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Proposition III.2.2

Theorem III.2.2

Theorem II.2.2. A nonempty subset I of a ring R is a left (respectively,
right) ideal if and only if for all a, b ∈ I and r ∈ R:

(i) a, b ∈ I implies a− b ∈ I , and

(ii) a ∈ I , r ∈ R implies ra ∈ I (respectively, ar ∈ I ).

Proof. Suppose I is a left ideal. Then, by definition, (ii) holds. Since an
ideal is a subring then (i) holds.

Suppose (i) and (ii) hold for set I . Then I is a group under addition from
(i) by Theorem I.2.5. By (ii), I is closed under multiplication. So I is a
subring of R. By (ii) R is a left ideal. Similarly for “right ideals.”
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Theorem III.2.5

Theorem III.2.5

Theorem III.2.5. Let R be a ring a ∈ R and X ⊂ R.

(i) The principal ideal (a) consists of all elements of the form

ra + as + na +
m∑

i=1

riasi

where r , s, ri , si ∈ R, m ∈ N ∪ {0}, and n ∈ Z.

(ii) If R has an identity (“unity”) then

(a) =

{
n∑

i=1

riasi | ri , si ∈ R, n ∈ N

}
.

(iii) If a is in the center of R,
C (R) = {c ∈ R | cr = rc for all r ∈ R}, then
(a) = {ra + na | r ∈ R, n ∈ Z}.
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Theorem III.2.5

Theorem III.2.5 (continued)

Theorem III.2.5. Let R be a ring a ∈ R and X ⊂ R.

(iv) Ra = {ra | r ∈ R} (respectively, aR = {ar | r ∈ R}), is a left
(respectively, right) ideal in R (which may not contain a). If
R has an identity, then a ∈ Ra and a ∈ aR.

(v) If R has an identity and a is in the center of R, then
Ra = (a) = aR.

(vi) If R has an identity and X is the center of R, then the ideal
(X ) consists of all finite sums r1a1 + r2a2 + · · ·+ rnan where
n ∈ N ∪ {0}, ri ∈ R, and ai ∈ X .
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Theorem III.2.5

Theorem III.2.5(i)

Theorem III.2.5. Let R be a ring a ∈ R and X ⊂ R.

(i) The principal ideal (a) consists of all elements of the form

ra + as + na +
m∑

i=1

riasi

where r , s, ri , si ∈ R, m ∈ N ∪ {0}, and n ∈ Z.

Proof. (i) Let r ′ ∈ R and a′ ∈ I where I consists of the elements of the
given form. Then

r ′a′ = r ′

(
ra + as + na +

m∑
i=1

riasi

)

= (r ′r + nr ′)a +
m+1∑
i=1

r ′i asi where r ′i = r ′ri , rm+1 = r ′, and sm+1 = s

∈ I since r ′r + nr ′ ∈ R.
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Theorem III.2.5

Theorem III.2.5(i) continued

Theorem III.2.5. Let R be a ring a ∈ R and X ⊂ R.

(i) The principal ideal (a) consists of all elements of the form

ra + as + na +
m∑

i=1

riasi

where r , s, ri , si ∈ R, m ∈ N ∪ {0}, and n ∈ Z.

Proof. (i) (continued) So I is a left ideal and, similarly, a right ideal.
With r = s = 0, n = 1, m = 1, r1 = 0 we see that a ∈ I .

Now let I ′ be any ideal containing a. Then ra ∈ I ′ and ria ∈ I ′ since I ′ is a
left ideal. So as and riasi ∈ I ′ since I ′ is a right ideal. Next, na ∈ I ′ since
I ′ is a subring of R (and so is closed under addition). So
ra + as + na +

∑m
i=1 riasi ∈ I ′ and I ⊆ I ′. That is, I is a subset of any

ideal containing a, so I = (a).
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Theorem III.2.5

Theorem III.2.5(ii)

Theorem III.2.5. Let R be a ring a ∈ R and X ⊂ R.

(ii) If R has an identity (“unity”) then

(a) =

{
n∑

i=1

riasi | ri , si ∈ R, n ∈ N

}
.

