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Proposition III.1.2

Theorem III.1.2

Theorem III.1.2. Let R be a ring. Then

(i) 0a = a0 = 0 for all a ∈ R.
(ii) (−a)b = a(−b) = −(ab) for all a, b ∈ R.
(iii) (−a)(−b) = ab for all a, b ∈ R.
(iv) (na)b = a(nb) = n(ab) for all n ∈ Z and for all a, b ∈ R.

(v) For all ai , bj ∈ R,

(
n∑

i=1

ai

) m∑
j=1

bj

 =
n∑

i=1

m∑
j=1

aibj .

Proof. (i) We have that
0a = (0 + 0)a since 0 is the additive identity

= 0a + 0a by right distribution,
and so (0a)− 0a = (0a + 0a)− 0a or 0 = 0a. Similarly a0 = 0.
(ii) We have that

ab + (−a)b = (a + (−a))b by right distribution

= 0b = 0 by (i).
Since additive inverses are unique in a group, (−a)b = −(ab). Similarly
a(−b) = −(ab).
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Proposition III.1.2

Theorem III.1.2 (continued)

Theorem III.1.2. Let R be a ring. Then

(iii) (−a)(−b) = ab for all a, b ∈ R.
(iv) (na)b = a(nb) = n(ab) for all n ∈ Z and for all z , b ∈ R.

(v) For all ai , bj ∈ R,

(
n∑

i=1

ai

) m∑
j=1

bj

 =
n∑

i=1

m∑
j=1

aibj .

Proof. (iii) By (ii),
(−a)(−b) = −(a)(−b) = −(−(a)(b)) = −(−(ab)) = ab since the
additive inverses are unique in a group.
(iv) For n ∈ Z, n > 0, we have

(na)b = (a + a + · · ·+ a)b (n-times)

= ab + ab + · · ·+ ab (n-times); by right distribution and induction

= n(ab).
Similarly, a(nb) = n(ab). For n < 0, the result follows similarly but with
the use of additive inverses.
(v) This follows by induction and left and right distribution.
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Lemma III.1.A

Lemma III.1.A

Lemma III.1.A. A ring has no zero divisors if and only if left or right
cancellation hold in R (that is, for all a, b, c ∈ R with a 6= 0, if either
ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab − ac = 0 and
a(b − c) = 0.

Since a 6= 0 then it must be that b − c = 0 since R has no
zero divisors. Hence b = c . Similarly, if ba = ca and a 6= 0 then b = c .

Suppose left cancellation holds in R. If ab = 0 where a 6= 0 then ab = a0
by Theorem III.1.2(i) and by left cancellation b = 0. So a is not a left
divisor of 0. Similarly, if right cancellation holds then there are no right
divisors of 0.
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Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem.
Let R be a ring with identity, n ∈ N, and a, b, a1, a2, . . . , as ∈ R.

(i) If ab = ba then (a + b)n =
∑n

k=0

(n
k

)
akbn−k .

(ii) If aiaj = ajai for all i and j , then

(a1 + a2 + · · ·+ as)
n =

∑ n!

i1!i2! · · · is !
ai1
1 ai2

2 · · · a
is
s

where the sum if over all s-tuples (i1, i2, . . . , in) where
i1 + i2 · · ·+ is = n.

Proof. (i) The result holds for n = 1. Suppose it holds for n and consider:

(a + b)n+1 = (a + b)

(
n∑

k=0

(
n

k

)
akbn−k

)

=
n∑

k=0

(
n

k

)
(ak+1bn−k + akbn−k+1) since ab = ba

() Modern Algebra January 21, 2024 6 / 16



Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem.
Let R be a ring with identity, n ∈ N, and a, b, a1, a2, . . . , as ∈ R.

(i) If ab = ba then (a + b)n =
∑n

k=0

(n
k

)
akbn−k .

(ii) If aiaj = ajai for all i and j , then

(a1 + a2 + · · ·+ as)
n =

∑ n!

i1!i2! · · · is !
ai1
1 ai2

2 · · · a
is
s

where the sum if over all s-tuples (i1, i2, . . . , in) where
i1 + i2 · · ·+ is = n.

