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Theorem 111.2.2

Theorem 11.2.2. A nonempty subset / of a ring R is a left (respectively,
right) ideal if and only if for all a,b €/ and r € R:

(i) a,b € I impliessa—be l, and
(i) a€l, r € Rimplies ra € | (respectively, ar € /).
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Proposition 111.2.2

Theorem 111.2.2

Theorem 11.2.2. A nonempty subset / of a ring R is a left (respectively,
right) ideal if and only if for all a,b €/ and r € R:

(i) a,b € I impliessa—be l, and
(i) a€l, r € Rimplies ra € | (respectively, ar € /).

Proof. Suppose / is a left ideal. Then, by definition, (ii) holds. Since an
ideal is a subring then (i) holds.
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Theorem 111.2.2

Theorem 11.2.2. A nonempty subset / of a ring R is a left (respectively,
right) ideal if and only if for all a,b €/ and r € R:

(i) a,b € I impliessa—be l, and
(i) a€l, r € Rimplies ra € | (respectively, ar € /).

Proof. Suppose / is a left ideal. Then, by definition, (ii) holds. Since an
ideal is a subring then (i) holds.

Suppose (i) and (ii) hold for set /. Then [ is a group under addition from
(i) by Theorem 1.2.5. By (ii), / is closed under multiplication. So / is a
subring of R. By (ii) R is a left ideal. Similarly for “right ideals.” O
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Theorem I11.2.5

Theorem 111.2.5

Theorem 111.2.5. Let R bearingac Rand X CR.

(i) The principal ideal (a) consists of all elements of the form

ra+ as—+ na-+ Z rias;
i=1
where r,s, ri,si € R, me NU {0}, and n € Z.
(i) If R has an identity (“unity”) then

n
(a) = {Z rias; | ri,si € Ryn € N}.

i=1

(iii) If ais in the center of R,
C(R)={c€ R |cr=rcforall r € R}, then
(a)={ra+na|reR,ne}.
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Theorem 111.2.5 (continued)

Theorem 111.2.5. Let Rbearingae Rand X C R.

(iv) Ra={ra|r e R} (respectively, aR = {ar | r € R}), is a left
(respectively, right) ideal in R (which may not contain a). If
R has an identity, then a € Ra and a € aR.

(v) If R has an identity and a is in the center of R, then
Ra = (a) = aR.

(vi) If R has an identity and X is the center of R, then the ideal
(X) consists of all finite sums ria; + rax + - - - + rpa, where
ne NU{0}, e R, and a; € X.
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Theorem 111.2.5(i)

Theorem 111.2.5. Let R bearingac Rand X CR.
(i) The principal ideal (a) consists of all elements of the form

m
ra+ as—+ na+ Zr,-as,-
i=1
where r,s,ri,s;i € R, me NU {0}, and n € Z.
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Theorem 111.2.5(i)

Theorem 111.2.5. Let R bearingac Rand X CR.
(i) The principal ideal (a) consists of all elements of the form

m
ra+ as—+ na+ Zr,-as,-
i=1
where r,s,ri,s;i € R, me NU {0}, and n € Z.

Proof. (i) Let r' € R and &’ € | where | consists of the elements of the
given form. Then

m
ra = r <ra +as+ na+ E r,-as,-)
i=1
m+1
/ / / / / /
= (r'r+nr)a+ E r;as; where r; = r'rj, rmp1 =1r', and s =5
i=1
€ Isincer'r+nr' e R.
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Theorem 111.2.5(i) continued

Theorem 111.2.5. Let R bearingac Rand X C R.

(i) The principal ideal (a) consists of all elements of the form
m
ra+ as—+ na+ Zr,-as,-
i=1

where r,s,r;,s; € R, me NU {0}, and n € Z.
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Theorem 111.2.5(i) continued

Theorem 111.2.5. Let R bearingac Rand X C R.

(i) The principal ideal (a) consists of all elements of the form

m
ra+ as—+ na+ E rias;
i=1

where r,s,r;,s; € R, me NU {0}, and n € Z.

Proof. (i) (continued) So / is a left ideal and, similarly, a right ideal.
Withr=s=0,n=1 m=1, n =0 we see that a € /.
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Theorem 111.2.5(i) continued

Theorem 111.2.5. Let R bearingac Rand X C R.

(i) The principal ideal (a) consists of all elements of the form

m
ra+ as—+ na+ E rias;
i=1

where r,s,r;,s; € R, me NU {0}, and n € Z.

Proof. (i) (continued) So / is a left ideal and, similarly, a right ideal.
Withr=s=0,n=1 m=1, n =0 we see that a € /.

Now let /I’ be any ideal containing a. Thenrac I’ and r;a € I’ since I is a
left ideal. So as and rjas; € I’ since I’ is a right ideal.
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Theorem 111.2.5(i) continued

Theorem 111.2.5. Let R bearingac Rand X C R.

(i) The principal ideal (a) consists of all elements of the form

m
ra+ as—+ na+ E rias;
i=1

where r,s,r;,s; € R, me NU {0}, and n € Z.

Proof. (i) (continued) So / is a left ideal and, similarly, a right ideal.
Withr=s=0,n=1 m=1, n =0 we see that a € /.

Now let /I’ be any ideal containing a. Thenrac I’ and r;a € I’ since I is a
left ideal. So as and rjas; € I’ since I’ is a right ideal. Next, na € I’ since
I" is a subring of R (and so is closed under addition). So

ra+as+ na+ 27;1 riasi € I’ and | C I'. That is, | is a subset of any

ideal containing a, so | = (a). O
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Theorem 111.2.5(ii)

Theorem 111.2.5. Let Rbearingac Rand X C R.
(ii) If R has an identity (“unity”) then

(a) = {Z rias; | ri,si € Ryn € N}.

i=1
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Theorem 111.2.5(ii)

Theorem 111.2.5. Let Rbearingac Rand X C R.
(ii) If R has an identity (“unity”) then

(a) = {Z rias; | ri,si € Ryn € N} .

i=1

Proof. (ii) If R has identity 1g, then we write ra = ralg = rpmy13Sm+1,
as = 1ras = rmy2asm42, and na = n(1lga) = (nlg)algr = rm+3asm+3 and
so any element of (a) is of the form

m-+3

m
ra+ as + na + g rias; = E rias;.
i=1 i=1
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Theorem 111.2.5(iii)

Theorem 111.2.5. Let R be aringac R and X C R.

(iii) If ais in the center of R,
C(R)={c € R|cr=rcforall r € R}, then
(a) ={ra+na|reR,neZ}.

Modern Algebra Rl UL SR O 5



Theorem 111.2.5(iii)

Theorem 111.2.5. Let R be aringac R and X C R.

(iii) If ais in the center of R,
C(R)={c € R|cr=rcforall r € R}, then
(a) ={ra+na|reR,neZ}.

Proof. (iii) If ais in the center of R then any element of (a) is of the form

m m
ra+as+na+§ r;as;:ra+sa+na+g risia
i=1 i=1

m
= <r+s—|—Zr;s;>a+na:r'a+na

i=1

where r' = r+s+3> 1", rs;. O
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Theorem 111.2.5(iv, v)

Theorem 111.2.5. Let Rbearingae Rand X C R.

(iv) Ra={ra|r € R} (respectively, aR = {ar | r € R}), is a left
(respectively, right) ideal in R (which may not contain a). If
R has an identity, then a € Ra and a € aR.

(v) If R has an identity and a is in the center of R, then
Ra = (a) = aR.
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Theorem 111.2.5(iv, v)

Theorem 111.2.5. Let Rbearingae Rand X C R.

(iv) Ra={ra|r € R} (respectively, aR = {ar | r € R}), is a left
(respectively, right) ideal in R (which may not contain a). If
R has an identity, then a € Ra and a € aR.

(v) If R has an identity and a is in the center of R, then
Ra = (a) = aR.

Proof. (iv) This is almost trivial given Note I11.2.A.
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Theorem 111.2.5(iv, v)

Theorem 111.2.5. Let Rbearingae Rand X C R.