Proof. (ii) If R has identity 1R , then we write ra = ra1R = rm+1asm+1,
as = 1Ras = rm+2asm+2, and na = n(1Ra) = (n1R)a1R = rm+3asm+3 and
so any element of (a) is of the form

ra + as + na +
m∑

i=1

riasi =
m+3∑
i=1

riasi .
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Theorem III.2.5

Theorem III.2.5(iii)

Theorem III.2.5. Let R be a ring a ∈ R and X ⊂ R.

(iii) If a is in the center of R,
C (R) = {c ∈ R | cr = rc for all r ∈ R}, then
(a) = {ra + na | r ∈ R, n ∈ Z}.

Proof. (iii) If a is in the center of R then any element of (a) is of the form

ra + as + na +
m∑

i=1

riasi = ra + sa + na +
m∑

i=1

ri sia

=

(
r + s +

m∑
i=1

ri si

)
a + na = r ′a + na

where r ′ = r + s +
∑m

i=1 ri si .
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Theorem III.2.5

Theorem III.2.5(iv, v)

Theorem III.2.5. Let R be a ring a ∈ R and X ⊂ R.

(iv) Ra = {ra | r ∈ R} (respectively, aR = {ar | r ∈ R}), is a left
(respectively, right) ideal in R (which may not contain a). If
R has an identity, then a ∈ Ra and a ∈ aR.

(v) If R has an identity and a is in the center of R, then
Ra = (a) = aR.

Proof. (iv) This is almost trivial given Note III.2.A.

(v) By (iii),

(a) = {ra + na | r ∈ R, n ∈ Z} = {ra + (n1R)a | r ∈ R, n ∈ Z}

= {(r + n1R)a | r ∈ R, n ∈ Z} = {r ′a | r ′ ∈ R} = Ra.

With a in the center of R, r ′a = ar ′ and so (a) = aR as well.
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Theorem III.2.5

Theorem III.2.5(vi)

Theorem III.2.5. Let R be a ring a ∈ R and X ⊂ R.

(vi) If R has an identity and X is the center of R, then the ideal
(X ) consists of all finite sums r1a1 + r2a2 + · · ·+ rnan where
n ∈ N ∪ {0}, ri ∈ R, and ai ∈ X .

Proof. (vi) Let R have identity and let X be in the center of R. Let I be
an ideal containing X and let ai ∈ X . Since I is an ideal containing ai ,
then I must contain (ai ) (the “smallest” ideal containing ai ) and by (v)
contains Rai = {rai | r ∈ R}.

Since I is an ideal, then it is a subring of R
and so contains all r1a1 + r2a2 + · · ·+ rnan. Let
I ′ = {r1a1 + r2a2 + · · ·+ rnan | ri ∈ R, ai ∈ X}, so I ′ ⊆ I . For r ∈ R and
r1a1 + r2a2 + · · ·+ rnan ∈ I ′ we have
r(r1a1 + r2a2 + · · · rnan) = (rr1)a1 + (rr2)a2 + · · ·+ (rrn)an ∈ I ′ so I ′ is a
left (and since each ai is in the center of R, also a right) ideal of R. We
have now that I ′ is an ideal of R which is a subset of any ideal containing
X . Therefore, I ′ = (X ).
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Theorem III.2.6

Theorem III.2.6

Theorem III.2.6. Let A1,A2, . . . ,An,B,C be left (respectively, right)
ideals in a ring R.

(i) A1 + A2 + · · ·+ An and A1A2 · · ·An are left (respectively,
right) ideals.

(ii) (A + B) + C = A + (B + C ).

(iii) (AB)C = ABC = A(BC ).

(iv) B(A1 + A2 + · · ·+ An) = BA1 + BA2 + · · ·+ BAn and
(A1 + A2 + · · ·+ An)C = A1C + A2C + · · ·AnC .

Proof. (i) Let a1 + a2 + · · ·+ an, a
′
1 + a′2 + · · ·+ a′n ∈ A1 + A2 + · · ·An.

