Modern Algebra

Chapter III. Rings

III.3. Supplement. Gaussian Integers—Proofs of Theorems

- [Theorem B \(Fraleigh's Theorem 47.7\)](#page-2-0)
- 2 [Lemma A \(Hungerford's Exercise III.3.3\(a\)](#page-5-0)
- 3 [Lemma C \(Hungerford's Exercise III.3.3\(c\)](#page-8-0)
- 4 [Lemma E \(Hungerford's Exercise III.3.6\(a\)](#page-15-0)

Theorem B (Fraleigh's Theorem 47.7)

Theorem B. (Fraleigh's Theorem 47.7) If D is an integral domain with a multiplicative norm N, then $N(1_D) = 1$ and $|N(u)| = 1$ for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in D, then an element $\pi \in D$ with $|N(\pi)| = p$, for a prime $p \in \mathbb{Z}$, is an irreducible of D.

Proof. Let D be an integral domain with a multiplicative norm N . Then $N(1_D) = N((1_D)(1_D)) = N(1_D)N(1_D)$ and so $N(1_D)$ is either 0 or 1. By Property 1 of the definition of multiplicative norm, we have that $N(1_D) = 1$. If $u \in D$ is a unit then $1 = N(1_D) = N(uu^{-1}) = N(u)N(u^{-1})$. Since $N(u)$ is an integer then $N(u) = \pm 1$ and $|N(u)| = 1$.

Theorem B (Fraleigh's Theorem 47.7)

Theorem B. (Fraleigh's Theorem 47.7) If D is an integral domain with a multiplicative norm N, then $N(1_D) = 1$ and $|N(u)| = 1$ for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in D, then an element $\pi \in D$ with $|N(\pi)| = p$, for a prime $p \in \mathbb{Z}$, is an irreducible of D.

Proof. Let D be an integral domain with a multiplicative norm N . Then $N(1_D) = N((1_D)(1_D)) = N(1_D)N(1_D)$ and so $N(1_D)$ is either 0 or 1. By Property 1 of the definition of multiplicative norm, we have that $\mathcal{N}(1_D) = 1$. If $u \in D$ is a unit then $1 = \mathcal{N}(1_D) = \mathcal{N}(uu^{-1}) = \mathcal{N}(u)\mathcal{N}(u^{-1})$. Since $N(u)$ is an integer then $N(u) = \pm 1$ and $|N(u)| = 1$.

Now suppose that the units of D are exactly the elements of norm ± 1 . Let $\pi \in D$ be such that $|N(\pi)| = p$ where $p \in \mathbb{Z}$ is prime. Then if $\pi = \alpha \beta$ we have $p = |N(\pi)| = |N(\alpha)N(\beta)|$ so either $|N(\alpha)| = 1$ or $|N(\beta)| = 1$ since p is prime. By hypothesis then either α or β is a unit of D. So $\pi = \alpha \beta$ implies either α or β is a unit; that is, π is irreducible.

Theorem B (Fraleigh's Theorem 47.7)

Theorem B. (Fraleigh's Theorem 47.7) If D is an integral domain with a multiplicative norm N, then $N(1_D) = 1$ and $|N(u)| = 1$ for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in D, then an element $\pi \in D$ with $|N(\pi)| = p$, for a prime $p \in \mathbb{Z}$, is an irreducible of D.

Proof. Let D be an integral domain with a multiplicative norm N . Then $N(1_D) = N((1_D)(1_D)) = N(1_D)N(1_D)$ and so $N(1_D)$ is either 0 or 1. By Property 1 of the definition of multiplicative norm, we have that $\mathcal{N}(1_D) = 1$. If $u \in D$ is a unit then $1 = \mathcal{N}(1_D) = \mathcal{N}(uu^{-1}) = \mathcal{N}(u)\mathcal{N}(u^{-1})$. Since $N(u)$ is an integer then $N(u) = \pm 1$ and $|N(u)| = 1$.

