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Theorem I111.1.2

Theorem 111.1.2. Let R be a ring. Then
i) 0a=a0 =0 forall a € R.
ii) (—a)b=a(—b) = —(ab) forall a,b € R.
(iii) (—a)(—b) = ab for all a,b € R.
(iv) (na)b = a(nb) = n(ab) for all n € Z and for all a,b € R.

(V) For all aj, bj € R, <zn: a,-) (Zm: bj) = zn:zm:a,'bj.
j=1

i=1 i=1 j=1
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Theorem I111.1.2

Theorem 111.1.2. Let R be a ring. Then
i) 0a=a0 =0 forall a € R.
ii) (—a)b=a(—b) = —(ab) forall a,b € R.
(iii) (—a)(—b) = ab for all a,b € R.
(iv) (na)b = a(nb) = n(ab) for all n € Z and for all a,b € R.

(V) For all aj, bj € R, <Z a,-) ij = ZZa;bj.

Proof. (i) We have that = = =151
0a = (04 0)a since 0 is the additive identity
= 0a+ 0a by right distribution,

and so (0a) — 0a = (0a + 0a) — 0a or 0 = Oa. Similarly a0 = 0.
(ii) We have that

ab+ (—a)b = (a+ (—a))b by right distribution

= 0b=0 by (i).

Since additive inverses are unique in a group, (—a)b = —(ab). Similarly
a(—b) = —(ab).
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Theorem [11.1.2 (continued)

Theorem 111.1.2. Let R be a ring. Then
(iii) (—a)(—b) = ab for all a,b € R.
(iv) (na)b = a(nb) = n(ab) for all n € Z and for all z,b € R.

n

(V) For all a;, bj € R, <i a,-) ibj = sz:a,-bj.
i=1 j=1

i=1 j=1
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Theorem [11.1.2 (continued)

Theorem 111.1.2. Let R be a ring. Then
(iii) (—a)(—b) = ab for all a,b € R.
(iv) (na)b = a(nb) = n(ab) for all n € Z and for all z,b € R.

n n m
(V) For all a;, bj € R, <Z a,-) Z bj = ZZa;bj.
Proof. (iii) By (ii), =t = ==
(=a)(=b) = —(a)(=b) = —(—(a)(b)) = —(—(ab)) = ab since the
additive inverses are unique in a group.
(iv) For n € Z, n > 0, we have

(na)b = (a+a+---+ a)b (n-times)
= ab-+ab+ ---+ ab (n-times); by right distribution and induction
= n(ab).
Similarly, a(nb) = n(ab). For n < 0, the result follows similarly but with
the use of additive inverses.
(v) This follows by induction and left and right distribution. O
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Lemma IILL1.A

Lemma IIl.1.A

Lemma Il1.1.A. A ring has no zero divisors if and only if left or right

cancellation hold in R (that is, for all a, b, c € R with a # 0, if either
ab = ac or ba = ca then b = c).
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Lemma IIl.1.A

Lemma Il1.1.A. A ring has no zero divisors if and only if left or right
cancellation hold in R (that is, for all a, b, c € R with a # 0, if either
ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab — ac = 0 and
a(b—c)=0.
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Lemma IIl.1.A

Lemma Il1.1.A. A ring has no zero divisors if and only if left or right
cancellation hold in R (that is, for all a, b, c € R with a # 0, if either
ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab — ac = 0 and

a(b—c) =0. Since a # 0 then it must be that b — ¢ = 0 since R has no
zero divisors. Hence b = c. Similarly, if ba = ca and a # 0 then b = c.
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Lemma IIl.1.A

Lemma Il1.1.A. A ring has no zero divisors if and only if left or right
cancellation hold in R (that is, for all a, b, c € R with a # 0, if either
ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab — ac = 0 and
a(b—c) =0. Since a # 0 then it must be that b — ¢ = 0 since R has no
zero divisors. Hence b = c. Similarly, if ba = ca and a # 0 then b = c.