Then
(a1+a2+· · ·+an)−(a′1+a′2+· · ·+a′n) = a1+a2+· · ·+an−a′1−a′2−· · ·−a′n

= (a1 − a′1) + (a2 − a′2) + · · ·+ (an − a′n) ∈ A1 + A2 + · · ·An

since each Ai being an ideal, is a subring.

Let r ∈ R. Then
r(a1 + a2 + · · ·+ an) = (ra1) + (ra2) + · · ·+ (ran) ∈ A1 + A2 + · · ·+ An

since each Ai is an ideal. By Theorem III.2.2, A1 + A2 + · · ·An is an ideal.
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Theorem III.2.6

Theorem III.2.6(i)
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Theorem III.2.7

Theorem III.2.7

Theorem III.2.7. Let R be a ring and I an ideal of R. Then the additive
quotient group R/I is a ring with multiplication given by

(a + I )(b + I ) = ab + I .

If R is commutative or has an identity, then the same is true of R/I .

Proof. First, we show that multiplication as defined is well-defined.
Suppose we have the coset equivalences a + I = a′ + I and b + I = b′ + I .
Since a′ ∈ a′ + I = a + I then a′ = a + i for some i ∈ I . Similarly
b′ = b + j for some j ∈ I . Consequently
a′b′ = (a + i)(b + j) = ab + ib + aj + ij .

Since I is an ideal,

a′b′ − ab = (ab + ib + aj + ij)− ab = ib + aj + ij ∈ I .

Therefore a′b′ + I = ab + I (their difference is in I ) by Corollary I.4.3(iii).
So multiplication is well defined.

() Modern Algebra February 14, 2024 15 / 37



Theorem III.2.7

Theorem III.2.7

Theorem III.2.7. Let R be a ring and I an ideal of R. Then the additive
quotient group R/I is a ring with multiplication given by

(a + I )(b + I ) = ab + I .

If R is commutative or has an identity, then the same is true of R/I .

Proof. First, we show that multiplication as defined is well-defined.
Suppose we have the coset equivalences a + I = a′ + I and b + I = b′ + I .
Since a′ ∈ a′ + I = a + I then a′ = a + i for some i ∈ I . Similarly
b′ = b + j for some j ∈ I . Consequently
a′b′ = (a + i)(b + j) = ab + ib + aj + ij . Since I is an ideal,

a′b′ − ab = (ab + ib + aj + ij)− ab = ib + aj + ij ∈ I .

Therefore a′b′ + I = ab + I (their difference is in I ) by Corollary I.4.3(iii).
So multiplication is well defined.

() Modern Algebra February 14, 2024 15 / 37



Theorem III.2.7

Theorem III.2.7

Theorem III.2.7. Let R be a ring and I an ideal of R. Then the additive
quotient group R/I is a ring with multiplication given by

(a + I )(b + I ) = ab + I .

If R is commutative or has an identity, then the same is true of R/I .

Proof. First, we show that multiplication as defined is well-defined.
Suppose we have the coset equivalences a + I = a′ + I and b + I = b′ + I .
Since a′ ∈ a′ + I = a + I then a′ = a + i for some i ∈ I . Similarly
b′ = b + j for some j ∈ I . Consequently
a′b′ = (a + i)(b + j) = ab + ib + aj + ij . Since I is an ideal,

a′b′ − ab = (ab + ib + aj + ij)− ab = ib + aj + ij ∈ I .

Therefore a′b′ + I = ab + I (their difference is in I ) by Corollary I.4.3(iii).
So multiplication is well defined.

() Modern Algebra February 14, 2024 15 / 37



Theorem III.2.7

Theorem III.2.7 (continued)

Theorem III.2.7. Let R be a ring and I an ideal of R. Then the additive
quotient group R/I is a ring with multiplication given by

(a + I )(b + I ) = ab + I .

If R is commutative, then the same is true of R/I . If 1R is the identity in
R then 1R + I is the identity in R/I .

