Modern Algebra

Chapter III. Rings

III.1. Rings and Homomorphisms—Proofs of Theorems

Table of contents

- 1 Proposition III.1.2
- 2 Lemma III.1.A
- Theorem III.1.6. Binomial Theorem
- Theorem III.1.9
- Theorem III.1.10

Theorem III.1.2. Let *R* be a ring. Then

- (i) 0a = a0 = 0 for all $a \in R$.
- (ii) (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- (iii) (-a)(-b) = ab for all $a, b \in R$.
- (iv) (na)b = a(nb) = n(ab) for all $n \in \mathbb{Z}$ and for all $a, b \in R$.

(v) For all
$$a_i, b_j \in R$$
, $\left(\sum_{i=1}^n a_i\right) \left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j$.

Proof. (i) We have that

$$0a = (0+0)a$$
 since 0 is the additive identity

= 0a + 0a by right distribution,

and so
$$(0a) - 0a = (0a + 0a) - 0a$$
 or $0 = 0a$. Similarly $a0 = 0$.

(ii) We have that

$$ab + (-a)b = (a + (-a))b$$
 by right distribution

$$= 0b = 0$$
 by (i)

Since additive inverses are unique in a group, (-a)b = -(ab). Similarly a(-b) = -(ab).

Theorem III.1.2. Let *R* be a ring. Then

- (i) 0a = a0 = 0 for all $a \in R$.
- (ii) (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- (iii) (-a)(-b) = ab for all $a, b \in R$.
- (iv) (na)b = a(nb) = n(ab) for all $n \in \mathbb{Z}$ and for all $a, b \in R$.

(v) For all
$$a_i, b_j \in R$$
, $\left(\sum_{i=1}^n a_i\right) \left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j$.

Proof. (i) We have that

$$0a = (0+0)a$$
 since 0 is the additive identity

= 0a + 0a by right distribution,

and so
$$(0a) - 0a = (0a + 0a) - 0a$$
 or $0 = 0a$. Similarly $a0 = 0$.

(ii) We have that

$$ab + (-a)b = (a + (-a))b$$
 by right distribution

$$= 0b = 0$$
 by (i).

Since additive inverses are unique in a group, (-a)b = -(ab). Similarly a(-b) = -(ab).

Theorem III.1.2. Let *R* be a ring. Then

- (iii) (-a)(-b) = ab for all $a, b \in R$.
- (iv) (na)b = a(nb) = n(ab) for all $n \in \mathbb{Z}$ and for all $z, b \in R$.

(v) For all
$$a_i, b_j \in R$$
, $\left(\sum_{i=1}^n a_i\right) \left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j$.

Proof. (iii) By (ii),

$$(-a)(-b) = -(a)(-b) = -(-(a)(b)) = -(-(ab)) = ab$$
 since the additive inverses are unique in a group.

(iv) For $n \in \mathbb{Z}$, n > 0, we have

$$(na)b = (a + a + \cdots + a)b (n-times)$$

= $ab + ab + \cdots + ab (n-times)$; by right distribution and induction
= $n(ab)$.

Similarly, a(nb) = n(ab). For n < 0, the result follows similarly but with the use of additive inverses.

(v) This follows by induction and left and right distribution.

Theorem III.1.2. Let *R* be a ring. Then

- (iii) (-a)(-b) = ab for all $a, b \in R$.
- (iv) (na)b = a(nb) = n(ab) for all $n \in \mathbb{Z}$ and for all $z, b \in R$.

(v) For all
$$a_i, b_j \in R$$
, $\left(\sum_{i=1}^n a_i\right) \left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j$.

Proof. (iii) By (ii),

$$(-a)(-b) = -(a)(-b) = -(-(a)(b)) = -(-(ab)) = ab$$
 since the additive inverses are unique in a group.

(iv) For $n \in \mathbb{Z}$, n > 0, we have

$$(na)b = (a + a + \cdots + a)b (n-times)$$

= $ab + ab + \cdots + ab (n-times)$; by right distribution and induction
= $n(ab)$.

Similarly, a(nb) = n(ab). For n < 0, the result follows similarly but with the use of additive inverses.

(v) This follows by induction and left and right distribution.