Now suppose that the units of D are exactly the elements of norm ± 1 . Let $\pi \in D$ be such that $|N(\pi)| = p$ where $p \in \mathbb{Z}$ is prime. Then if $\pi = \alpha \beta$ we have $p = |N(\pi)| = |N(\alpha)N(\beta)|$ so either $|N(\alpha)| = 1$ or $|N(\beta)| = 1$ since p is prime. By hypothesis then either α or β is a unit of D. So $\pi = \alpha \beta$ implies either α or β is a unit; that is, π is irreducible. L

Lemma A

Lemma A. (Hungerford's Exercise III.3.3(a)) With $R = \{a + b$ √ 1.3.3(a)) With $R = \{a + b\sqrt{10} \mid \frac{1}{\sqrt{10}}\}$ $a,b\in\mathbb{Z}\}$ and $N:R\rightarrow\mathbb{Z}$ as $N(a+b\sqrt{10})=(a+b\sqrt{10})(a-b\sqrt{10})$ a^2-10b^2 , we have that N is a multiplicative norm on $R.$

Proof. Let
$$
u = a + b\sqrt{10}
$$
 and $v = c + d\sqrt{10}$. Then
\n $uv = (a + b\sqrt{10})(c + d\sqrt{10}) = ac + 10bd + (ad + bc)\sqrt{10}$ and

$$
N(uv) = N(ac + 10bd + (ad + bc)\sqrt{10}
$$

 $= (ac + 10bd + (ad + bc))$ $10)(ac + 10bd - (ad + bc))$ 10)

$$
= (ac + 10bd)^2 - 10(ad + bc)^2
$$

- $=$ $a^2c^2 + 10abcd + 100b^2d^2 10a^2d^2 20abcd 10b^2c^2$
- $= a^2c^2 10a^2d^2 10b^2c^2 + 100b^2d^2$

$$
= a2(c2 - 10d2) - 10b2(c2 - 10d2)
$$

- $=$ $(a^2 10b^2)(c^2 10d^2)$ √
- $= N(a + b)$ $10)N(c + d$ √ $10) = N(u)N(v).$

Lemma A

Lemma A. (Hungerford's Exercise III.3.3(a)) With $R = \{a + b$ √ 1.3.3(a)) With $R = \{a + b\sqrt{10} \mid \frac{1}{\sqrt{10}}\}$ $a,b\in\mathbb{Z}\}$ and $N:R\rightarrow\mathbb{Z}$ as $N(a+b\sqrt{10})=(a+b\sqrt{10})(a-b\sqrt{10})$ a^2-10b^2 , we have that N is a multiplicative norm on $R.$

Proof. Let
$$
u = a + b\sqrt{10}
$$
 and $v = c + d\sqrt{10}$. Then
\n
$$
uv = (a + b\sqrt{10})(c + d\sqrt{10}) = ac + 10bd + (ad + bc)\sqrt{10}
$$
\nand
\n
$$
N(uv) = N(ac + 10bd + (ad + bc)\sqrt{10})
$$
\n
$$
= (ac + 10bd + (ad + bc)\sqrt{10})(ac + 10bd - (ad + bc)\sqrt{10})
$$
\n
$$
= (ac + 10bd)^2 - 10(ad + bc)^2
$$
\n
$$
= a^2c^2 + 10abcd + 100b^2d^2 - 10a^2d^2 - 20abcd - 10b^2c^2
$$
\n
$$
= a^2c^2 - 10a^2d^2 - 10b^2c^2 + 100b^2d^2
$$
\n
$$
= a^2(c^2 - 10d^2) - 10b^2(c^2 - 10d^2)
$$
\n
$$
= (a^2 - 10b^2)(c^2 - 10d^2)
$$
\n
$$
= N(a + b\sqrt{10})N(c + d\sqrt{10}) = N(u)N(v).
$$

Lemma A (continued)

Lemma A. (Hungerford's Exercise III.3.3(a)) With $R = \{a + b\}$ √ 10 | **Lemma A.** (Hungeriord's Exercise in:3

a, $b \in \mathbb{Z}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{a})$ $(10) = (a + b)$ $^{\mathsf{N}}$ $(10)(a - b)$ √ 10) a^2-10b^2 , we have that N is a multiplicative norm on R_τ

Proof (continued). If
$$
u = 0 = 0 + 0\sqrt{10}
$$
 then $N(u) = N(0) = (0)^2 - 10(0)^2 = 0$.