Proof. (continued) Now we already know that (R/I ,+) is an abelian
group by Note III.2.B. Since multiplication is defined in terms of
representatives, associativity and distribution (and commutivity of
multiplication, if present in R) follows from the corresponding properties in
R. Hence R/I is a ring.
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Theorem III.2.8

Theorem III.2.8

Theorem III.2.8. If f : R → S is a homomorphism of rings then the
kernel of f is an ideal in R. Conversely if I is an ideal in R then the map
π : R → R/I given by r 7→ r + I is an onto homomorphism (epimorphism)
of rings with kernel I .

Proof. By Theorem I.5.5 (restricting our attention to the additive groups
corresponding to the rings), Ker(f ) is an additive subgroup of R.

If
x ∈ Ker(f ) and r ∈ R then f (rx) = f (r)f (x) = f (r)0 = 0, whence
rx ∈ Ker(f ). Similarly, of course, xr ∈ Ker(f ). Therefore Ker(f ) is an (two
sided) ideal.

By Theorem I.5.5 the map π is an onto homomorphism (epimorphism) of
groups with kernel I . Since π(ab) = ab + I = (a + I )(b + I ) = π(a)π(b)
for all a, b ∈ R then π is also an onto homomorphism of rings.
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Theorem III.2.15

Theorem III.2.15

Theorem III.2.15. If P is an ideal in a ring R such that P 6= R and for all
a, b ∈ R

ab ∈ P implies a ∈ P or b ∈ P (1)

then P is prime. Conversely if P is prime and R is commutative, then P
satisfies condition (1).

Proof. Suppose P is an ideal, P 6= R, and (1) is satisfied.

If A and B are
ideals such that AB ⊂ P and A is not a subset of P, then there exists an
element a ∈ A \ P. For every b ∈ B, ab ∈ AB ⊂ P, whence by (1) b ∈ P
since a 6∈ P. So B ⊂ P. Therefore P is prime.
Conversely, suppose P is prime and R is commutative. Let ab ∈ P. Then
the principal ideal (ab) is contained in P by Definition III.2.4. Since R is
commutative, Theorem III.2.5(iii) implies that (a)(b) ⊂ (ab), so we have
(a)(b) ⊂ P. Since P is prime, then either (a) ⊂ P or (b) ⊂ P. Ergo a ∈ P
or b ∈ P and (1) follows.
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Theorem III.2.16

Theorem III.2.16

Theorem III.2.16. In a commutative ring R with identity 1R 6= 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.

Proof. Suppose P is a prime ideal. By Theorem III.2.7, R/P is
commutative with (multiplicative) identity 1R + P and “zero element”
0 + P = P.

Now if 1R ∈ P, then P = R since P is an ideal of R. But by
definition, a prime ideal is a proper subring, so P 6= R and 1R 6∈ P. So
1R + P 6= P. Furthermore, R/P has no zero divisors since
(a + P)(b + P) = 0 + P = P implies ab + P = P (by Theorem III.2.7)
which implies ab ∈ P and so a ∈ P or b ∈ P since P is prime. Therefore
a + P = 0 + P = P or b + P = 0 + P = P. Hence R/P is an integral
domain.
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Theorem III.2.16

Theorem III.2.16 (continued)

Theorem III.2.16. In a commutative ring R with identity 1R 6= 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.
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Theorem III.2.18

Theorem III.2.18

Theorem III.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.
Proof. Since {0} is an ideal (the trivial ideal) and {0} 6= R, then if we
show the second statement, we will know that {0} lies in a maximal ideal
and so “ideals always exist” (that is, the first statement follows). We
apply Zorn’s Lemma.

For a given ideal A in R (A 6= R), let S be the set of
all ideals B in R such that A ⊂ B 6= R. S 6= ∅ since A ∈ S. Partially
order S by set theoretic inclusion. In order to apply Zorn’s Lemma, we
must show that every chain C = {Ci | i ∈ I} of ideals in S has an upper
bound in S. Let C = ∪i∈ICi . We claim that C is an ideal. If a, b ∈ C
then for some i , j ∈ I , a ∈ Ci , and b ∈ Cj . Since C is a chain then either
Ci ⊂ Cj or Cj ⊂ Ci (say Cj ⊂ Ci ). Hence a, b ∈ Ci and since Ci is an ideal
then a− b ∈ Ci and ra, ar ∈ Ci for all r ∈ R by Theorem III.2.2. Therefore
a, b ∈ C implies a− b and ra (and ar) are in Ci ⊂ C . Consequently C is
an ideal by Theorem III.2.2.
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Theorem III.2.18

Theorem III.2.18 (continued)

Theorem III.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof (continued). Since A ⊂ Ci for every i ∈ I , then A ⊂ ∪i∈ICi = C .
Since each Ci ∈ S then Ci 6= R for all i ∈ I .