(iv) Ra={ra|r € R} (respectively, aR = {ar | r € R}), is a left
(respectively, right) ideal in R (which may not contain a). If
R has an identity, then a € Ra and a € aR.

(v) If R has an identity and a is in the center of R, then
Ra = (a) = aR.

Proof. (iv) This is almost trivial given Note I11.2.A.
(v) By (iii),
(a) ={ra+na|reRinecZ}={ra+(nlg)a|re R,ncZ}

={(r+nlg)alreR,neZ}={ralr € R} =Ra.

With a in the center of R, r'a = ar’ and so (a) = aR as well. O
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Theorem 111.2.5(vi)

Theorem 111.2.5. Let Rbearingae Rand X C R.

(vi) If R has an identity and X is the center of R, then the ideal
(X) consists of all finite sums ria; + rax + -+ + rpa, where
neNU{0}, r € R, and a; € X.

Modern Algebra ety 0 Ll £



Theorem 111.2.5(vi)

Theorem 111.2.5. Let Rbearingae Rand X C R.
(vi) If R has an identity and X is the center of R, then the ideal
(X) consists of all finite sums ria; + rax + -+ + rpa, where
ne NU{0}, € R, and a; € X.
Proof. (vi) Let R have identity and let X be in the center of R. Let | be
an ideal containing X and let a; € X. Since [ is an ideal containing a;,
then /| must contain (a;) (the “smallest” ideal containing a;) and by (v)
contains Ra; = {ra; | r € R}.
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Theorem 111.2.5(vi)

Theorem 111.2.5. Let Rbearingae Rand X C R.

(vi) If R has an identity and X is the center of R, then the ideal
(X) consists of all finite sums ria; + rax + -+ + rpa, where
ne NU{0}, € R, and a; € X.
Proof. (vi) Let R have identity and let X be in the center of R. Let | be
an ideal containing X and let a; € X. Since [ is an ideal containing a;,
then /| must contain (a;) (the “smallest” ideal containing a;) and by (v)
contains Ra; = {raj | r € R}. Since | is an ideal, then it is a subring of R
and so contains all na; + max + -+ ry,a,. Let
I"'={na+mna+--+ma,|rneR,a€X}, sol' Cl. ForreR and
rnai+ mar+---+ rpa, € I’ we have
r(nai + rmax+---rpan) = (rn)ar + (rr)ax+ -+ (rr)a, € 'so I’ is a
left (and since each a; is in the center of R, also a right) ideal of R.
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Theorem 111.2.5(vi)

Theorem 111.2.5. Let Rbearingae Rand X C R.

(vi) If R has an identity and X is the center of R, then the ideal
(X) consists of all finite sums ria; + rax + -+ + rpa, where
neNU{0}, r € R, and a; € X.

Proof. (vi) Let R have identity and let X be in the center of R. Let | be
an ideal containing X and let a; € X. Since [ is an ideal containing a;,
then /| must contain (a;) (the “smallest” ideal containing a;) and by (v)
contains Ra; = {raj | r € R}. Since | is an ideal, then it is a subring of R
and so contains all na; + max + -+ ry,a,. Let
I"'={na+mna+--+ma,|rneR,a€X}, sol' Cl. ForreR and
rnai+ mar+---+ rpa, € I’ we have

r(nai + rmax+---rpan) = (rn)ar + (rr)ax+ -+ (rr)a, € 'so I’ is a
left (and since each a; is in the center of R, also a right) ideal of R. We
have now that /’ is an ideal of R which is a subset of any ideal containing
X. Therefore, I’ = (X). O
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Theorem 111.2.6

Theorem 111.2.6. Let A1, Ay, ..., An, B, C be left (respectively, right)
ideals in a ring R.
(i) A1+ Ax+---+ A, and AjAy -+ A, are left (respectively,
right) ideals.
i) (A+B)+C=A+(B+ ().
(iii) (AB)C = ABC = A(BCQ).
(iv) B(Ai+Ax+---+A,) = BA1 + BAy + --- 4+ BA, and
A+ A+ +A,)C=AC+AC+---A,C.
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Theorem 111.2.6

Theorem 111.2.6. Let A1, Ay, ..., An, B, C be left (respectively, right)
ideals in a ring R.
(i) A1+ Ax+---+ A, and AjAy -+ A, are left (respectively,
right) ideals.
(i) (A+B)+ C=A+(B+ ().
(iii) (AB)C = ABC = A(BCQ).
(iv) B(Ai+Ax+---+A,) = BA1 + BAy + --- 4+ BA, and
A+ A+ +A,)C=AC+AC+---A,C.
Proof. (i) Letay +ax+---+ap,a)+a,+---+a, € AL +A+--- A,
Then
(31_|_32_|_. . ._|_an)_(a’1+a’2_|_. . ._|_a;7) =ajt+ar+-- .+an_a’1_a’2_. . ._a;

=(a—a)+(@—a)+ -+ (an—a,) EAL+ A+ A,

since each A; being an ideal, is a subring.
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Theorem 111.2.6

Theorem 111.2.6. Let A1, Ay, ..., An, B, C be left (respectively, right)
ideals in a ring R.
(i) A1+ Ax+---+ A, and AjAy -+ A, are left (respectively,
right) ideals.
(i) (A+B)+ C=A+(B+ ().
(iii) (AB)C = ABC = A(BCQ).
(iv) B(Ai+Ax+---+A,) = BA1 + BAy + --- 4+ BA, and
A+ A+ +A,)C=AC+AC+---A,C.
Proof. (i) Letay +ax+---+ap,a)+a,+---+a, € AL +A+--- A,
Then
(31_|_32_|_. . ._|_an)_(a’1+a’2_|_. . ._|_a;7) =ajt+ar+-- .+an_a’1_a’2_. . ._a;
=(a—a)+(@—a)+ -+ (an—a,) EAL+ A+ A,
since each A; being an ideal, is a subring. Let r € R. Then
r(a+a+---+ap) =(ra1) +(ra2) + -+ (ran) € A1+ A2+ - + Ay
since each A; is an ideal. By Theorem 111.2.2, Ay + Ay + - -- A, is an ideal.
Modern Algebra February 14, 2024 12 /37



Theorem 111.2.6(i)

Theorem 111.2.6. Let A1, Ay, ..., An, B, C be left (respectively, right)
ideals in a ring R.

(i) A1+ Ax+---+ A, and AjAy -+ A, are left (respectively,
right) ideals.
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Theorem 111.2.6(i)

Theorem 111.2.6. Let A1, Ay, ..., An, B, C be left (respectively, right)
ideals in a ring R.

(i) A1+ Ax+---+ A, and AjAy -+ A, are left (respectively,
right) ideals.
Proof. (i) (continued) Let a}a}---al +a2a2--- 22 +---afal +
ab, bibl - bl 4+ b2b2 .- b2 4 BIBHT -+ BT 6A1A2 - Ap.
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Theorem 111.2.6

Theorem 111.2.6(i)

Theorem 111.2.6. Let A1, Ay, ..., An, B, C be left (respectively, right)
ideals in a ring R.

(i) A1+ Ax+---+ A, and AjAy -+ A, are left (respectively,
right) ideals.

Proof. (i) (continued) Let a}a}---al +a2a2--- 22 +---afal +
al, bib3 .- b+ b2b3 .- b2+ - bIHY - +b;"eA1A2 -Ap. Then
aiaé - a, +a%a§ ~aﬁ+---a{a§+--~+aﬁ

—(b}b3 b+ b2b3--- b2+ - BB

:ai‘aé...a%_i_a%a%...a%_i_..

ot )

-a{ag—k---—i—aﬁ
+(=bi)by - by + (=b7)b3 - b + -+ + (=b{")b5' + - -- b))
(since each —bi € A;, since A is a ring)

€ AjAy - - - Ap(a finite sum of products of elements of A, Ay,

LA,

Modern Algebra February 14, 2024 13 / 37



Theorem 111.2.6(i) (continued)

Theorem 111.2.6. Let Ay, Ay, ..., Ap, B, C be left (respectively, right)
ideals in a ring R.