Proof. (i) The result holds for n = 1. Suppose it holds for n and consider:

(a + b)n+1 = (a + b)

(
n∑

k=0

(
n

k

)
akbn−k

)

=
n∑

k=0

(
n

k

)
(ak+1bn−k + akbn−k+1) since ab = ba

() Modern Algebra January 21, 2024 6 / 16



Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem (continued 1)

Proof (continued).

(a + b)n+1 =
n∑

k=0

(
n

k

)
ak+1bn−k +

n∑
k=0

(
n

k

)
akbn−k+1

=
n∑

k=0

(
n

k

)
ak+1bn−k +

n∑
k=0

(
n

(k − 1) + 1

)
akbn−(k−1)

=
n∑

k=0

(
n

k

)
ak+1bn−k +

n−1∑
k=0

(
n

k + 1

)
ak+1bn−k + bn+1

(replacing k with k + 1)

= an+1 +
n−1∑
k=0

((
n

k

)
+

(
n

k + 1

))
ak+1bn−k + bn+1
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Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem (continued 2)

Proof (continued).

(a + b)n+1 = an+1 +
n−1∑
k=0

(
n + 1

k + 1

)
ak+1bn−k + bn+1

since

(
n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)
by Exercise III.1.10(c)

= an+1 +
n∑

k=1

(
n + 1

k

)
akbn+1−k + bn+1

(replacing k with k − 1)

=
n+1∑
k=0

(
n + 1

k

)
akbn+1−k ,

so the result holds for n + 1 and by mathematical induction, holds for all
n ∈ N.
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Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem (continued 3)

Theorem III.1.6. Binomial Theorem.
Let R be a ring with identity, n ∈ N, and a, b, a1, a2, . . . , as ∈ R.

(ii) If aiaj = ajai for all i and j , then

(a1 + a2 + · · ·+ as)
n =

∑ n!

i1!i2! · · · is !
ai1
1 ai2

2 · · · a
is
s

where the sum if over all s-tuples (i1, i2, . . . , in) where
i1 + i2 · · ·+ is = n.

Proof. (ii) When s = 2, this is part (i). Suppose the result holds for s
and consider

(a1 + · · ·+ as + as+1)
n = ((a1 + · · ·+ as) + as+1)

n

=
n∑

k=0

(
n

k

)
(a1 + · · ·+ as)

kan−k
s+1 by (i)
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Theorem III.1.6. Binomial Theorem

Theorem III.1.6. Binomial Theorem (continued 4)

Proof (continued).

=
∑

k+j=n;j ,k∈N

n!

k!j!
(a1 + a2 + · · · as)

kaj
s+1 (replacing n − k with j)

=
∑

k+j=n

n!

k!j!

(∑ k!

(i1)! · · · (is)!
ai1
1 ai2

2 · · · a
is
s

)
aj
s+1

where i1 + i2 + · · ·+ is = k, by the induction hypothesis

=
∑

k+j=n

(∑(
n!

(i1)! · · · (is)!
ai1
1 ai2

2 · · · a
is
s

)
1

j!
aj
s+1

)
where the second sum is over i1 + i2 + · · ·+ in = k

=
∑ n!

(i1)! · · · (is)!(is+1)!
ai1
1 ai2

2 · · · a
is
s a

is+1

s+1

where the sum is over i1 + i2 + · · · is + is+1 = n.

So the result holds for all s ∈ N, by induction.
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Theorem III.1.9

Theorem III.1.9

Theorem III.1.9. Let R be a ring with identity 1R and characteristic
n > 0.

(i) If ϕ : Z → R is the map given by m 7→ m1R , then ϕ is a
homomorphism of rings, with kernel
〈n〉 = {kn | k ∈ Z} = nZ.

(ii) n is the least positive integer such that n1R = 0.

(iii) If R has no zero divisors (in particular, if R is an integral
domain) then n is prime.

Proof. (i) Let `,m ∈ Z where f is the mapping such that f (m) = m1R .
Then

f (` + m) = (` + m)1R = 1R + 1R + · · ·+ 1R︸ ︷︷ ︸
`+m times

= 1R + 1R + · · ·+ 1R︸ ︷︷ ︸
` times

+1R + 1R + · · ·+ 1R︸ ︷︷ ︸
m times

= f (`) + f (m),
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Theorem III.1.9

Theorem III.1.9 (continued 1)

f (`m) = (`m)1R = 1R + 1R + · · ·+ 1R︸ ︷︷ ︸
`m times

= 1R · 1R + 1R · 1R + · · ·+ 1R · 1R︸ ︷︷ ︸
`m times

= (1R + 1R + · · ·+ 1R︸ ︷︷ ︸
` times

)(1R + 1R + · · ·+ 1R︸ ︷︷ ︸
m times

) = (`1R)(m1R) = f (`)f (m).