Consequently 1R 6∈ Ci for all
i ∈ I (otherwise, since Ci is a subring of R, Ci = R), whence
1R 6∈ ∪Ci = C . Therefore, C 6= R and hence C ∈ S. “Clearly” C is an
upper bound for the chain C. Thus every chain in C has an upper bound
and the hypotheses of Zorn’s Lemma are satisfied. Hence S contains a
maximal element. This maximal element is a maximal ideal in R that
contains A. The result is shown similarly for left and right ideals.
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Theorem III.2.19

Theorem III.2.19

Theorem III.2.19. If R is a commutative ring such that RR = R2 = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.

Proof. Suppose M is a maximal ideal. ASSUME M is not prime.

Then by
the contrapositive of the first claim of Theorem III.2.15, there exists
ab ∈ M where a 6∈ M and b 6∈ M. Then each of the ideals M + (a) and
M + (b) properly contain M (since 0, a ∈ (a) and 0, b ∈ (b)). Since M is
maximal, then R = M + (a) = M + (b). Since R is commutative (and so
the center of R is R itself) and ab ∈ M, then Theorem III.2.5(iii) gives
(a) = {ra + na | r ∈ R, n ∈ Z} and (b) = {rb + nb | r ∈ R, n ∈ Z}; so the
elements of (a)(b) are of the form

(r1a + na)(r2b + nb) = r1r2ab + (nr2)ab + (nr1)ab + n2ab

= (r1r2 + nr1 + nr2)ab + n2ab ∈ {rab + nab | r ∈ R, n ∈ Z} = (ab).
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Theorem III.2.19

Theorem III.2.19 (continued)

Theorem III.2.19. If R is a commutative ring such that RR = R2 = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.

Proof (continued). That is, (a)(b) ⊂ (ab) ⊂ M.

Therefore

R = R2 = (M + (a))(M + (b)) = M2 + (a)M + M(b) + (a)(b)

⊂ M2 + (a)M + M(b) + (ab) ⊂ M

(since M is an ideal (a)M ⊂ M and M(b) ⊂ M). But R ⊂ M contradicts
the fact that M as a maximal ideal satisfies M 6= R, a CONTRADICTION.
So the assumption that M is not prime is false and hence M is prime.
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Theorem III.2.20

Theorem III.2.20

Theorem III.2.20. Let M be an ideal in a ring R with identity 1R 6= 0.

(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.

(ii) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (i) Suppose M is maximal and R is commutative.

By Theorem
III.2.19, M is prime (since R has an identity and hence R2 = R), whence
R/M is an integral domain by Theorem III.2.16. To show R/M is a field,
we just need to show that nonzero cosets have multiplicative inverses in
R/M. Let a + M 6= 0 + M. Then a 6∈ M, whence M is a proper subset of
M + (a) (0 ∈ (a)). Since M is maximal, we must have M + (a) = R. Since
R is commutative, 1R = m + ra for some m ∈ M and r ∈ R by Theorem
III.2.5(v). Thus 1R − ra = m ∈ M; that is, 1R and ra lie in the same coset
of M. Whence 1R + M = ra + M = (r + M)(a + M). Thus r + M is the
multiplicative inverse of a + M in R/M. Therefore R/M is a field.
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Theorem III.2.20

Theorem III.2.20 (continued)

Theorem III.2.20. Let M be an ideal in a ring R with identity 1R 6= 0.

(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.

(ii) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (ii) Suppose R/M is a division ring.