Suppose left cancellation holds in R. If ab = 0 where a # 0 then ab = a0
by Theorem 111.1.2(i) and by left cancellation b = 0. So a is not a left
divisor of 0.
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Lemma IIl.1.A

Lemma Il1.1.A. A ring has no zero divisors if and only if left or right
cancellation hold in R (that is, for all a, b, c € R with a # 0, if either
ab = ac or ba = ca then b = c).

Proof. Suppose R has no zero divisors. If ab = ac then ab — ac = 0 and
a(b—c) =0. Since a # 0 then it must be that b — ¢ = 0 since R has no
zero divisors. Hence b = c. Similarly, if ba = ca and a # 0 then b = c.

Suppose left cancellation holds in R. If ab = 0 where a # 0 then ab = a0
by Theorem 111.1.2(i) and by left cancellation b = 0. So a is not a left
divisor of 0. Similarly, if right cancellation holds then there are no right
divisors of 0. O
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Theorem I11.1.6. Binomial Theorem

Theorem 111.1.6. Binomial Theorem.
Let R be a ring with identity, n € N, and a, b,a;,a»,...,as € R.
(i) If ab = bathen (a+ b)" =37, (})ab .
(i) If ajaj = aja; for all i and j, then
! o .
(a+at-+a) =) i1!i2!n-.- e
where the sum if over all s-tuples (i1, iz, ..., i) where
h4bh-+is=n.
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Theorem I11.1.6. Binomial Theorem

Theorem 111.1.6. Binomial Theorem.

Let R be a ring with identity, n € N, and a, b,a;,a»,...,as € R.
(i) If ab = bathen (a+ b)" =37, (})ab .
(i) If ajaj = aja; for all i and j, then

(al+32+...+as)n: E - " 23_13122"‘3?

where the sum if over all s-tuples (i1, iz, ..., i) where
h4bh-+is=n.

Proof. (i) The result holds for n = 1. Suppose it holds for n and consider:

(a+b)" = (a+b) (zn: (Z) akbnk>

k=0

= Z <n> (" 1"k + akp""*F1) since ab = ba
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Theorem 111.1.6. Binomial Theorem (continued 1)
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Theorem 111.1.6. Binomial Theorem (continued 1)

Proof (continued).

(a+b)™t = <”> gktlpn—k 4 <”> Sk pn—k+1

k
k k=0

Il
o
==

_ . ”> k+1pn—k . < n > k pn—(k—1)
= Z a“b +Z a“b

— <k — (k—1)+1

n n—1
_ ”) k41 pn—k ( n > k+1 pn—k n+1
= a“b + a“™b + b

(replacmg k Wlth k+1)

- +Z (( ) (7)) oterss o
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Theorem 111.1.6. Binomial Theorem (continued 2)
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Theorem 111.1.6. Binomial Theorem (continued 2)

Proof (continued).

n
(a+ b)n+1 — an+1 n-+ 1 k+1bn—k + bn+1
k k+1

0
1
since n) ( : ) = <Zi 1> by Exercise 111.1.10(c)
— ( ) kbn+1_k+bn+1
(replacmg k with k — 1)
n+1
- ¥ (’7 + 1> k pn+1—k
= k a 5
k=0

so the result holds for n+ 1 and by mathematical induction, holds for all
ne N.
Modern Algebra January 21, 2024 8 /16



Theorem 111.1.6. Binomial Theorem (continued 3)

Theorem 111.1.6. Binomial Theorem.
Let R be a ring with identity, n € N, and a, b,a;,a»,...,as € R.