(i) Ai+Ax+---+ A, and A1Ap - -+ A, are left (respectively,
right) ideals.
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Theorem 111.2.6

Theorem 111.2.6(i) (continued)

Theorem 111.2.6. Let Ay, A>,

..., An, B, C be left (respectively, right)
ideals in a ring R.

(i) Ai+Ax+---+ A, and A1Ap - -+ A, are left (respectively,
right) ideals.

Proof. (i) (continued) Let r € R. Then

r(atay---ah+a3as---a2+---afay +--- +aT)
= (rab)ab - ah o+ ()b (e + o o)

€ A1Ay -+ A, since Aq is a left ideal.
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Theorem 111.2.6

Theorem 111.2.6(i) (continued)

Theorem 111.2.6. Let Ay, Ay, ..., Ap, B, C be left (respectively, right)
ideals in a ring R.

(i) Ai+Ax+---+ A, and A1Ap - -+ A, are left (respectively,
right) ideals.

Proof. (i) (continued) Let r € R. Then

r(ajas---ah+ajas---a>+---alay +---+a™)

= (ral)a} - ab+ (1) a2 o (ra)af - + )

€ A1Ay -+ A, since Aq is a left ideal.
So by Theorem 111.2.2, AjAs--- A, is a left ideal. ]
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Theorem 111.2.7

Theorem 111.2.7. Let R be a ring and / an ideal of R. Then the additive
quotient group R// is a ring with multiplication given by

(a+1)(b+1)=ab+ 1.

If R is commutative or has an identity, then the same is true of R//.
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Theorem 111.2.7

Theorem 111.2.7. Let R be a ring and / an ideal of R. Then the additive
quotient group R// is a ring with multiplication given by

(a+N(b+1)=ab+ 1.

If R is commutative or has an identity, then the same is true of R//.

Proof. First, we show that multiplication as defined is well-defined.
Suppose we have the coset equivalences a+/=a +/and b+ 1 =b"+1.
Sincea’ € a +1/=a+1then a = a+ i for some i € [. Similarly

b’ = b+ j for some j € I. Consequently

ab =(a+i)(b+j)=ab+ib+aj+ij.
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Theorem 111.2.7

Theorem 111.2.7. Let R be a ring and / an ideal of R. Then the additive
quotient group R// is a ring with multiplication given by

(a+1)(b+1)=ab+ 1.

If R is commutative or has an identity, then the same is true of R//.

Proof. First, we show that multiplication as defined is well-defined.
Suppose we have the coset equivalences a+/=a +/and b+ 1 =b"+1.
Sincea’ € a +1/=a+1then a = a+ i for some i € [. Similarly

b’ = b+ j for some j € I. Consequently

ab =(a+i)(b+j)=ab+ib+ aj+ij. Since [ is an ideal,

ab —ab=(ab+ib+aj+ij)—ab=ib+aj+ijel

Therefore a'b’ + | = ab + | (their difference is in /) by Corollary 1.4.3(iii).
So multiplication is well defined.
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Theorem I11.2.7

Theorem [11.2.7 (continued)

Theorem 111.2.7. Let R be a ring and / an ideal of R. Then the additive
quotient group R// is a ring with multiplication given by

(a+ 1) (b+1)=ab+].

If R is commutative, then the same is true of R//. If 1g is the identity in
R then 1g + [ is the identity in R/I.
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Theorem [11.2.7 (continued)

Theorem 111.2.7. Let R be a ring and / an ideal of R. Then the additive
quotient group R// is a ring with multiplication given by

(a+ 1) (b+1)=ab+].

If R is commutative, then the same is true of R//. If 1g is the identity in
R then 1g + [ is the identity in R/I.

Proof. (continued) Now we already know that (R//,+) is an abelian
group by Note I11.2.B. Since multiplication is defined in terms of
representatives, associativity and distribution (and commutivity of
multiplication, if present in R) follows from the corresponding properties in
R. Hence R/l is a ring. O
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Theorem 111.2.8

Theorem 111.2.8. If f : R — S is a homomorphism of rings then the
kernel of f is an ideal in R. Conversely if / is an ideal in R then the map
m: R — R/I given by r — r + [ is an onto homomorphism (epimorphism)
of rings with kernel /.
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Theorem 111.2.8

Theorem 111.2.8

Theorem 111.2.8. If f : R — S is a homomorphism of rings then the
kernel of f is an ideal in R. Conversely if / is an ideal in R then the map

m: R — R/I given by r — r + [ is an onto homomorphism (epimorphism)
of rings with kernel /.

Proof. By Theorem 1.5.5 (restricting our attention to the additive groups
corresponding to the rings), Ker(f) is an additive subgroup of R.
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Theorem 111.2.8

Theorem 111.2.8. If f : R — S is a homomorphism of rings then the
kernel of f is an ideal in R. Conversely if / is an ideal in R then the map
m: R — R/I given by r — r + [ is an onto homomorphism (epimorphism)
of rings with kernel /.

Proof. By Theorem 1.5.5 (restricting our attention to the additive groups
corresponding to the rings), Ker(f) is an additive subgroup of R. If

x € Ker(f) and r € R then f(rx) = f(r)f(x) = f(r)0 = 0, whence

rx € Ker(f). Similarly, of course, xr € Ker(f). Therefore Ker(f) is an (two
sided) ideal.

Modern Algebra ety W R0 13 £



Theorem 111.2.8

Theorem 111.2.8. If f : R — S is a homomorphism of rings then the
kernel of f is an ideal in R. Conversely if / is an ideal in R then the map
m: R — R/I given by r — r + [ is an onto homomorphism (epimorphism)
of rings with kernel /.

Proof. By Theorem 1.5.5 (restricting our attention to the additive groups
corresponding to the rings), Ker(f) is an additive subgroup of R. If

x € Ker(f) and r € R then f(rx) = f(r)f(x) = f(r)0 = 0, whence

rx € Ker(f). Similarly, of course, xr € Ker(f). Therefore Ker(f) is an (two
sided) ideal.

By Theorem 1.5.5 the map 7 is an onto homomorphism (epimorphism) of
groups with kernel /. Since w(ab) = ab+ 1 = (a+1)(b+ 1) = n(a)w(b)
for all a, b € R then 7 is also an onto homomorphism of rings. O
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Theorem 111.2.15

Theorem 111.2.15. If P is an ideal in a ring R such that P # R and for all
a,beR

abe Pimpliesac Porbe P (1)

then P is prime. Conversely if P is prime and R is commutative, then P
satisfies condition (1).
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Theorem 111.2.15

Theorem 111.2.15. If P is an ideal in a ring R such that P # R and for all
a,beR

abe Pimpliesac Porbe P (1)

then P is prime. Conversely if P is prime and R is commutative, then P
satisfies condition (1).

Proof. Suppose P is an ideal, P # R, and (1) is satisfied.
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Theorem 111.2.15

Theorem 111.2.15. If P is an ideal in a ring R such that P # R and for all
a,beR

abe Pimpliesac Porbe P (1)

then P is prime. Conversely if P is prime and R is commutative, then P
satisfies condition (1).

Proof. Suppose P is an ideal, P # R, and (1) is satisfied. If A and B are
ideals such that AB C P and A is not a subset of P, then there exists an
element a € A\ P. For every b € B, abec AB C P, whence by (1) be P
sincea¢ P. So B C P.
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Theorem 111.2.15

Theorem 111.2.15. If P is an ideal in a ring R such that P # R and for all
a,beR

abe Pimpliesac Porbe P (1)

then P is prime. Conversely if P is prime and R is commutative, then P
satisfies condition (1).

Proof. Suppose P is an ideal, P # R, and (1) is satisfied. If A and B are
ideals such that AB C P and A is not a subset of P, then there exists an
element a € A\ P. For every b € B, abec AB C P, whence by (1) be P
since a¢ P. So B C P. Therefore P is prime.
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Theorem 111.2.15

Theorem 111.2.15. If P is an ideal in a ring R such that P # R and for all
a,beR

abe Pimpliesac Porbe P (1)

then P is prime. Conversely if P is prime and R is commutative, then P
satisfies condition (1).

