi+1(Gi ∩ Hj) is a normal subgroup of G and the
refinement series we are about to create will be a normal series.] Inserting
these groups between Gi and Gi+1 and denoting Gi+1(Gi ∩ Hj) by G (i , j)
thus gives a subnormal [normal] refinement of the series G0 > G1 > · · ·
> Gn: G = G (0, 0) > G (0, 1) · · · > G (0,m) > G (1, 0) = G1

> G (1, 1) > G (1, 2) · · · > G (1,m) > G (2, 0) = G2

> · · · > G (n − 1, 0m) > G (n, 0) > · · · > G (n,m) = Gn

where G (i , 0) = Gi .
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Theorem II.8.10. Schreier’s Theorem.
Any two subnormal series of a group G have subnormal refinements that
are equivalent. Any two normal series of a group G have normal
refinements that are equivalent.
Proof (continued). Note that this refinement has (n + 1)(m + 1) (not
necessarily distinct) terms. A “symmetric argument” (with the Gi ’s
replaced with the Hi ’s) shows that there is a refinement of
G = H0 > H1 > · · · > Hm (where H(i , j) = Hj+1(G1 ∩ Hj) and
H(0, j) = Hj):

G = H(0, 0) > H(1, 0) < · · · > H(n, 0) > H(0, 1) = H1

> H(1, 1) > H(2, 1) > · · · > H(n, 1) > H(0, 2) = H2

> · · · > H(n,m − 1) > H(0,m) > · · · > H(n,m) = Hm.

This refinement also has (n + 1)(m + 1) (not necessarily distinct) terms.
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Theorem II.8.10. Schreier’s Theorem

Theorem II.8.10. Schreier’s Theorem (continued 3)

Theorem II.8.10. Schreier’s Theorem.
Any two subnormal series of a group G have subnormal refinements that
are equivalent. Any two normal series of a group G have normal
refinements that are equivalent.

Proof (continued). For each pair (i , j) (with 0 ≤ i ≤ n and 0 ≤ j ≤ m)
there is, by the Zassenhaus Lemma part(iii) (Lemma I.8.9(iii)) with
A = Gi , A∗ = Gi+1, B = Hj , and B∗ = Hj+1 we have

A∗(A ∩ B)

A∗(A ∩ B∗)
=

Gi+1(Gi ∩ Hj)

Gi+1(Gi ∩ Hj+1
=

G (i , j)

G (i , j + 1)

∼=
B∗(A ∩ B)

B∗(A∗ ∩ B)
=

Hj+1(Gi ∩ Hj)

Hj+1(Gi+1 ∩ Hj)
=

H(i , j)

H(i + 1, j)
.

So the factors for the two refinements are in a one to one correspondence
of isomorphic pairs. That is, the two refinements are equivalent.
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Theorem II.8.11. Jordan-Hölder Theorem

Theorem II.8.11. Jordan-Hölder Theorem

Theorem II.8.11. Jordan-Hölder Theorem.
Any two composition series of a group G are equivalent. Therefore every
group having a composition series determines a unique list of simple
groups.

Proof. By definition, every composition series is a subnormal series. By
Schreier’s Theorem (Theorem II.8.10) any two composition series have
equivalent refinements.

But every refinement of a composition series S is
equivalent to S by Lemma II.8.8. So if we start with two composition
series of G , say S1 and S2, then there are equivalent composition series
S1

R and S2
R where S1

R = S and S2
R = S (here “=” represents equivalence)

and so S1
R = S2

R .
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