(i) If ajaj = aja; for all i and j, then

n! Y :
1 I2 . e IS
D) as

(1ot +a) =) oy

where the sum if over all s-tuples (i1, iz, . .., in) where
i+ +is=n.
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Theorem I11.1.6. Binomial Theorem

Theorem 111.1.6. Binomial Theorem (continued 3)

Theorem 111.1.6. Binomial Theorem.
Let R be a ring with identity, n € N, and a, b,a;,a»,...,as € R.
(i) If ajaj = aja; for all i and j, then
nl o .
(ar+ax+ -+ as)" sza'fa’f-ua’s
where the sum if over all s-tuples (i1, iz, . .., in) where

n4i-+is=n.

Proof. (ii) When s = 2, this is part (i). Suppose the result holds for s
and consider

(a1 4 +as+asi1)” = ((a+-+as) +asq1)
n n .
= Z<k>(al+"'+as)k s+fby()
k=0
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Theorem 111.1.6. Binomial Theorem (continued 4)

Proof (continued).

!
_ Z L(al +a+ - as)kal . (replacing n — k with j)

KIj1
k+j=n;j,keN
n! ( kl it i > H
= — —————ata?---a’s 3’
k%;nku! Z(,1)!--.(/5)! 192 s ) “stl

where i1 + ib + - - - + is = k, by the induction hypothesis

n! i i i) L )
— — 97 as---a’s —aj
YA Y e s i1 “s+1
P (5 (o J
where the second sumisover i +ib +---+ i, = k

n! i P
— 142 Is Jls+1
= atas---aca
: NI 192 sdsy1
2 ) =
where the sum is over i1 + i + -+ is + is41 = n.

So the result holds for all s € N, by induction. O
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Theorem 111.1.9

Theorem 111.1.9. Let R be a ring with identity 1z and characteristic
n> 0.
(i) If ¢ : Z — R is the map given by m +— mlg, then ¢ is a
homomorphism of rings, with kernel
(n) ={kn | k € Z} = nZ.
(i) nis the least positive integer such that nlg = 0.
(i) If R has no zero divisors (in particular, if R is an integral
domain) then n is prime.
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Theorem 111.1.9

Theorem 111.1.9. Let R be a ring with identity 1z and characteristic
n> 0.
(i) If ¢ : Z — R is the map given by m +— mlg, then ¢ is a
homomorphism of rings, with kernel
(n) ={kn | k € Z} = nZ.
(i) nis the least positive integer such that nlg = 0.
(i) If R has no zero divisors (in particular, if R is an integral
domain) then n is prime.

Proof. (i) Let £, m € Z where f is the mapping such that f(m) = mlg.
Then
f(E+m):(€+m)1R:1R—|—1R—|—~--+1R
é-l-m\;imes
=1lr+1p+ - +1r+1lg+ 1+ -+ 1g = f(¢) + f(m),

¢ times m times
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Theorem 111.1.9 (continued 1)

f(ﬁm):(gm)].R:lR—i-lR—i-"‘—i-lR:lR-1R+1R-1R+"'+1R-1R

/m times /m times
=(Ar+1p+ - +1g)(Ir + 1r + -+ 1g) = ({1r)(m1R) = f(£)f(m).
£ times m times

So f is a ring homomorphism.
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Theorem 111.1.9 (continued 1)

f(ﬁm):(gm)].R:lR—i-lR—i-"‘—i-lR:lR-1R+1R-1R+"'+1R-1R

/m times /m times
=(Ar+1p+ - +1g)(Ir + 1r + -+ 1g) = ({1r)(m1R) = f(£)f(m).
£ times m times

So f is a ring homomorphism.
Suppose f(k) = 0. Then for k > 0,

f(k)=klp=1gp+1r+---+1r =0,

k times

and since R is hypothesized to be of characteristic n, then kK must be a
multiple of n (since n is the smallest positive integer such that n1g = 0).
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Theorem 111.1.9 (continued 1)

f(ﬁm):(Em)].R:lR—i-lR—i-"‘—i-lR:lR-1R+1R-1R+"'+1R-1R

/m times /m times
=(Ar+1p+ - +1g)(Ir + 1r + -+ 1g) = ({1r)(m1R) = f(£)f(m).
£ times m times