Proof. Suppose P is an ideal, P # R, and (1) is satisfied. If A and B are
ideals such that AB C P and A is not a subset of P, then there exists an
element a € A\ P. For every b € B, abec AB C P, whence by (1) be P
since a¢ P. So B C P. Therefore P is prime.

Conversely, suppose P is prime and R is commutative. Let ab € P.
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Theorem 111.2.15

Theorem 111.2.15. If P is an ideal in a ring R such that P # R and for all
a,beR

abe Pimpliesac Porbe P (1)

then P is prime. Conversely if P is prime and R is commutative, then P
satisfies condition (1).

Proof. Suppose P is an ideal, P # R, and (1) is satisfied. If A and B are
ideals such that AB C P and A is not a subset of P, then there exists an
element a € A\ P. For every b € B, abec AB C P, whence by (1) be P
since a¢ P. So B C P. Therefore P is prime.

Conversely, suppose P is prime and R is commutative. Let ab € P. Then
the principal ideal (ab) is contained in P by Definition 111.2.4. Since R is

commutative, Theorem I11.2.5(iii) implies that (a)(b) C (ab), so we have

(a)(b) C P.
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Theorem 111.2.15

Theorem 111.2.15. If P is an ideal in a ring R such that P # R and for all
a,beR

abe Pimpliesac Porbe P (1)

then P is prime. Conversely if P is prime and R is commutative, then P
satisfies condition (1).

Proof. Suppose P is an ideal, P # R, and (1) is satisfied. If A and B are
ideals such that AB C P and A is not a subset of P, then there exists an
element a € A\ P. For every b € B, abec AB C P, whence by (1) be P
since a¢ P. So B C P. Therefore P is prime.

Conversely, suppose P is prime and R is commutative. Let ab € P. Then
the principal ideal (ab) is contained in P by Definition I11.2.4. Since R is
commutative, Theorem I11.2.5(iii) implies that (a)(b) C (ab), so we have
(a)(b) C P. Since P is prime, then either (a) C P or (b) C P. Ergoac P
or b € P and (1) follows. O
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Theorem 111.2.16

Theorem 111.2.16. In a commutative ring R with identity 1z # 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.
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Theorem 111.2.16

Theorem 111.2.16. In a commutative ring R with identity 1z # 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.

Proof. Suppose P is a prime ideal. By Theorem I11.2.7, R/P is

commutative with (multiplicative) identity 1g + P and “zero element”
0+P=PF.
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Theorem 111.2.16

Theorem 111.2.16. In a commutative ring R with identity 1z # 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.

Proof. Suppose P is a prime ideal. By Theorem I11.2.7, R/P is
commutative with (multiplicative) identity 1g + P and “zero element”
0+ P =P. Now if 1g € P, then P = R since P is an ideal of R. But by
definition, a prime ideal is a proper subring, so P # R and 1z € P. So
1+ P #P.
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Theorem 111.2.16

Theorem 111.2.16. In a commutative ring R with identity 1z # 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.

Proof. Suppose P is a prime ideal. By Theorem I11.2.7, R/P is
commutative with (multiplicative) identity 1g + P and “zero element”
0+ P =P. Now if 1g € P, then P = R since P is an ideal of R. But by
definition, a prime ideal is a proper subring, so P # R and 1z € P. So
1g + P # P. Furthermore, R/P has no zero divisors since

(a+ P)(b+ P) =0+ P = P implies ab+ P = P (by Theorem I11.2.7)
which implies ab € P and so a € P or b € P since P is prime. Therefore
a+P=0+P=Porb+P=0+P=P. Hence R/P is an integral
domain.
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Theorem 111.2.16 (continued)

Theorem 111.2.16. In a commutative ring R with identity 1z # 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.
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Theorem 111.2.16 (continued)

Theorem 111.2.16. In a commutative ring R with identity 1z # 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.

Proof (continued). Conversely, suppose R/P is an integral domain.

Then (by part of the definition of integral domain) 1x + P #0+ P =P
so 1g & P. Therefore P # R.
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Theorem 111.2.16 (continued)

Theorem 111.2.16. In a commutative ring R with identity 1z # 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.

Proof (continued). Conversely, suppose R/P is an integral domain.
Then (by part of the definition of integral domain) 1x + P #0+ P =P
so 1g € P. Therefore P # R. Since R/P is an integral domain then it has
no zero divisors and so ab € P implies ab+ P = P which implies
(a+P)(b+P)=0+P =P (by Theorem I11.2.7); soa+P=0+P =P
or b4+ P =0+ P = P since there are no zero divisors in R/P.
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Theorem 111.2.16 (continued)

Theorem 111.2.16. In a commutative ring R with identity 1z # 0, an
ideal P is prime if and only if the quotient ring R/P is an integral domain.

Proof (continued). Conversely, suppose R/P is an integral domain.
Then (by part of the definition of integral domain) 1x + P #0+ P =P
so 1g € P. Therefore P # R. Since R/P is an integral domain then it has
no zero divisors and so ab € P implies ab+ P = P which implies
(a+P)(b+P)=0+P =P (by Theorem I11.2.7); soa+P=0+P =P
or b4+ P =0+ P = P since there are no zero divisors in R/P. Hence

a€ Porbe P. Therefore, by Theorem 111.2.15, P is a prime ideal. []
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Theorem 111.2.18

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.
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Theorem 111.2.18

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof. Since {0} is an ideal (the trivial ideal) and {0} # R, then if we
show the second statement, we will know that {0} lies in a maximal ideal
and so “ideals always exist” (that is, the first statement follows). We
apply Zorn's Lemma.
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Theorem 111.2.18

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof. Since {0} is an ideal (the trivial ideal) and {0} # R, then if we
show the second statement, we will know that {0} lies in a maximal ideal
and so “ideals always exist” (that is, the first statement follows). We
apply Zorn's Lemma. For a given ideal Ain R (A# R), let S be the set of
all ideals B in R such that AC B # R. § # @ since A € S. Partially
order S by set theoretic inclusion.
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Theorem 111.2.18

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof. Since {0} is an ideal (the trivial ideal) and {0} # R, then if we
show the second statement, we will know that {0} lies in a maximal ideal
and so “ideals always exist” (that is, the first statement follows). We
apply Zorn's Lemma. For a given ideal Ain R (A# R), let S be the set of
all ideals B in R such that AC B # R. § # @ since A € S. Partially
order S by set theoretic inclusion. In order to apply Zorn's Lemma, we
must show that every chain C = {C; | i € I} of ideals in S has an upper
bound in S. Let C = U;j¢;C;. We claim that C is an ideal.
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Theorem 111.2.18

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof. Since {0} is an ideal (the trivial ideal) and {0} # R, then if we
show the second statement, we will know that {0} lies in a maximal ideal
and so “ideals always exist” (that is, the first statement follows). We
apply Zorn's Lemma. For a given ideal Ain R (A# R), let S be the set of
all ideals B in R such that AC B # R. § # @ since A € S. Partially
order S by set theoretic inclusion. In order to apply Zorn's Lemma, we
must show that every chain C = {C; | i € I} of ideals in S has an upper
bound in S. Let C = U;¢;C;. We claim that C is an ideal. If a,b € C
then for some i,j € /, a€ C;, and b € (. Since C is a chain then either
G cCGor(GcCC(say GGcG).
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Theorem 111.2.18

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof. Since {0} is an ideal (the trivial ideal) and {0} # R, then if we
show the second statement, we will know that {0} lies in a maximal ideal
and so “ideals always exist” (that is, the first statement follows). We
apply Zorn's Lemma. For a given ideal Ain R (A# R), let S be the set of
all ideals B in R such that AC B # R. § # @ since A € S. Partially
order S by set theoretic inclusion. In order to apply Zorn's Lemma, we
must show that every chain C = {C; | i € I} of ideals in S has an upper
bound in S. Let C = U;¢;C;. We claim that C is an ideal. If a,b € C
then for some i,j € /, a€ C;, and b € (. Since C is a chain then either
G C Gor G C (i (say GG C C). Hence a,b € C; and since C; is an ideal
then a— b € C; and ra,ar € C; for all r € R by Theorem 111.2.2. Therefore
a,b € C implies a— b and ra (and ar) are in C; C C. Consequently C is
an ideal by Theorem [11.2.2.
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Theorem 111.2.18 (continued)