Lemma III.1.A. A ring has no zero divisors if and only if left or right cancellation hold in R (that is, for all $a, b, c \in R$ with $a \neq 0$, if either ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab - ac = 0 and a(b - c) = 0.

Lemma III.1.A. A ring has no zero divisors if and only if left or right cancellation hold in R (that is, for all $a, b, c \in R$ with $a \neq 0$, if either ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab - ac = 0 and a(b-c)=0. Since $a\neq 0$ then it must be that b-c=0 since R has no zero divisors. Hence b=c. Similarly, if ba=ca and $a\neq 0$ then b=c.

Lemma III.1.A. A ring has no zero divisors if and only if left or right cancellation hold in R (that is, for all $a, b, c \in R$ with $a \neq 0$, if either ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab - ac = 0 and a(b-c) = 0. Since $a \neq 0$ then it must be that b-c = 0 since R has no zero divisors. Hence b = c. Similarly, if ba = ca and $a \neq 0$ then b = c.

Suppose left cancellation holds in R. If ab=0 where $a\neq 0$ then ab=a0 by Theorem III.1.2(i) and by left cancellation b=0. So a is not a left divisor of 0.

Lemma III.1.A. A ring has no zero divisors if and only if left or right cancellation hold in R (that is, for all $a, b, c \in R$ with $a \neq 0$, if either ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab - ac = 0 and a(b-c) = 0. Since $a \neq 0$ then it must be that b-c = 0 since R has no zero divisors. Hence b = c. Similarly, if ba = ca and $a \neq 0$ then b = c.

Suppose left cancellation holds in R. If ab = 0 where $a \neq 0$ then ab = a0 by Theorem III.1.2(i) and by left cancellation b = 0. So a is not a left divisor of 0. Similarly, if right cancellation holds then there are no right divisors of 0.

Lemma III.1.A. A ring has no zero divisors if and only if left or right cancellation hold in R (that is, for all $a, b, c \in R$ with $a \neq 0$, if either ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab - ac = 0 and a(b-c) = 0. Since $a \neq 0$ then it must be that b-c = 0 since R has no zero divisors. Hence b = c. Similarly, if ba = ca and $a \neq 0$ then b = c.

Suppose left cancellation holds in R. If ab=0 where $a\neq 0$ then ab=a0 by Theorem III.1.2(i) and by left cancellation b=0. So a is not a left divisor of 0. Similarly, if right cancellation holds then there are no right divisors of 0.

Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem.

Let R be a ring with identity, $n \in \mathbb{N}$, and $a, b, a_1, a_2, \ldots, a_s \in R$.

- (i) If ab = ba then $(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- (ii) If $a_i a_j = a_j a_i$ for all i and j, then

$$(a_1 + a_2 + \cdots + a_s)^n = \sum \frac{n!}{i_1! i_2! \cdots i_s!} a_1^{i_1} a_2^{i_2} \cdots a_s^{i_s}$$

where the sum if over all s-tuples $(i_1, i_2, ..., i_n)$ where $i_1 + i_2 \cdot \cdot \cdot + i_s = n$.

Proof. (i) The result holds for n = 1. Suppose it holds for n and consider:

$$(a+b)^{n+1} = (a+b) \left(\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \right)$$
$$= \sum_{k=0}^{n} \binom{n}{k} (a^{k+1}b^{n-k} + a^k b^{n-k+1}) \text{ since } ab = ba$$

Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem.

Let R be a ring with identity, $n \in \mathbb{N}$, and $a, b, a_1, a_2, \ldots, a_s \in R$.

- (i) If ab = ba then $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- (ii) If $a_i a_i = a_i a_i$ for all i and j, then

$$(a_1 + a_2 + \cdots + a_s)^n = \sum \frac{n!}{i_1! i_2! \cdots i_s!} a_1^{i_1} a_2^{i_2} \cdots a_s^{i_s}$$

where the sum if over all s-tuples (i_1, i_2, \dots, i_n) where $i_1 + i_2 \cdot \cdot \cdot + i_s = n$.