Then 1R + M 6= 0 + M = M
by Definition III.1.5 of division ring. Whence 1R 6∈ M and so M 6= R. If N
is an ideal such that M ⊂ N, M 6= N, then let a ∈ N \M. Then a + M
has a multiplicative inverse in R/M (since R/M is a division ring), say
(a + M)(b + M) = 1R + M. Consequently ab + M = 1R + M and
ab − 1R = c ∈ M. Since a ∈ N and N is an ideal, then ab ∈ N. Since
M ⊂ N then ab − 1R ∈ N. Since ideals are subrings then
(ab − 1R)− ab = −1R ∈ N and 1R ∈ N. Then N = R and so M is
maximal.
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Corollary III.2.21

Corollary III.2.21

Corollary III.2.21. The following conditions on a commutative ring R
with identity 1R 6= 0 are equivalent.

(i) R is a field.

(ii) R has no proper ideals.

(iii) {0} is a maximal ideal in R.

(iv) Every nonzero homomorphism of rings R → S is injective (a
“monomorphism”).

Proof. Now R ∼= R/{0} is a field if and only if {0} is a maximal ideal by
Theorem III.2.20 so (i) and (iii) are equivalent.

Next, {0} is a maximal
ideal if and only if R has no proper ideals, so (ii) and (iii) are equivalent.
Finally, for every ideal I , with I 6= R, the canonical map π : R → R/I is a
nonzero homomorphism with kernel I by Theorem III.2.8. Since π is one
to one if and only if Ker(π) = I = {0} by Theorem I.2.3(i), then (iv) holds
for the canonical homomorphism if and only if R has no proper ideals.
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Corollary III.2.21

Corollary III.2.21 (continued)

Corollary III.2.21. The following conditions on a commutative ring R
with identity 1R 6= 0 are equivalent.

(i) R is a field.

(ii) R has no proper ideals.

(iii) {0} is a maximal ideal in R.

(iv) Every nonzero homomorphism of rings R → S is injective (a
“monomorphism”).

Proof (continued). Now any homomorphism h : R → S can be expressed
in terms of the canonical homomorphism since with I = Ker(h) as:

So (ii) and (iv) are equivalent.
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Theorem III.2.23

Theorem III.2.23

Theorem III.2.23. Let {Ri | i ∈ I} be a nonempty family of rings S a
ring and {ϕi : S → Ri | i ∈ I} a family of homomorphisms of rings. Then
there is a unique homomorphism of rings ϕ : S →

∏
i∈I Ri such that

πiϕ = ϕi for all i ∈ I where πi is the canonical projection of Theorem
III.2.22. The ring

∏
i∈I Ri is uniquely determined up to isomorphism by

this property. In other words
∏

i∈I Ri is a product in the category of rings.
Proof. By Theorem I.8.2 there is a unique homomorphism of groups
ϕ : S →

∏
i∈I Ri such that πiϕ = ϕi for all i ∈ I .

Let s1, s2 ∈ S . Then

πiϕ(s1s2) = ϕi (s1s2)

= ϕi (s1)ϕi (s2) since ϕi is a ring homomorphism

= πiϕ(s1)π2ϕ(s2) for all i ∈ I .

So ϕ(s1s2) = ϕ(s1)ϕ(s2). Thus
∏

i∈I Ri is a product in the category of
rings (see Definition I.7.2; the morphisms πi are the canonical projections
and ϕ is the unique morphism). By Theorem I.7.3, the product is
determined up to isomorphism.
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Theorem III.2.24

Theorem III.2.24

Theorem III.2.24. Let A1,A2, . . . ,An be ideals in a ring R such that

(i) A1 + A2 + · · ·+ An = R, and

(ii) for each k, with 1 ≤ k ≤ n,
Ak ∩ (A1 + A2 + · · ·+ Ak−1 + Ak+1 + · · ·An) = {0}.

Then there is a ring isomorphism R ∼= A1 × A2 × · · · × An.

Proof. In the proof of Theorem I.8.6 it is shown that the map
ϕ : A1 × A2 × · · · × An → R given by (a1, a2, . . . , an) 7→ a1 + a2 + · · ·+ an

is an isomorphism of additive groups. We need only verify the
homomorphism property for multiplication.