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.
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Theorem 111.2.18

Theorem 111.2.18 (continued)

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals

always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof (continued). Since A C C; for every i € I, then A C Uj¢,C; = C.
Since each C; € S then C; # R for all i € [.
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Theorem 111.2.18 (continued)

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof (continued). Since A C C; for every i € I, then A C Uj¢,C; = C.
Since each C; € S then C; # R for all i € I. Consequently 1 & C; for all
i € | (otherwise, since C; is a subring of R, C; = R), whence

1gr € UC; = C. Therefore, C # R and hence C € S.
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Theorem 111.2.18 (continued)

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof (continued). Since A C C; for every i € I, then A C Uj¢,C; = C.
Since each C; € S then C; # R for all i € I. Consequently 1 & C; for all
i € | (otherwise, since C; is a subring of R, C; = R), whence

1g € UC; = C. Therefore, C # R and hence C € §. “Clearly” C is an
upper bound for the chain C. Thus every chain in C has an upper bound
and the hypotheses of Zorn's Lemma are satisfied. Hence S contains a
maximal element.

Modern Algebra ety W R0 2 6



Theorem 111.2.18 (continued)

Theorem 111.2.18. In a nonzero ring R with identity, maximal ideals
always exist. In fact, every ideal in R (except R itself) is contained in a
maximal ideal. This also holds for left ideals and right ideals.

Proof (continued). Since A C C; for every i € I, then A C Uj¢,C; = C.
Since each C; € S then C; # R for all i € I. Consequently 1 & C; for all
i € | (otherwise, since C; is a subring of R, C; = R), whence

1g € UC; = C. Therefore, C # R and hence C € §. “Clearly” C is an
upper bound for the chain C. Thus every chain in C has an upper bound
and the hypotheses of Zorn's Lemma are satisfied. Hence S contains a
maximal element. This maximal element is a maximal ideal in R that
contains A. The result is shown similarly for left and right ideals. O
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Theorem 111.2.19

Theorem 111.2.19. If R is a commutative ring such that RR = R?> = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.
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Theorem 111.2.19

Theorem 111.2.19. If R is a commutative ring such that RR = R?> = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.

Proof. Suppose M is a maximal ideal. ASSUME M is not prime.
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Theorem 111.2.19

Theorem 111.2.19. If R is a commutative ring such that RR = R?> = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.

Proof. Suppose M is a maximal ideal. ASSUME M is not prime. Then by
the contrapositive of the first claim of Theorem 11.2.15, there exists

ab € M where a ¢ M and b € M. Then each of the ideals M + (a) and

M + (b) properly contain M (since 0,a € (a) and 0, b € (b)). Since M is
maximal, then R = M + (a) = M + (b).
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Theorem 111.2.19

Theorem 111.2.19. If R is a commutative ring such that RR = R?> = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.

Proof. Suppose M is a maximal ideal. ASSUME M is not prime. Then by
the contrapositive of the first claim of Theorem 11.2.15, there exists

ab € M where a ¢ M and b € M. Then each of the ideals M + (a) and
M + (b) properly contain M (since 0,a € (a) and 0, b € (b)). Since M is
maximal, then R = M + (a) = M + (b). Since R is commutative (and so
the center of R is R itself) and ab € M, then Theorem I11.2.5(iii) gives
(a) ={ra+nalreR,neZ}and (b)={rb+nb|re R,necZ}; so the
elements of (a)(b) are of the form

ria+ na)(rb + nb) = rirab + (nr)ab + (nr)ab + n*ab
( )

= (rir2 + nry + nrp)ab + n?ab € {rab+ nab | r € R,n € Z} = (ab).
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Theorem 111.2.19 (continued)

Theorem 111.2.19. If R is a commutative ring such that RR = R? = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.

Modern Algebra ety WL R0 2 6



Theorem 111.2.19 (continued)

Theorem 111.2.19. If R is a commutative ring such that RR = R? = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.

Proof (continued). That is, (a)(b) C (ab) C M.
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Theorem 111.2.19

Theorem 111.2.19 (continued)

Theorem 111.2.19. If R is a commutative ring such that RR = R? = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.

Proof (continued). That is, (a)(b) C (ab) C M. Therefore
R =R?>=(M+ (a))(M+ (b)) = M? + (a)M + M(b) + (a)(b)

C M? + (a)M + M(b) + (ab) ¢ M
(since M is an ideal (a)M C M and M(b) C M).
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Theorem 111.2.19 (continued)

Theorem 111.2.19. If R is a commutative ring such that RR = R? = R (in
particular, if R has an identity) then every maximal ideal M in R is prime.

Proof (continued). That is, (a)(b) C (ab) C M. Therefore
R =R?>=(M+ (a))(M+ (b)) = M? + (a)M + M(b) + (a)(b)

C M? 4 (a)M + M(b) + (ab) c M

(since M is an ideal (a)M C M and M(b) C M). But R C M contradicts
the fact that M as a maximal ideal satisfies M = R, a CONTRADICTION.
So the assumption that M is not prime is false and hence M is prime. [
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Theorem 111.2.20

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1 # 0.
(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.
(i) If the quotient ring R/M is a division ring, then M is
maximal.
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Theorem 111.2.20

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1 # 0.
(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.
(i) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (i) Suppose M is maximal and R is commutative.
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Theorem 111.2.20

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1 # 0.
(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.
(i) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (i) Suppose M is maximal and R is commutative. By Theorem
111.2.19, M is prime (since R has an identity and hence R? = R), whence
R/M is an integral domain by Theorem I11.2.16. To show R/M is a field,
we just need to show that nonzero cosets have multiplicative inverses in
R/M. Let a+ M # 0+ M. Then a € M, whence M is a proper subset of
M+ (a) (0 € (a)).
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Theorem 111.2.20

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1 # 0.

(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.

(i) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (i) Suppose M is maximal and R is commutative. By Theorem
111.2.19, M is prime (since R has an identity and hence R? = R), whence
R/M is an integral domain by Theorem I11.2.16. To show R/M is a field,
we just need to show that nonzero cosets have multiplicative inverses in
R/M. Let a+ M # 0+ M. Then a € M, whence M is a proper subset of
M+ (a) (0 € (a)). Since M is maximal, we must have M + (a) = R. Since
R is commutative, 1 = m + ra for some m € M and r € R by Theorem
[11.2.5(v).
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Theorem 111.2.20

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1 # 0.

(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.

(i) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (i) Suppose M is maximal and R is commutative. By Theorem
111.2.19, M is prime (since R has an identity and hence R? = R), whence
R/M is an integral domain by Theorem I11.2.16. To show R/M is a field,
we just need to show that nonzero cosets have multiplicative inverses in
R/M. Let a+ M # 0+ M. Then a € M, whence M is a proper subset of
M+ (a) (0 € (a)). Since M is maximal, we must have M + (a) = R. Since
R is commutative, 1 = m + ra for some m € M and r € R by Theorem
[11.2.5(v). Thus 1g —ra= m € M, that is, 1g and ra lie in the same coset
of M. Whence 1g + M =ra+ M = (r + M)(a+ M). Thus r + M is the
multiplicative inverse of a+ M in R/M. Therefore R/M is a field.
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Theorem 111.2.20 (continued)

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1z # 0.
(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.
(i) If the quotient ring R/M is a division ring, then M is
maximal.
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Theorem 111.2.20 (continued)

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1z # 0.
(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.
(i) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (ii) Suppose R/M is a division ring.
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Theorem 111.2.20 (continued)

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1z # 0.

(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.