So f is a ring homomorphism.
Suppose f(k) = 0. Then for k > 0,

f(k)=klp=1gp+1r+---+1r =0,

k times

and since R is hypothesized to be of characteristic n, then kK must be a
multiple of n (since n is the smallest positive integer such that n1g = 0).
So kn € Ker(f) for all k € N. Similarly —kn € Ker(f) for all k € N and by
definition, 0 € Ker(f). Hence Ker(f) = nZ.
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Theorem 111.1.9 (continued 2)

Theorem 111.1.9. Let R be a ring with identity 1z and characteristic
n> 0.

(ii) nis the least positive integer such that nlg = 0.
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Theorem I11.1.9

Theorem 111.1.9 (continued 2)

Theorem 111.1.9. Let R be a ring with identity 1z and characteristic
n> 0.

(ii) nis the least positive integer such that nlg = 0.

Proof. (ii) If n is the least positive integer such that n1g = 0, then the
characteristic of R must be greater than or equal to n.
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Theorem 111.1.9 (continued 2)

Theorem 111.1.9. Let R be a ring with identity 1z and characteristic
n> 0.

(ii) nis the least positive integer such that nlg = 0.

Proof. (ii) If n is the least positive integer such that n1g = 0, then the
characteristic of R must be greater than or equal to n. But also, for all
a € R we have

na=n(lga) = lga+1ga+---+1ga

n times

:(1R—|—1R—|—--~+1R)a:(an)a:Oazo

n times

by Theorem I11.1.2(i). Hence, the characteristic of R is n.
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Theorem 111.1.9 (continued 3)

Theorem 111.1.9. Let R be a ring with identity 1z and characteristic
n> 0.

(i) If R has no zero divisors (in particular, if R is an integral
domain) then n is prime.
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Theorem I11.1.9

Theorem 111.1.9 (continued 3)

Theorem 111.1.9. Let R be a ring with identity 1z and characteristic
n> 0.

(i) If R has no zero divisors (in particular, if R is an integral
domain) then n is prime.

Proof. (iii) Suppose R has characteristic n and R has no zero divisors.

ASSUME n is composite, say n = kr with 1 < k<nand1<r < n.

Modern Algebra January 21, 2024

14 / 16



Theorem 111.1.9 (continued 3)

Theorem 111.1.9. Let R be a ring with identity 1z and characteristic
n> 0.
(i) If R has no zero divisors (in particular, if R is an integral
domain) then n is prime.

Proof. (iii) Suppose R has characteristic n and R has no zero divisors.
ASSUME n is composite, say n = kr with 1 < k < nand 1 <r < n. Then
=nlg = (kr)lglg = (k1g)(r1,) by part (i). Since R has no divisors

of zero, then either k1g =0 or r1p = 0.
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Theorem 111.1.9 (continued 3)

Theorem 111.1.9. Let R be a ring with identity 1z and characteristic
n> 0.
(i) If R has no zero divisors (in particular, if R is an integral
domain) then n is prime.

Proof. (iii) Suppose R has characteristic n and R has no zero divisors.
ASSUME n is composite, say n = kr with 1 < k < nand 1 <r < n. Then
=nlg = (kr)lglg = (k1g)(r1,) by part (i). Since R has no divisors

of zero, then either k1g = 0 or r 1g = 0. But then, by part (ii), the
characteristic of R is then either < k or < r, a CONTRADICTION. So the
assumption that n is composite is false and n must be prime. 0J
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Theorem I11.1.10

Theorem 111.1.10. Every ring R may be embedded in a ring S with
identity (that is, there is a one to one homomorphism mapping R into
S).The ring S (which is not unique) may be chosen to be either of
characteristic zero or of the same characteristic as R.
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Theorem I11.1.10

Theorem 111.1.10. Every ring R may be embedded in a ring S with
identity (that is, there is a one to one homomorphism mapping R into
S).The ring S (which is not unique) may be chosen to be either of
characteristic zero or of the same characteristic as R.