So f is a ring homomorphism.
Suppose f (k) = 0. Then for k > 0,

f (k) = k 1R = 1R + 1R + · · ·+ 1R︸ ︷︷ ︸
k times

= 0,

and since R is hypothesized to be of characteristic n, then k must be a
multiple of n (since n is the smallest positive integer such that n 1R = 0).

So kn ∈ Ker(f ) for all k ∈ N. Similarly −kn ∈ Ker(f ) for all k ∈ N and by
definition, 0 ∈ Ker(f ). Hence Ker(f ) = nZ.
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Theorem III.1.9

Theorem III.1.9 (continued 2)

Theorem III.1.9. Let R be a ring with identity 1R and characteristic
n > 0.

(ii) n is the least positive integer such that n1R = 0.

Proof. (ii) If n is the least positive integer such that n 1R = 0, then the
characteristic of R must be greater than or equal to n.

But also, for all
a ∈ R we have

na = n(1Ra) = 1Ra + 1Ra + · · ·+ 1Ra︸ ︷︷ ︸
n times

= (1R + 1R + · · ·+ 1R︸ ︷︷ ︸
n times

)a = (n 1R)a = 0a = 0

by Theorem III.1.2(i). Hence, the characteristic of R is n.
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Theorem III.1.9

Theorem III.1.9 (continued 3)

Theorem III.1.9. Let R be a ring with identity 1R and characteristic
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(iii) If R has no zero divisors (in particular, if R is an integral
domain) then n is prime.

Proof. (iii) Suppose R has characteristic n and R has no zero divisors.
ASSUME n is composite, say n = kr with 1 < k < n and 1 < r < n.

Then
0 = n 1R = (k r)1R1R = (k 1R)(r 1r ) by part (i). Since R has no divisors
of zero, then either k 1R = 0 or r 1R = 0. But then, by part (ii), the
characteristic of R is then either ≤ k or ≤ r , a CONTRADICTION. So the
assumption that n is composite is false and n must be prime.
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Theorem III.1.10

Theorem III.1.10

Theorem III.1.10. Every ring R may be embedded in a ring S with
identity (that is, there is a one to one homomorphism mapping R into
S).The ring S (which is not unique) may be chosen to be either of
characteristic zero or of the same characteristic as R.

Proof. Let S be the additive abelian group R ⊕ Z and define
multiplication in S by (r1, k1)(r2, k2) = (r1r2 + k2r1 + k1r2, k1k2). It is
straightforward to verify that S is a ring.

Now
(r1, k1)(0, 1) = (r1(0) + 1r1 + k1(0), k1(1)) = (r1, k1), so (0, 1) is the
multiplicative identity in S . From Theorem III.1.9(ii), by considering (0, 1)
we see that S is of characteristic 0. Define g : R → S as g(r) = (r , 0).
Then g(r1 + r2) = (r1 + r2, 0) = (r1, 0) + (r2, 0) = g(r1) + g(r2) and
g(r1r2) = (r1r2, 0) = (r1, 0)(r2, 0) = g(r1)g(r2) hence g is a
homomorphism. “Clearly” g is one to one. So R is embedded in S where
S has characteristic 0.
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Theorem III.1.10

Theorem III.1.10 (continued)

Theorem III.1.10. Every ring R may be embedded in a ring S with
identity (that is, there is a one to one homomorphism mapping R into
S).The ring S (which is not unique) may be chosen to be either of
characteristic zero or of the same characteristic as R.

Proof. If the characteristic of R is n > 0, define S = R ⊕ Zn and define
multiplication by (r1, k1)(r2, k2) = (r1r2 + k2r2r1 + k1r2, k1k2) where k i is
the equivalence class on Z containing ki with 0 ≤ ki < n. It is
straightforward to verify that S is a ring.

As above, (0, 1) is the
multiplicative identity and S is of characteristic n. As above, g : R → S
defined as g(r) = (r , 0) is a one to one homomorphism and so R is
embedded in S where S has characteristic n.
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