Proof. (i) The result holds for n = 1. Suppose it holds for n and consider:

$$(a+b)^{n+1} = (a+b) \left(\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \right)$$
$$= \sum_{k=0}^{n} \binom{n}{k} (a^{k+1}b^{n-k} + a^k b^{n-k+1}) \text{ since } ab = ba$$

Theorem III.1.6. Binomial Theorem (continued 1)

Proof (continued).

$$(a+b)^{n+1} = \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k+1}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{(k-1)+1} a^{k} b^{n-(k-1)}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n-1} \binom{n}{k+1} a^{k+1} b^{n-k} + b^{n+1}$$

$$(\text{replacing } k \text{ with } k+1)$$

$$= a^{n+1} + \sum_{k=0}^{n-1} \binom{n}{k} + \binom{n}{k+1} a^{k+1} b^{n-k} + b^{n+1}$$

Modern Algebra January 21, 2024

Theorem III.1.6. Binomial Theorem (continued 1)

Proof (continued).

$$(a+b)^{n+1} = \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k+1}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{(k-1)+1} a^{k} b^{n-(k-1)}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n-1} \binom{n}{k+1} a^{k+1} b^{n-k} + b^{n+1}$$
(replacing k with $k+1$)
$$= a^{n+1} + \sum_{k=0}^{n-1} \binom{n}{k} + \binom{n}{k+1} a^{k+1} b^{n-k} + b^{n+1}$$

January 21, 2024 7 / 16

Theorem III.1.6. Binomial Theorem (continued 2)

Proof (continued).

$$(a+b)^{n+1} = a^{n+1} + \sum_{k=0}^{n-1} \binom{n+1}{k+1} a^{k+1} b^{n-k} + b^{n+1}$$

$$\operatorname{since} \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \text{ by Exercise III.1.10(c)}$$

$$= a^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} a^k b^{n+1-k} + b^{n+1}$$

$$(\operatorname{replacing} k \text{ with } k-1)$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k},$$

so the result holds for n+1 and by mathematical induction, holds for all $n \in \mathbb{N}$.

Theorem III.1.6. Binomial Theorem (continued 2)

Proof (continued).

$$(a+b)^{n+1} = a^{n+1} + \sum_{k=0}^{n-1} \binom{n+1}{k+1} a^{k+1} b^{n-k} + b^{n+1}$$

$$\operatorname{since} \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \text{ by Exercise III.1.10(c)}$$

$$= a^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} a^k b^{n+1-k} + b^{n+1}$$

$$(\operatorname{replacing} k \operatorname{with} k - 1)$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k},$$

so the result holds for n+1 and by mathematical induction, holds for all $n \in \mathbb{N}$.

Modern Algebra January 21, 2024 8 / 16

Theorem III.1.6. Binomial Theorem (continued 3)

Theorem III.1.6. Binomial Theorem.

Let R be a ring with identity, $n \in \mathbb{N}$, and $a, b, a_1, a_2, \ldots, a_s \in R$.

(ii) If $a_i a_j = a_j a_i$ for all i and j, then

$$(a_1 + a_2 + \cdots + a_s)^n = \sum \frac{n!}{i_1! i_2! \cdots i_s!} a_1^{i_1} a_2^{i_2} \cdots a_s^{i_s}$$

where the sum if over all s-tuples $(i_1, i_2, ..., i_n)$ where $i_1 + i_2 \cdot \cdot \cdot + i_s = n$.

Proof. (ii) When s = 2, this is part (i). Suppose the result holds for s and consider

$$(a_1 + \dots + a_s + a_{s+1})^n = ((a_1 + \dots + a_s) + a_{s+1})^n$$

$$= \sum_{k=0}^n \binom{n}{k} (a_1 + \dots + a_s)^k a_{s+1}^{n-k} \text{ by (i)}$$

Theorem III.1.6. Binomial Theorem (continued 3)

Theorem III.1.6. Binomial Theorem.

Let R be a ring with identity, $n \in \mathbb{N}$, and $a, b, a_1, a_2, \ldots, a_s \in R$.

(ii) If $a_i a_j = a_j a_i$ for all i and j, then

$$(a_1 + a_2 + \cdots + a_s)^n = \sum \frac{n!}{i_1! i_2! \cdots i_s!} a_1^{i_1} a_2^{i_2} \cdots a_s^{i_s}$$

where the sum if over all s-tuples $(i_1, i_2, ..., i_n)$ where $i_1 + i_2 \cdot \cdot \cdot + i_5 = n$.