Observe that if i 6= j and
ai ∈ Ai , aj ∈ Aj then by (ii) aiaj ∈ Ai ∩Aj = {0} implies such aiaj = 0. So

ϕ((a1, a2, . . . , an))ϕ((b1, b2, . . . , bn)) = (a1+a2+· · ·+an)(b1+b2+· · ·+bn)

= a1b1 + a2b2 + · · ·+ anbn = ϕ((a1ba, a2b2, . . . , anbn)).

So ϕ is a ring homomorphism and since it is one to one and onto (as a
group isomorphism), ϕ is a ring isomorphism.
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Theorem III.2.25. Chinese Remainder Theorem

Theorem III.2.25, Chinese Remainder Theorem

Theorem III.2.25. Chinese Remainder Theorem.
Let A1,A2, . . . ,An be ideals in a ring R such that R2 + Ai = R for all i
and Ai + Aj = R for all i 6= j . If b1, b2, . . . , bn ∈ R, then there exists
b ∈ R such that

b ≡ bi (mod Ai ) for i = 1, 2, . . . , n.

Furthermore, b is uniquely determined up to congruence modulo the ideal

A1 ∩ A2 ∩ · · · ∩ An.

Proof. Since A1 + A2 = A1 + A3 = R then

R2 = (A1 + A2)(A1 + A2)− A2
1 + A1A3 + A2A1 + A2A3

⊂ A1 + A2A3 since A2
1 ⊂ A1 and A1A3 ⊂ A1, A2A1 ⊂ A1

since A1 is an ideal

⊂ A1 + (A2 ∩ A3) since A2A3 ⊂ A2 and A2A3 ⊂ A3

since A2 and A3 are ideals.
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Proof (continued). Consequently, since R = A1 + R2,
R = A1 + R2 ⊂ A1 + (A2 + (A2 ∩ A3)) = A1 + (A1 ∩ A3) ⊂ R. Therefore
R = A1 + (A2 ∩ A3). We now apply mathematical induction. Suppose
R = A1 + (A2 ∩ A3 ∩ · · · ∩ Ak−1). Then

R2 = (A1 + (A2 ∩ A3 ∩ · · · ∩ Ak−1))( A1 + Ak︸ ︷︷ ︸
=R by hypothesis
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= A2
1 + (A2 ∩ A3 ∩ · · ·Ak−1)A1 + A1Ak + (A2 ∩ A3 ∩ · · ·Ak−1)Ak

⊂ A1 + (A2 ∩ A3 · · · ∩ Ak−1 ∩ Ak) as above.

So

R = R2 + A1 by hypothesis

⊂ A1 + (A2 ∩ A3 ∩ · · · ∩ Ak) ⊂ R.
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Theorem III.2.25. Chinese Remainder Theorem

Theorem III.2.25, Chinese Remainder Theorem (continued
2)

Proof (continued). Therefore R = A1 + (A2 ∩ A3 ∩ · · · ∩ Ak) and the
induction step holds. So R = A1 + (A2 ∩ A3 ∩ · · · ∩ An). A similar
argument holds for each k = 1, 2, . . . , n to give R = Ak + (∩i 6=kAi ).
Consequently for each k there exists ak ∈ Ak and rk ∈ ∩i 6=kAk such that
bk = ak + rk (for the given bk ’s). Furthermore, since bk − rk = ak ∈ Ak

and ri ∈ Ai for i 6= k then rk ≡ bk (mod Ak) and rk ≡ 0 (mod Ai ) for
i 6= k.