(i) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (ii) Suppose R/M is a division ring. Then 1 + M #0+ M =M
by Definition I11.1.5 of division ring. Whence 1g ¢ M and so M # R.
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Theorem 111.2.20 (continued)

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1z # 0.
(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.
(i) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (ii) Suppose R/M is a division ring. Then 1 + M #0+ M =M
by Definition I11.1.5 of division ring. Whence 1g ¢ M and so M # R. If N
is an ideal such that M C N, M # N, then let a€ N\ M. Then a+ M
has a multiplicative inverse in R/M (since R/M is a division ring), say
(a+ M)(b+ M) =1g + M. Consequently ab+ M = 1g + M and
ab—1p=ce M.
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Theorem 111.2.20 (continued)

Theorem 111.2.20. Let M be an ideal in a ring R with identity 1z # 0.
(i) If M is maximal and R is commutative then the quotient
ring R/M is a field.
(i) If the quotient ring R/M is a division ring, then M is
maximal.

Proof. (ii) Suppose R/M is a division ring. Then 1 + M #0+ M =M
by Definition I11.1.5 of division ring. Whence 1g ¢ M and so M # R. If N
is an ideal such that M C N, M # N, then let a€ N\ M. Then a+ M
has a multiplicative inverse in R/M (since R/M is a division ring), say
(a+ M)(b+ M) =1g + M. Consequently ab+ M = 1g + M and
ab—1p =c &€ M. Since a€ N and N is an ideal, then ab € N. Since

M C N then ab — 1 € N. Since ideals are subrings then
(ab—1g)—ab=—-1g e Nand 1g € N. Then N =R and so M is
maximal. O
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Corollary 111.2.21

Corollary 111.2.21. The following conditions on a commutative ring R
with identity 1z # 0 are equivalent.
(i) Ris a field.
(i) R has no proper ideals.
(iii) {0} is a maximal ideal in R.
(iv) Every nonzero homomorphism of rings R — S is injective (a
“monomorphism”).
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Corollary 111.2.21

Corollary 111.2.21

Corollary 111.2.21. The following conditions on a commutative ring R
with identity 1z # 0 are equivalent.

(i) Ris a field.
(i)
(iii) {0} is a maximal ideal in R.
(iv)

R has no proper ideals.

Every nonzero homomorphism of rings R — S is injective (a
“monomorphism”).

Proof. Now R = R/{0} is a field if and only if {0} is a maximal ideal by
Theorem 111.2.20 so (i) and (iii) are equivalent.
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Corollary 111.2.21

Corollary 111.2.21

Corollary 111.2.21. The following conditions on a commutative ring R
with identity 1z # 0 are equivalent.

(i) Ris a field.
(i)
(iii) {0} is a maximal ideal in R.
(iv)

R has no proper ideals.

Every nonzero homomorphism of rings R — S is injective (a
“monomorphism”).

Proof. Now R = R/{0} is a field if and only if {0} is a maximal ideal by
Theorem 111.2.20 so (i) and (iii) are equivalent. Next, {0} is a maximal
ideal if and only if R has no proper ideals, so (ii) and (iii) are equivalent.
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Corollary 111.2.21

Corollary 111.2.21. The following conditions on a commutative ring R
with identity 1z # 0 are equivalent.

(i) Ris a field.
(i)
(iii) {0} is a maximal ideal in R.
(iv)

R has no proper ideals.

Every nonzero homomorphism of rings R — S is injective (a
“monomorphism”).

Proof. Now R = R/{0} is a field if and only if {0} is a maximal ideal by
Theorem 111.2.20 so (i) and (iii) are equivalent. Next, {0} is a maximal
ideal if and only if R has no proper ideals, so (ii) and (iii) are equivalent.
Finally, for every ideal /, with | # R, the canonical map 7 : R — R/l is a
nonzero homomorphism with kernel / by Theorem 111.2.8. Since 7 is one
to one if and only if Ker(w) = I = {0} by Theorem 1.2.3(i), then (iv) holds
for the canonical homomorphism if and only if R has no proper ideals.

Modern Algebra ety W 0 23 £



Corollary 111.2.21

Corollary 111.2.21 (continued)

Corollary 111.2.21. The following conditions on a commutative ring R
with identity 1g # 0 are equivalent.

(i) R is a field.

(ii)

(iii) {0} is a maximal ideal in R.
)

(iv) Every nonzero homomorphism of rings R — S is injective (a
“monomorphism").

R has no proper ideals.

Proof (continued). Now any homomorphism h: R — S can be expressed
in terms of the canonical homomorphism since with /| = Ker(h) as:

R——>R/I=Im(h) c S
\/
h
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Corollary 111.2.21

Corollary 111.2.21 (continued)

Corollary 111.2.21. The following conditions on a commutative ring R
with identity 1g # 0 are equivalent.

(i) R is a field.

(ii)

(iii) {0} is a maximal ideal in R.
)

(iv) Every nonzero homomorphism of rings R — S is injective (a
“monomorphism").

R has no proper ideals.

Proof (continued). Now any homomorphism h: R — S can be expressed
in terms of the canonical homomorphism since with /| = Ker(h) as:

T
R——R/I=Im(h)c S
h
So (ii) and (iv) are equivalent. O
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Theorem 111.2.23

Theorem 111.2.23. Let {R; | i € I} be a nonempty family of rings S a
ring and {¢; : S — R; | i € I} a family of homomorphisms of rings. Then
there is a unique homomorphism of rings ¢ : S — [[;c; Ri such that

mwiw = ; for all i € | where 7; is the canonical projection of Theorem
[11.2.22. The ring [[;c, Ri is uniquely determined up to isomorphism by

this property. In other words [];., R; is a product in the category of rings.
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Theorem 111.2.23

Theorem 111.2.23. Let {R; | i € I} be a nonempty family of rings S a
ring and {¢; : S — R; | i € I} a family of homomorphisms of rings. Then
there is a unique homomorphism of rings ¢ : S — [[;c; Ri such that

mwiw = ; for all i € | where 7; is the canonical projection of Theorem
[11.2.22. The ring [[;c, Ri is uniquely determined up to isomorphism by
this property. In other words [];., R; is a product in the category of rings.
Proof. By Theorem 1.8.2 there is a unique homomorphism of groups
¢S — [ic; Ri such that mip = ¢; for all i € I.

Modern Algebra ety W R0 2 6



Theorem 111.2.23

Theorem 111.2.23. Let {R; | i € I} be a nonempty family of rings S a
ring and {¢; : S — R; | i € I} a family of homomorphisms of rings. Then
there is a unique homomorphism of rings ¢ : S — [[;c; Ri such that

mwiw = ; for all i € | where 7; is the canonical projection of Theorem
[11.2.22. The ring [[;c, Ri is uniquely determined up to isomorphism by
this property. In other words [];., R; is a product in the category of rings.
Proof. By Theorem 1.8.2 there is a unique homomorphism of groups
¢S — [;c; Ri such that mip = ¢; for all i € I. Let 51,5, € S. Then

Tip(si2) = @i(s152)
= pi(s1)pi(s2) since ¢; is a ring homomorphism
= mip(s1)mp(sy) for all i € 1.
So ¢(s152) = ¢(s1)p(s2)-
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Theorem 111.2.23

Theorem 111.2.23. Let {R; | i € I} be a nonempty family of rings S a
ring and {¢; : S — R; | i € I} a family of homomorphisms of rings. Then
there is a unique homomorphism of rings ¢ : S — [[;c; Ri such that

mwiw = ; for all i € | where 7; is the canonical projection of Theorem
[11.2.22. The ring [[;c, Ri is uniquely determined up to isomorphism by
this property. In other words [];., R; is a product in the category of rings.
Proof. By Theorem 1.8.2 there is a unique homomorphism of groups
¢S — [;c; Ri such that mip = ¢; for all i € I. Let 51,5, € S. Then

mio(s12) = pi(s152)
= pi(s1)pi(s2) since ¢; is a ring homomorphism
= mip(s1)mp(sy) forall i € 1.