Proof. (ii) When s=2, this is part (i). Suppose the result holds for s and consider

$$(a_1 + \dots + a_s + a_{s+1})^n = ((a_1 + \dots + a_s) + a_{s+1})^n$$

$$= \sum_{k=0}^n \binom{n}{k} (a_1 + \dots + a_s)^k a_{s+1}^{n-k} \text{ by (i)}$$

Theorem III.1.6. Binomial Theorem (continued 4)

Proof (continued).

$$= \sum_{k+j=n; j,k \in \mathbb{N}} \frac{n!}{k!j!} (a_1 + a_2 + \cdots + a_s)^k a_{s+1}^j \text{ (replacing } n-k \text{ with } j)$$

$$= \sum_{k+j=n} \frac{n!}{k!j!} \left(\sum_{j=1}^n \frac{k!}{(i_1)! \cdots (i_s)!} a_1^{i_1} a_2^{i_2} \cdots a_s^{i_s} \right) a_{s+1}^j$$
where $i_1 + i_2 + \cdots + i_s = k$, by the induction hypothesis
$$= \sum_{k+j=n} \left(\sum_{j=1}^n \left(\sum_{j=1}^n \frac{n!}{(i_1)! \cdots (i_s)!} a_1^{i_1} a_2^{i_2} \cdots a_s^{i_s} \right) \frac{1}{j!} a_{s+1}^j \right)$$
where the second sum is over $i_1 + i_2 + \cdots + i_n = k$

$$= \sum_{j=1}^n \frac{n!}{(i_1)! \cdots (i_s)! (i_{s+1})!} a_1^{i_1} a_2^{i_2} \cdots a_s^{i_s} a_{s+1}^{i_{s+1}}$$
where the sum is over $i_1 + i_2 + \cdots + i_s + i_{s+1} = n$.

So the result holds for all $s \in \mathbb{N}$, by induction.

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

- (i) If $\varphi: \mathbb{Z} \to R$ is the map given by $m \mapsto m1_R$, then φ is a homomorphism of rings, with kernel $\langle n \rangle = \{ kn \mid k \in \mathbb{Z} \} = n\mathbb{Z}.$
- (ii) n is the least positive integer such that $n1_R = 0$.
- (iii) If R has no zero divisors (in particular, if R is an integral domain) then *n* is prime.
- **Proof.** (i) Let $\ell, m \in \mathbb{Z}$ where f is the mapping such that $f(m) = m1_R$.

$$f(\ell+m) = (\ell+m)1_R = \underbrace{1_R + 1_R + \dots + 1_R}_{\ell+m \text{ times}}$$

$$=\underbrace{1_R+1_R+\cdots+1_R}_{\ell \text{ times}}+\underbrace{1_R+1_R+\cdots+1_R}_{m \text{ times}}=f(\ell)+f(m),$$

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

- (i) If $\varphi : \mathbb{Z} \to R$ is the map given by $m \mapsto m1_R$, then φ is a homomorphism of rings, with kernel $\langle n \rangle = \{kn \mid k \in \mathbb{Z}\} = n\mathbb{Z}$.
- (ii) n is the least positive integer such that $n1_R = 0$.
- (iii) If R has no zero divisors (in particular, if R is an integral domain) then n is prime.
- **Proof.** (i) Let $\ell, m \in \mathbb{Z}$ where f is the mapping such that $f(m) = m1_R$. Then

$$f(\ell+m) = (\ell+m)1_R = \underbrace{1_R + 1_R + \dots + 1_R}_{\ell+m \text{ times}}$$

$$= \underbrace{1_R + 1_R + \dots + 1_R}_{\ell \text{ times}} + \underbrace{1_R + 1_R + \dots + 1_R}_{m \text{ times}} = f(\ell) + f(m),$$

$$f(\ell m) = (\ell m)1_R = \underbrace{1_R + 1_R + \dots + 1_R}_{\ell m \text{ times}} = \underbrace{1_R \cdot 1_R + 1_R \cdot 1_R + \dots + 1_R \cdot 1_R}_{\ell m \text{ times}}$$

$$= \underbrace{(1_R + 1_R + \dots + 1_R)}_{\ell \text{ times}} \underbrace{(1_R + 1_R + \dots + 1_R)}_{m \text{ times}} = (\ell 1_R)(m1_R) = f(\ell)f(m).$$

So f is a ring homomorphism.