If $\mathsf{N}(u) = \mathsf{N}(a + b)$ √ $\overline{10}$) = $a^2 - 10b^2 = 0$ then $a^2 = 10b^2$. ASSUME either a or b in nonzero. Taking square roots, $\sqrt{a^2} = \sqrt{10b^2}$ or $|a| = \sqrt{10}|b|$. If a or b in nonzero. Taking square roots, $\sqrt{a^2} = \sqrt{10b^2}$ or $|a| = \sqrt{10|b|}$. In $b \neq 0$ then we have $\sqrt{10} = |a|/|b| \in \mathbb{Q}$, a CONTRADICTION to the fact $b \neq 0$ then we nave $\sqrt{10} = |a|/|b| \in \mathbb{Q}$, a CONTRAL
that $\sqrt{10}$ is irrational. So $b = a = 0$. That is, $u = 0$.

Lemma C

Lemma C. (Hungerford's Exercise III.3.3(c)) With **Lemma C.** (Hungeriord's Exercise m.s.s(C)) with
 $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{10})$ $R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = a^2 - 10b^2$, $R = \{d + b\sqrt{10} | d, b \in \mathbb{Z}\}$ and $\sqrt{10}$, $R \to \mathbb{Z}$ as $N(d + b\sqrt{10}) = d - 10R$
we have that 2, 3, 4 + $\sqrt{10}$, and 4 - $\sqrt{10}$ are irreducible elements of R.

Proof. ASSUME that 2 is *not* irreducible. Notice that 2 is a nonzero nonunit (since $N(2) = 4 \neq \pm 1$, by part (a)). So, by definition (Definition III.3.3) 2 can be written as a product of two nonunits, $2 = uv$. By part (a), $4 = N(2) = N(uv) = N(u)N(v)$ where $N(u)$, $N(v) \in \mathbb{Z}$. Since u and v are nonunits then by part (b) $N(u)$, $N(v) \neq \pm 1$, and so we must have $N(u) = N(v) = 2$ or $N(u) = N(v) = -2$. With $u = a + b\sqrt{10}$ and $N(u) = 2$ we have $N(u) = a^2 - 10b^2 = 2$ and so $a^2 = 2 + 10b^2$. But this means that $a^2 \equiv 2 \pmod{10}$.

Lemma C

Lemma C. (Hungerford's Exercise III.3.3(c)) With **Lemma C.** (Hungeriord's Exercise m.s.s(C)) with
 $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{10})$ $R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = a^2 - 10b^2$, $R = \{d + b\sqrt{10} | d, b \in \mathbb{Z}\}$ and $\sqrt{10}$, $R \to \mathbb{Z}$ as $N(d + b\sqrt{10}) = d - 10R$
we have that 2, 3, 4 + $\sqrt{10}$, and 4 - $\sqrt{10}$ are irreducible elements of R.

Proof. ASSUME that 2 is *not* irreducible. Notice that 2 is a nonzero nonunit (since $N(2) = 4 \neq \pm 1$, by part (a)). So, by definition (Definition III.3.3) 2 can be written as a product of two nonunits, $2 = uv$. By part (a), $4 = N(2) = N(uv) = N(u)N(v)$ where $N(u)$, $N(v) \in \mathbb{Z}$. Since u and v are nonunits then by part (b) $N(u)$, $N(v) \neq \pm 1$, and so we must have $N(u) = N(v) = 2$ or $N(u) = N(v) = -2$. With $u = a + b\sqrt{10}$ and $N(u) = 2$ we have $N(u) = a^2 - 10b^2 = 2$ and so $a^2 = 2 + 10b^2$. But this means that $a^2 \equiv 2 \pmod{10}$.