So ¢(s152) = @(s1)e(s2). Thus [];, Ri is a product in the category of
rings (see Definition 1.7.2; the morphisms ; are the canonical projections
and ¢ is the unique morphism). By Theorem 1.7.3, the product is
determined up to isomorphism. []
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Theorem 111.2.24

Theorem 111.2.24. Let A1, Ay, ..., A, be ideals in a ring R such that
(i) Ai+A+---+A,=R, and
(ii) for each k, with 1 < k < n,
Akﬂ(A1 +A2+"'+Ak_1+Ak+1+"'An) = {0}
Then there is a ring isomorphism R = A; x Ay X -+ - X Ap.
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Theorem 111.2.24

Theorem 111.2.24. Let A1, Ay, ..., A, be ideals in a ring R such that
(i) Ai+A+---+A,=R, and
(ii) for each k, with 1 < k < n,
Akﬂ(A1 +A2+"'+Ak_1+Ak+1+"'An) = {0}
Then there is a ring isomorphism R = A; x Ay X -+ - X Ap.

Proof. In the proof of Theorem 1.8.6 it is shown that the map

@A X Ay X -+ X Ay — R given by (a1,a2,...,ap) — a1 +ax+---+ap
is an isomorphism of additive groups. We need only verify the
homomorphism property for multiplication.
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Theorem 111.2.24

Theorem 111.2.24. Let A1, Ay, ..., A, be ideals in a ring R such that
(i) Ai+A+---+A,=R, and
(ii) for each k, with 1 < k < n,
Akﬂ(A1 +A2+"'+Ak_1+Ak+1+"'An) = {0}
Then there is a ring isomorphism R = A; x Ay X -+ - X Ap.

Proof. In the proof of Theorem 1.8.6 it is shown that the map

@A X Ay X -+ X Ay — R given by (a1,a2,...,ap) — a1 +ax+---+ap
is an isomorphism of additive groups. We need only verify the
homomorphism property for multiplication. Observe that if i # j and

aj € Aj, aj € A; then by (ii) ajaj € AinA; = {0} implies such a;a; = 0. So

SO((a]_, ‘327 ceey an))SO((bla b27 sy bn)) - (al+a2+‘ : '+3n)(b1+b2+’ : +bn)
= albl + 32b2 + -+ a,,b,, = @((alba, agbz, RN a,,b,,)).

So ¢ is a ring homomorphism and since it is one to one and onto (as a
group isomorphism), ¢ is a ring isomorphism. O
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Theorem 111.2.25. Chinese Remainder Theorem

Theorem 111.2.25, Chinese Remainder Theorem

Theorem 111.2.25. Chinese Remainder Theorem.
Let Ay, Ao, ..., A, beideals in a ring R such that R?> + A; = R for all i

and A; + A; =R forall i # j. If by, by, ..., b, € R, then there exists
b € R such that

b = bi(mod A;) for i=1,2,...,n.
Furthermore, b is uniquely determined up to congruence modulo the ideal

AiNAnN---NA,.
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Theorem 111.2.25. Chinese Remainder Theorem

Theorem 111.2.25, Chinese Remainder Theorem

Theorem 111.2.25. Chinese Remainder Theorem.

Let Ay, Ao, ..., A, beideals in a ring R such that R?> + A; = R for all i
and A; + A; =R forall i # j. If by, by, ..., b, € R, then there exists

b € R such that

b = bi(mod A;) for i=1,2,...,n.
Furthermore, b is uniquely determined up to congruence modulo the ideal

AiNAnN---NA,.

Proof. Since A1 + A> = A1 + A3 = R then
R? = (A1 +A2)(A1 + Ad) — AT + A1As + ArAr + ArAs
C A1+ AAjz since A% C A1 and A1A3 C A1, AJA1 C A
since Aj is an ideal
C A1+ (A2 N A3) since AyAs C Ay and AyA3 C As

since Ay and A3 are ideals.
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Theorem 111.2.25. Chinese Remainder Theorem

Theorem [11.2.25, Chinese Remainder Theorem (continued

1)

Proof (continued). Consequently, since R = A; + R?,

R=A; +R?C A; + (A + (A2 N A3)) = A; + (A1 N A3) C R. Therefore
R=A; —i—(AzﬂAg).
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Theorem 111.2.25. Chinese Remainder Theorem

Theorem [11.2.25, Chinese Remainder Theorem (continued

1)

Proof (continued). Consequently, since R = A; + R?,

R=A; +R?C A; + (A + (A2 N A3)) = A; + (A1 N A3) C R. Therefore
R = A1 + (A2 N A3z). We now apply mathematical induction. Suppose
R:A1+(A2ﬂA3ﬂ---ﬂAk_1). Then

R?2 = (A+(AnAsn---NAC))( A+Ac )
N——
=R by hypothesis
= A4 (ANAsN-- A 1)AL+ AlAc+ (AN As N - A1) Ak
C A1+ (A2NAs---NAk1NAg) as above.
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Theorem 111.2.25. Chinese Remainder Theorem

Theorem [11.2.25, Chinese Remainder Theorem (continued

1)

Proof (continued). Consequently, since R = A; + R?,

R=A; +R?C A; + (A + (A2 N A3)) = A; + (A1 N A3) C R. Therefore
R = A1 + (A2 N A3z). We now apply mathematical induction. Suppose
R:A1+(A2ﬂA3ﬂ---ﬂAk_1). Then

R?> = (A1+(A2ﬁA3ﬂ~-ﬁAk_1))( A1 + Ak )
—
=R by hypothesis
= A% + (A2 NAs3MN--- Ak—l)Al + A1Af + (A2 NA3N-- ‘Ak—l)Ak
C A1+ (A2NAs---NAk1NAg) as above.
So

R = R?+ A; by hypothesis
C A+ (ANAsn---NAL) CR.
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Theorem 111.2.25. Chinese Remainder Theorem

Theorem [11.2.25, Chinese Remainder Theorem (continued
2)

Proof (continued). Therefore R = A; + (A2 N A3 N --- N Ag) and the
induction step holds. So R =A; + (A2NAsN---NA,).

Modern Algebra ety W ) 68 £



Theorem 111.2.25. Chinese Remainder Theorem

Theorem [11.2.25, Chinese Remainder Theorem (continued
2)

Proof (continued). Therefore R = A; + (A2 N A3 N --- N Ag) and the
induction step holds. So R = A; + (A2NAsN---NA,). A similar
argument holds for each k =1,2,...,n to give R = Ax + (NjxkA;).
Consequently for each k there exists a, € Ax and ri € Njx Ak such that
bx = ay + ri (for the given by's). Furthermore, since by — ry = ax € A
and r; € A; for i # k then ry = by (mod Ax) and ry, =0 (mod A;) for

i # k.
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Theorem 111.2.25. Chinese Remainder Theorem

Theorem [11.2.25, Chinese Remainder Theorem (continued
2)

Proof (continued). Therefore R = A; + (A2 N A3 N --- N Ag) and the
induction step holds. So R = A; + (A2NAsN---NA,). A similar
argument holds for each k =1,2,...,n to give R = Ax + (NjxkA;).
Consequently for each k there exists a, € Ax and ri € Njx Ak such that
bx = ay + ri (for the given by's). Furthermore, since by — ry = ax € A
and r; € A; for i # k then ry = by (mod Ax) and ry, =0 (mod A;) for
i#k Letb=rn+rmn+---+r, Then b= b; (mod A;) since r, =0
(mod A;) for i # k.
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Theorem [11.2.25, Chinese Remainder Theorem (continued
2)

Proof (continued). Therefore R = A; + (A2 N A3 N --- N Ag) and the
induction step holds. So R = A; + (A2NAsN---NA,). A similar
argument holds for each k =1,2,...,n to give R = Ax + (NjxkA;).
Consequently for each k there exists a, € Ax and ri € Njx Ak such that
bx = ay + ri (for the given by's). Furthermore, since by — ry = ax € A
and r; € A; for i # k then ry = by (mod Ax) and ry, =0 (mod A;) for
i#k Letb=rn+rmn+---+r, Then b= b; (mod A;) since r, =0
(mod A;) for i # k. Finally, if ¢ € R is such that ¢ = b; (mod A;) for
every i then b = ¢ (mod A;) for each i whence b — ¢ € A; for each i.
Therefore b — c € N?_;Aj and b = ¢ (mod NA;). So b is unique up to
congruence as claimed. O
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Corollary 111.2.26

Corollary 111.2.26

Corollary 111.2.26. Let my, my, ..., m, be positive integers such that

(mj,mj) =1 for i # j. If by, bo,..., by are any integers, then the system
of congruences

x = bi(mod my), x = by(mod my), ..., x = by(mod m,)

has an integral solution that is uniquely determined modulo
m=mimy---MmMp,.
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Corollary 111.2.26

Corollary 111.2.26

Corollary 111.2.26. Let my, my, ..., m, be positive integers such that

(mj,mj) =1 for i # j. If by, bo,..., by are any integers, then the system
of congruences

x = bi(mod my), x = by(mod my), ..., x = by(mod m,)

has an integral solution that is uniquely determined modulo
m=mimy---MmMp,.