Suppose f(k) = 0. Then for k > 0,

$$f(k) = k \, 1_R = \underbrace{1_R + 1_R + \dots + 1_R}_{k \text{ times}} = 0,$$

and since R is hypothesized to be of characteristic n, then k must be a multiple of n (since n is the smallest positive integer such that $n 1_R = 0$).

Modern Algebra

$$f(\ell m) = (\ell m)1_R = \underbrace{1_R + 1_R + \dots + 1_R}_{\ell m \text{ times}} = \underbrace{1_R \cdot 1_R + 1_R \cdot 1_R + \dots + 1_R \cdot 1_R}_{\ell m \text{ times}}$$

$$= \underbrace{(1_R + 1_R + \dots + 1_R)}_{\ell m \text{ times}} \underbrace{(1_R + 1_R + \dots + 1_R)}_{\ell m \text{ times}} = (\ell 1_R)(m 1_R) = f(\ell)f(m).$$

m times

So f is a ring homomorphism.

Suppose f(k) = 0. Then for k > 0,

$$f(k) = k \, 1_R = \underbrace{1_R + 1_R + \dots + 1_R}_{k \text{ times}} = 0,$$

and since R is hypothesized to be of characteristic n, then k must be a multiple of n (since n is the smallest positive integer such that $n 1_R = 0$). So $kn \in \text{Ker}(f)$ for all $k \in \mathbb{N}$. Similarly $-kn \in \text{Ker}(f)$ for all $k \in \mathbb{N}$ and by definition, $0 \in \text{Ker}(f)$. Hence $\text{Ker}(f) = n\mathbb{Z}$.

m times

Theorem III.1.9 (continued 1)

$$f(\ell m) = (\ell m)1_R = \underbrace{1_R + 1_R + \dots + 1_R}_{\ell m \text{ times}} = \underbrace{1_R \cdot 1_R + 1_R \cdot 1_R + \dots + 1_R \cdot 1_R}_{\ell m \text{ times}}$$

$$= \underbrace{(1_R + 1_R + \dots + 1_R)}_{\ell m \text{ times}} \underbrace{(1_R + 1_R + \dots + 1_R)}_{\ell m \text{ times}} = (\ell 1_R)(m 1_R) = f(\ell)f(m).$$

So f is a ring homomorphism.

Suppose f(k) = 0. Then for k > 0,

$$f(k) = k \, 1_R = \underbrace{1_R + 1_R + \dots + 1_R}_{k \text{ times}} = 0,$$

and since R is hypothesized to be of characteristic n, then k must be a multiple of n (since n is the smallest positive integer such that $n1_R=0$). So $kn \in \text{Ker}(f)$ for all $k \in \mathbb{N}$. Similarly $-kn \in \text{Ker}(f)$ for all $k \in \mathbb{N}$ and by definition, $0 \in \text{Ker}(f)$. Hence $\text{Ker}(f) = n\mathbb{Z}$.

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

(ii) n is the least positive integer such that $n1_R = 0$.

Proof. (ii) If n is the least positive integer such that $n 1_R = 0$, then the characteristic of R must be greater than or equal to n.

Modern Algebra January 21, 2024 13 / 16

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

(ii) n is the least positive integer such that $n1_R = 0$.

Proof. (ii) If n is the least positive integer such that $n1_R = 0$, then the characteristic of R must be greater than or equal to n. But also, for all $a \in R$ we have

$$na = n(1_R a) = \underbrace{1_R a + 1_R a + \dots + 1_R a}_{n \text{ times}}$$

$$= \underbrace{(1_R + 1_R + \dots + 1_R)}_{n \text{ times}} a = (n 1_R) a = 0 a = 0$$

by Theorem III.1.2(i). Hence, the characteristic of R is n.

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

(ii) n is the least positive integer such that $n1_R = 0$.

Proof. (ii) If n is the least positive integer such that $n 1_R = 0$, then the characteristic of R must be greater than or equal to n. But also, for all $a \in R$ we have

$$na = n(1_R a) = \underbrace{1_R a + 1_R a + \dots + 1_R a}_{n \text{ times}}$$

$$= \underbrace{(1_R + 1_R + \dots + 1_R)}_{n \text{ times}} a = (n 1_R) a = 0 a = 0$$

by Theorem III.1.2(i). Hence, the characteristic of R is n.