Proof. Let S be the additive abelian group R @ Z and define
multiplication in § by (rl, kl)(rg, k2) = (r1r2 + kory + ki, klkg). It is
straightforward to verify that S is a ring.
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Theorem I11.1.10

Theorem 111.1.10. Every ring R may be embedded in a ring S with
identity (that is, there is a one to one homomorphism mapping R into
S).The ring S (which is not unique) may be chosen to be either of
characteristic zero or of the same characteristic as R.

Proof. Let S be the additive abelian group R @ Z and define
multiplication in S by (rl, kl)(rg, k2) = (r1r2 + kory + ki, klkg). It is
straightforward to verify that S is a ring. Now

(rl, kl)(O, 1) = (rl(O) +1n + kl(O), kl(l)) = (rl, kl), SO (0, 1) is the
multiplicative identity in S. From Theorem 111.1.9(ii), by considering (0, 1)
we see that S is of characteristic 0. Define g: R — S as g(r) = (r,0).
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Theorem I11.1.10

Theorem 111.1.10. Every ring R may be embedded in a ring S with
identity (that is, there is a one to one homomorphism mapping R into
S).The ring S (which is not unique) may be chosen to be either of
characteristic zero or of the same characteristic as R.

Proof. Let S be the additive abelian group R @ Z and define
multiplication in S by (rl, kl)(rg, k2) = (r1r2 + kory + ki, klkg). It is
straightforward to verify that S is a ring. Now

(rl, kl)(O, 1) = (rl(O) +1n + kl(O), kl(l)) = (rl, kl), SO (O, 1) is the
multiplicative identity in S. From Theorem 111.1.9(ii), by considering (0, 1)
we see that S is of characteristic 0. Define g: R — S as g(r) = (r,0).
Then g(r1 + r2) = (4 r2,0) = (r1,0) + (r2,0) = g(r1) + g(r2) and
g(r1r2) = (r112,0) = (11,0)(12, 0) = g(r1)g(r2) hence g is 2
homomorphism. “Clearly” g is one to one. So R is embedded in S where
S has characteristic 0.
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Theorem 111.1.10 (continued)

Theorem 111.1.10. Every ring R may be embedded in a ring S with
identity (that is, there is a one to one homomorphism mapping R into
S).The ring S (which is not unique) may be chosen to be either of
characteristic zero or of the same characteristic as R.
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Theorem 111.1.10 (continued)

Theorem 111.1.10. Every ring R may be embedded in a ring S with
identity (that is, there is a one to one homomorphism mapping R into
S).The ring S (which is not unique) may be chosen to be either of
characteristic zero or of the same characteristic as R.

Proof. If the characteristic of R is n > 0, define S = R ® Z,, and define
multiplication by (r1, k1)(r2, k2) = (rira + karari + kira, k1ka) where k; is
the equivalence class on Z containing k; with 0 < k; < n. It is
straightforward to verify that S is a ring.
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Theorem 111.1.10 (continued)

Theorem 111.1.10. Every ring R may be embedded in a ring S with
identity (that is, there is a one to one homomorphism mapping R into
S).The ring S (which is not unique) may be chosen to be either of
characteristic zero or of the same characteristic as R.

Proof. If the characteristic of R is n > 0, define S = R ® Z,, and define
multiplication by (r1, k1)(r2, k2) = (rira + karari + kira, k1ka) where k; is
the equivalence class on Z containing k; with 0 < k; < n. It is
straightforward to verify that S is a ring. As above, (0,1) is the
multiplicative identity and S is of characteristic n. As above, g: R — S
defined as g(r) = (r,0) is a one to one homomorphism and so R is
embedded in S where S has characteristic n. O
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