Proof. Let R = Z.
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Corollary 111.2.26

Corollary 111.2.26. Let my, my, ..., m, be positive integers such that

(mj,mj) =1 for i # j. If by, bo,..., by are any integers, then the system
of congruences

x = bi(mod my), x = by(mod my), ..., x = by(mod m,)

has an integral solution that is uniquely determined modulo
m=mimy---MmMp,.

Proof. Let R = Z.
Let A; = (m,) Then ﬂ}’:lA,- = (m)
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Corollary 111.2.26

Corollary 111.2.26. Let my, my, ..., m, be positive integers such that
(mj,mj) =1 for i # j. If by, bo,..., by are any integers, then the system
of congruences

x = bi(mod my), x = by(mod my), ..., x = by(mod m,)
has an integral solution that is uniquely determined modulo
m=mimy---MmMp,.

Proof. Let R = Z.

Let Aj = (m;). Then N?_;A; = (m). Since (m;, m;) = 1 then by Theorem
0.6.5 there are integers k; and k; such that (m;, m;) =1 = kim; + kjm;.
Sole€ Ai+ Ajand hence A; + A; = Z.
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Corollary 111.2.26

Corollary 111.2.26. Let my, my, ..., m, be positive integers such that
(mj,mj) =1 for i # j. If by, bo,..., by are any integers, then the system
of congruences

x = bi(mod my), x = by(mod my), ..., x = by(mod m,)

has an integral solution that is uniquely determined modulo
m=mimy---MmMp,.

Proof. Let R = Z.

Let Aj = (m;). Then N?_;A; = (m). Since (m;, m;) = 1 then by Theorem
0.6.5 there are integers k; and k; such that (m;, m;) =1 = kim; + kjm;.
So 1€ A+ Aj and hence A; + A; = Z. Notice that R? = 72 = Z since Z
has unity 1 and so R? + A; = R since 0 € A;. So by Theorem I11.2.25, b
exists as claimed. ]
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Corollary 111.2.27

Corollary 111.2.27

Corollary 111.2.27. If Ay, As,

..., A, are ideals in a ring R, then there is a
monomorphism of rings

0:R/(ALNAxN---NA,) — R/AL x R/Ay x -+ x R/ Ap.

If R> + A; = R for all i and Ai + Aj = R for all i # j, then 0 is an
isomorphism of rings.
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Corollary 111.2.27

Corollary 111.2.27. If A1, Ay, ..., A, are ideals in a ring R, then there is a
monomorphism of rings

0:R/(ALNAxN---NA,) — R/AL x R/Ay x -+ x R/ Ap.

If R> + A; = R for all i and Ai + Aj = R for all i # j, then 0 is an
isomorphism of rings.

Proof. Consider the family of (onto) homomorphisms 7 : R — R/Ax
(the canonical homomorphisms) for k =1,2,...,n. By Theorem 111.2.23,
this family induces a homomorphism of rings

01:R— R/A1 X R/Ay x --- x R/A, with

01(r) = (r+ A1, r+As,...,r+ Ap).
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Corollary 111.2.27

Corollary 111.2.27. If A1, Ay, ..., A, are ideals in a ring R, then there is a
monomorphism of rings

0:R/(ALNAxN---NA,) — R/AL x R/Ay x -+ x R/ Ap.

If R> + A; = R for all i and Ai + Aj = R for all i # j, then 0 is an
isomorphism of rings.

Proof. Consider the family of (onto) homomorphisms 7 : R — R/Ax
(the canonical homomorphisms) for k =1,2,...,n. By Theorem 111.2.23,
this family induces a homomorphism of rings

01:R— R/A1 X R/Ay x --- x R/A, with

01(r) = (r+ A1,r+ Az, ..., r + Ap). Now Ker(61) consists of those
elements of R mapped to the additive identity

(0—|—A1) X (0—|—A2) X e X (0+An):A1 X Ay X ++- X Ap; SO

Ker(@l) =AiNAnN---NA,.
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Corollary 111.2.27 (continued 1)

Corollary 111.2.27. If A1, Ao, ..., A, are ideals in a ring R, then there is a
monomorphism of rings

0:R/(AiNAxN---NA,) — R/A1 X R/Ay X --- x R/A,.
If R+ A; = R for all i and Ai + Aj = R for all i # j, then @ is an
isomorphism of rings.

Proof (continued). With | = Ay N A, N---N A, as an ideal which is a
subset of Ker(61), by Theorem 111.2.9 there is a homomorphism
0:R/(ALNAN - NAy) — R/AL x R/As x -+ x R/A, where
Ola+1)=01(a) = (a+ A1,a+ Ap,...,a+ Ap).

Modern Algebra ety W ) €6 £



Corollary 111.2.27 (continued 1)

Corollary 111.2.27. If A1, Ao, ..., A, are ideals in a ring R, then there is a
monomorphism of rings

0:R/(ALNAyN---NA,) — R/AL x R/Ay x -+ x R/Ap.

If R+ A; = R for all i and Ai + Aj = R for all i # j, then @ is an
isomorphism of rings.

Proof (continued). With | = Ay N A, N---N A, as an ideal which is a
subset of Ker(61), by Theorem 111.2.9 there is a homomorphism
0:R/(ALNAN - NAy) — R/AL x R/As x -+ x R/A, where
Ola+1)=01(a) =(a+ A1,a+ Az,...,a+ Ap). Notice Ker() =1, so 0
is one to one (a monomorphism). However, § may no be onto
(“surjective”; see Exercise 111.2.26). So the first claim holds.
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Corollary 111.2.27 (continued 2)

Corollary 111.2.27. If A1, Ay, ..., A, are ideals in a ring R, then there is a
monomorphism of rings

0:R/(AiNAxN---NA,) — R/AL X R/Ay x -+ X R/A.
If R2+ A; = R for all i and A; + A; = R for all i # j, then 6 is an

isomorphism of rings.

Proof (continued). For the second claim, the hypothesis of Theorem
[11.2.25 are satisfied, so for any

(b1 +A1,bo+As,....bp+ Ap) € R/AL X R/A2 X -+ X R/A,, there exists
b € R such that b = b; (mod A;) for all i.
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Corollary 111.2.27 (continued 2)

Corollary 111.2.27. If A1, Ay, ..., A, are ideals in a ring R, then there is a
monomorphism of rings

0:R/(AiNAxN---NA,) — R/AL X R/Ay x -+ X R/A.
If R2+ A; = R for all i and A; + A; = R for all i # j, then 6 is an

isomorphism of rings.

Proof (continued). For the second claim, the hypothesis of Theorem
[11.2.25 are satisfied, so for any
(b1 +A1,bo+As,....bp+ Ap) € R/AL X R/A2 X -+ X R/A,, there exists
b € R such that b = b; (mod A;) for all i. Thus
O(b+nA;)) = (b+A;,b+As....,b+A,)
= (i + A, b+ A ..., by + Ap)
by the congruence b = b; (mod A;)

and so # is onto R/A; X R/Ay x -+- x R/A,. So 0 is, as claimed, as

isomorphism. [
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