Let b = r1 + r2 + · · ·+ rn. Then b ≡ bi (mod Ai ) since rk ≡ 0
(mod Ai ) for i 6= k. Finally, if c ∈ R is such that c ≡ bi (mod Ai ) for
every i then b ≡ c (mod Ai ) for each i whence b − c ∈ Ai for each i .
Therefore b − c ∈ ∩n

i=1Ai and b ≡ c (mod ∩Ai ). So b is unique up to
congruence as claimed.
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Corollary III.2.26

Corollary III.2.26

Corollary III.2.26. Let m1,m2, . . . ,mn be positive integers such that
(mi ,mj) = 1 for i 6= j . If b1, b2, . . . , bn are any integers, then the system
of congruences

x ≡ b1(mod m1), x ≡ b2(mod m2), . . . , x ≡ bn(mod mn)

has an integral solution that is uniquely determined modulo
m = m1m2 · · ·mn.

Proof. Let R = Z.

Let Ai = (mi ). Then ∩n
i=1Ai = (m). Since (mi ,mj) = 1 then by Theorem

0.6.5 there are integers ki and kj such that (mi ,mj) = 1 = kimi + kjmj .
So 1 ∈ Ai + Aj and hence Ai + Aj = Z. Notice that R2 = Z2 = Z since Z
has unity 1 and so R2 + Ai = R since 0 ∈ Ai . So by Theorem III.2.25, b
exists as claimed.
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Corollary III.2.27

Corollary III.2.27

Corollary III.2.27. If A1,A2, . . . ,An are ideals in a ring R, then there is a
monomorphism of rings

θ : R/(A1 ∩ A2 ∩ · · · ∩ An) → R/A1 × R/A2 × · · · × R/An.

If R2 + Ai = R for all i and Ai + Aj = R for all i 6= j , then θ is an
isomorphism of rings.

Proof. Consider the family of (onto) homomorphisms πk : R → R/Ak

(the canonical homomorphisms) for k = 1, 2, . . . , n. By Theorem III.2.23,
this family induces a homomorphism of rings
θ1 : R → R/A1 × R/A2 × · · · × R/An with
θ1(r) = (r + A1, r + A2, . . . , r + An).

Now Ker(θ1) consists of those
elements of R mapped to the additive identity
(0 + A1)× (0 + A2)× · · · × (0 + An) = A1 × A2 × · · · × An; so
Ker(θ1) = A1 ∩ A2 ∩ · · · ∩ An.
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Corollary III.2.27

Corollary III.2.27 (continued 1)

Corollary III.2.27. If A1,A2, . . . ,An are ideals in a ring R, then there is a
monomorphism of rings

θ : R/(A1 ∩ A2 ∩ · · · ∩ An) → R/A1 × R/A2 × · · · × R/An.

If R2 + Ai = R for all i and Ai + Aj = R for all i 6= j , then θ is an
isomorphism of rings.

Proof (continued). With I = A1 ∩ A2 ∩ · · · ∩ An as an ideal which is a
subset of Ker(θ1), by Theorem III.2.9 there is a homomorphism
θ : R/(A1 ∩ A2 ∩ · · · ∩ An) → R/A1 × R/A2 × · · · × R/An where
θ(a + I ) = θ1(a) = (a + A1, a + A2, . . . , a + An). Notice Ker(θ) = I , so θ
is one to one (a monomorphism). However, θ may no be onto
(“surjective”; see Exercise III.2.26). So the first claim holds.
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Corollary III.2.27

Corollary III.2.27 (continued 2)

Corollary III.2.27. If A1,A2, . . . ,An are ideals in a ring R, then there is a
monomorphism of rings

θ : R/(A1 ∩ A2 ∩ · · · ∩ An) → R/A1 × R/A2 × · · · × R/An.

If R2 + Ai = R for all i and Ai + Aj = R for all i 6= j , then θ is an
isomorphism of rings.

Proof (continued). For the second claim, the hypothesis of Theorem
III.2.25 are satisfied, so for any
(b1 + A1, b2 + A2, . . . , bn + An) ∈ R/A1 ×R/A2 × · · · ×R/An, there exists
b ∈ R such that b ≡ bi (mod Ai ) for all i . Thus

θ(b + ∩Ai ) = (b + A1, b + A2, . . . , b + An)

= (b1 + A1, b2 + A2, . . . , bn + An)

by the congruence b ≡ bi (mod Ai )

and so θ is onto R/A1 × R/A2 × · · · × R/An. So θ is, as claimed, as
isomorphism.
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