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

(iii) If R has no zero divisors (in particular, if R is an integral domain) then n is prime.

Proof. (iii) Suppose R has characteristic n and R has no zero divisors. ASSUME n is composite, say n = kr with 1 < k < n and 1 < r < n.

Modern Algebra January 21, 2024 14 / 16

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

(iii) If R has no zero divisors (in particular, if R is an integral domain) then n is prime.

Proof. (iii) Suppose R has characteristic n and R has no zero divisors. ASSUME n is composite, say n = kr with 1 < k < n and 1 < r < n. Then $0 = n \cdot 1_R = (k \cdot r) \cdot 1_R \cdot 1_R = (k \cdot 1_R)(r \cdot 1_r)$ by part (i). Since R has no divisors of zero, then either $k \cdot 1_R = 0$ or $r \cdot 1_R = 0$.

Modern Algebra January 21, 2024 14 / 16

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

(iii) If R has no zero divisors (in particular, if R is an integral domain) then n is prime.

Proof. (iii) Suppose R has characteristic n and R has no zero divisors. ASSUME n is composite, say n = kr with 1 < k < n and 1 < r < n. Then $0 = n1_R = (k r)1_R1_R = (k 1_R)(r 1_r)$ by part (i). Since R has no divisors of zero, then either $k 1_R = 0$ or $r 1_R = 0$. But then, by part (ii), the characteristic of R is then either $\leq k$ or $\leq r$, a CONTRADICTION. So the assumption that n is composite is false and n must be prime.

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

(iii) If R has no zero divisors (in particular, if R is an integral domain) then n is prime.

Proof. (iii) Suppose R has characteristic n and R has no zero divisors. ASSUME n is composite, say n=kr with 1 < k < n and 1 < r < n. Then $0 = n 1_R = (k r) 1_R 1_R = (k 1_R)(r 1_r)$ by part (i). Since R has no divisors of zero, then either $k 1_R = 0$ or $r 1_R = 0$. But then, by part (ii), the characteristic of R is then either $\leq k$ or $\leq r$, a CONTRADICTION. So the assumption that n is composite is false and n must be prime.

Theorem III.1.10. Every ring R may be embedded in a ring S with identity (that is, there is a one to one homomorphism mapping R into S). The ring S (which is not unique) may be chosen to be either of characteristic zero or of the same characteristic as R.

Proof. Let S be the additive abelian group $R \oplus \mathbb{Z}$ and define multiplication in S by $(r_1, k_1)(r_2, k_2) = (r_1r_2 + k_2r_1 + k_1r_2, k_1k_2)$. It is straightforward to verify that S is a ring.

Theorem III.1.10. Every ring R may be embedded in a ring S with identity (that is, there is a one to one homomorphism mapping R into S). The ring S (which is not unique) may be chosen to be either of characteristic zero or of the same characteristic as R.

Proof. Let S be the additive abelian group $R \oplus \mathbb{Z}$ and define multiplication in S by $(r_1, k_1)(r_2, k_2) = (r_1r_2 + k_2r_1 + k_1r_2, k_1k_2)$. It is straightforward to verify that S is a ring. Now

 $(r_1, k_1)(0, 1) = (r_1(0) + 1r_1 + k_1(0), k_1(1)) = (r_1, k_1)$, so (0, 1) is the multiplicative identity in S. From Theorem III.1.9(ii), by considering (0, 1) we see that S is of characteristic 0. Define $g: R \to S$ as g(r) = (r, 0).

Theorem III.1.10. Every ring R may be embedded in a ring S with identity (that is, there is a one to one homomorphism mapping R into S). The ring S (which is not unique) may be chosen to be either of characteristic zero or of the same characteristic as R.