Lemma C (Hungerford's Exercise III.3.3(c)

Lemma C (continued 1)

Proof (continued). But this means that $a^2 \equiv 2 \pmod{10}$ This cannot happen since:

With $u = a + b$ √ $\overline{10}$ and $\mathcal{N}(u)=-2$ we have $\mathcal{N}(u)=a^2-10b^2=-2$ and so $a^2=-2+10b^2$. But this means that $a^2\equiv 8$ (mod 10).

Lemma C (continued 2)

Proof (continued). But this means that $a^2 \equiv 8 \pmod{10}$ This cannot happen, as shown in the table above. These CONTRADICTIONS show that the assumption that 2 is *not* irreducible is false and hence 2 is irreducible.

ASSUME 3 is *not* irreducible, say $3 = uv$ for nonunits u and v. As argued for 2, we must have $9 = N(3) = N(u)N(v)$ where $N(u)$, $N(v) \in \mathbb{Z}$, and we must have either $N(u) = N(v) = 3$ or $N(u) = N(v) = -3$. With $u = a + b\sqrt{10}$ and $N(u) = 3$ we have $N(u) = a^2 - 10b^2 = 3$ and so $a^2 = 3 + 10b^2$. But this means that $a^2 \equiv 3 \pmod{10}$. This cannot happen as shown in the table above. With $u = a + b\sqrt{10}$ and $\mathcal{N}(u) = -3$ we have $N(u) = a^2 - 10b^2 = -3$ and so $a^2 = -3 + 10b^2$. But this means that $a^2 \equiv 7$ (mod 10). This cannot happen as shown in the table above. These CONTRADICTIONS show that the assumption that 3 is not irreducible is false and hence 3 is irreducible.

Lemma C (continued 2)

Proof (continued). But this means that $a^2 \equiv 8 \pmod{10}$ This cannot happen, as shown in the table above. These CONTRADICTIONS show that the assumption that 2 is not irreducible is false and hence 2 is irreducible.

ASSUME 3 is not irreducible, say $3 = uv$ for nonunits u and v. As argued for 2, we must have $9 = N(3) = N(u)N(v)$ where $N(u)$, $N(v) \in \mathbb{Z}$, and we must have either $N(u) = N(v) = 3$ or $N(u) = N(v) = -3$. With $u = a + b\sqrt{10}$ and $N(u) = 3$ we have $N(u) = a^2 - 10b^2 = 3$ and so $a^2 = 3 + 10b^2$. But this means that $a^2 \equiv 3 \pmod{10}$. This cannot happen as shown in the table above. With $u = a + b\sqrt{10}$ and $\mathcal{N}(u) = -3$ we have $N(u) = a^2 - 10b^2 = -3$ and so $a^2 = -3 + 10b^2$. But this means that $a^2 \equiv 7$ (mod 10). This cannot happen as shown in the table above. These CONTRADICTIONS show that the assumption that 3 is not irreducible is false and hence 3 is irreducible.

Lemma C (continued 3)

Lemma C. (Hungerford's Exercise III.3.3(c)) With **Lemma C.** (Hungeriord's Exercise m.3.3(C)) with
 $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \rightarrow \mathbb{Z}$ as $N(a + b\sqrt{10})$ $R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = a^2 - 10b^2$, $R = \{d + b\sqrt{10} | d, b \in \mathbb{Z}\}$ and $\sqrt{10}$, $R \to \mathbb{Z}$ as $N(d + b\sqrt{10}) = d - 10R$
we have that 2, 3, 4 + $\sqrt{10}$, and 4 - $\sqrt{10}$ are irreducible elements of R.