Proof. Let S be the additive abelian group $R \oplus \mathbb{Z}$ and define multiplication in S by $(r_1, k_1)(r_2, k_2) = (r_1r_2 + k_2r_1 + k_1r_2, k_1k_2)$. It is straightforward to verify that S is a ring. Now $(r_1, k_1)(0, 1) = (r_1(0) + 1r_1 + k_1(0), k_1(1)) = (r_1, k_1)$, so (0, 1) is the multiplicative identity in S. From Theorem III.1.9(ii), by considering (0, 1) we see that S is of characteristic S. Define S is S as S as S and S and S are S as S and S and S and S are S as S and S and S are S and S and S are S are S and S are S are S and S are S are S are S are S are S and S are S and S are S and S are S and S are S are S are S are S are S are S and S are S and S are S are S are S are S are S and S are S and S are S are S are S and S are S are S are S and S are S are S and S are S are S are S are S and S are S are S and S are S are S are S are S are S and S are S are S are S are S are S a

Theorem III.1.10. Every ring R may be embedded in a ring S with identity (that is, there is a one to one homomorphism mapping R into S). The ring S (which is not unique) may be chosen to be either of characteristic zero or of the same characteristic as R.

Proof. Let S be the additive abelian group $R \oplus \mathbb{Z}$ and define multiplication in S by $(r_1, k_1)(r_2, k_2) = (r_1r_2 + k_2r_1 + k_1r_2, k_1k_2)$. It is straightforward to verify that S is a ring. Now $(r_1, k_1)(0, 1) = (r_1(0) + 1r_1 + k_1(0), k_1(1)) = (r_1, k_1)$, so (0, 1) is the multiplicative identity in S. From Theorem III.1.9(ii), by considering (0,1)we see that S is of characteristic 0. Define $g: R \to S$ as g(r) = (r, 0). Then $g(r_1 + r_2) = (r_1 + r_2, 0) = (r_1, 0) + (r_2, 0) = g(r_1) + g(r_2)$ and $g(r_1r_2) = (r_1r_2, 0) = (r_1, 0)(r_2, 0) = g(r_1)g(r_2)$ hence g is a homomorphism. "Clearly" g is one to one. So R is embedded in S where S has characteristic 0.

Theorem III.1.10. Every ring R may be embedded in a ring S with identity (that is, there is a one to one homomorphism mapping R into S). The ring S (which is not unique) may be chosen to be either of characteristic zero or of the same characteristic as R.

Proof. If the characteristic of R is n > 0, define $S = R \oplus \mathbb{Z}_n$ and define multiplication by $(r_1, \overline{k}_1)(r_2, \overline{k}_2) = (r_1r_2 + k_2r_2r_1 + k_1r_2, \overline{k}_1\overline{k}_2)$ where \overline{k}_i is the equivalence class on \mathbb{Z} containing k_i with $0 \le k_i < n$. It is straightforward to verify that S is a ring.

Theorem III.1.10. Every ring R may be embedded in a ring S with identity (that is, there is a one to one homomorphism mapping R into S). The ring S (which is not unique) may be chosen to be either of characteristic zero or of the same characteristic as R.

Proof. If the characteristic of R is n > 0, define $S = R \oplus \mathbb{Z}_n$ and define multiplication by $(r_1, \overline{k}_1)(r_2, \overline{k}_2) = (r_1r_2 + k_2r_2r_1 + k_1r_2, \overline{k}_1\overline{k}_2)$ where \overline{k}_i is the equivalence class on \mathbb{Z} containing k_i with $0 \le k_i < n$. It is straightforward to verify that S is a ring. As above, $(0, \overline{1})$ is the multiplicative identity and S is of characteristic n. As above, $g: R \to S$ defined as $g(r) = (r, \overline{0})$ is a one to one homomorphism and so R is embedded in S where S has characteristic n.

Theorem III.1.10. Every ring R may be embedded in a ring S with identity (that is, there is a one to one homomorphism mapping R into S). The ring S (which is not unique) may be chosen to be either of characteristic zero or of the same characteristic as R.

Proof. If the characteristic of R is n>0, define $S=R\oplus \mathbb{Z}_n$ and define multiplication by $(r_1,\overline{k}_1)(r_2,\overline{k}_2)=(r_1r_2+k_2r_2r_1+k_1r_2,\overline{k}_1\overline{k}_2)$ where \overline{k}_i is the equivalence class on \mathbb{Z} containing k_i with $0\le k_i< n$. It is straightforward to verify that S is a ring. As above, $(0,\overline{1})$ is the multiplicative identity and S is of characteristic n. As above, $g:R\to S$ defined as $g(r)=(r,\overline{0})$ is a one to one homomorphism and so R is embedded in S where S has characteristic n.

Modern Algebra