Proof (continued). ASSUME $4 + \sqrt{10}$ is not irreducible, say **Proof (Continued).** ASSONIE $4 + \sqrt{10}$ is not irreducible, say
 $4 + \sqrt{10} = uv$ for nonunits u and v. As argued for 2, we must have $N(4 + \sqrt{10}) = (4)^2 - 10(1)^2 = 6 = N(u)N(v)$ where $N(u)$, $N(v) \in \mathbb{Z}$ and we must have either $N(u) = \pm 2$ and $N(v) = \pm 3$ (respectively) or $N(u) = \pm 3$ and $N(v) = \pm 2$ (respectively). However, we have seen above that we cannot have $N(u) = \pm 2$ nor $N(u) = \pm 3$, a CONTRADICTION. that we cannot have $w(u) = \pm 2$ nor $w(u) = \pm 2$.
So the assumption that $4 + \sqrt{10}$ is irreducible.

For the irreducibility of $4 \sqrt{10}$, the argument is the same as for $4 + \sqrt{10}$, For the irreducibility of $4 - \sqrt{10}$, the a
since $N(4 + \sqrt{10}) = N(4 - \sqrt{10}) = 6$.

Lemma C (continued 3)

Lemma C. (Hungerford's Exercise III.3.3(c)) With **Lemma C.** (Hungeriord's Exercise m.3.3(C)) with
 $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \rightarrow \mathbb{Z}$ as $N(a + b\sqrt{10})$ $R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = a^2 - 10b^2$, $R = \{d + b\sqrt{10} | d, b \in \mathbb{Z}\}$ and $\sqrt{10}$, $R \to \mathbb{Z}$ as $N(d + b\sqrt{10}) = d - 10R$
we have that 2, 3, 4 + $\sqrt{10}$, and 4 - $\sqrt{10}$ are irreducible elements of R.

Proof (continued). ASSUME $4 + \sqrt{10}$ is not irreducible, say **Proof (Continued).** ASSONIE $4 + \sqrt{10}$ is not irreducible, say
 $4 + \sqrt{10} = uv$ for nonunits u and v. As argued for 2, we must have $N(4 + \sqrt{10}) = (4)^2 - 10(1)^2 = 6 = N(u)N(v)$ where $N(u)$, $N(v) \in \mathbb{Z}$ and we must have either $N(u) = \pm 2$ and $N(v) = \pm 3$ (respectively) or $N(u) = \pm 3$ and $N(v) = \pm 2$ (respectively). However, we have seen above that we cannot have $N(u) = \pm 2$ nor $N(u) = \pm 3$, a CONTRADICTION. that we cannot have $w(u) = \pm 2$ nor $w(u) = \pm 2$.
So the assumption that $4 + \sqrt{10}$ is irreducible.

For the irreducibility of $4 \sqrt{10}$, the argument is the same as for $4 + \sqrt{10}$, For the irreducibility of 4 – $\sqrt{10}$, the a
since $N(4 + \sqrt{10}) = N(4 - \sqrt{10}) = 6$.

Lemma E

Lemma E. (Hungerford's Exercise III.3.6(a)) If a and n are integers, $n > 0$, then there exist integers q and r such that $a = qn + r$, where $|r| \le n/2$.

Proof. By the Division Algorithm (Theorem 0.6.3) there are integers q' and r' such that $a = q'n + r'$ with $0 \le r' < |n| = n$. If $0 \le r' \le n/2$ then $q = q'$ and $r = r'$ are the desired integers. If $n/2 < r' < n$, then take $q = q' + 1$ and $r = r' - n$. This gives $-n/2 < r = r' - n < 0$ and so $|r| < n/2$ and $qn + r = (q' + 1)n + (r' - n) = q'n + r' = a$, so q and r are the desired integers.

Lemma E. (Hungerford's Exercise III.3.6(a)) If a and n are integers, $n > 0$, then there exist integers q and r such that $a = qn + r$, where $|r| \le n/2$.

Proof. By the Division Algorithm (Theorem 0.6.3) there are integers q' and r' such that $a = q'n + r'$ with $0 \le r' < |n| = n$. If $0 \le r' \le n/2$ then $q=q'$ and $r=r'$ are the desired integers. If $n/2 < r' < n$, then take $q = q' + 1$ and $r = r' - n$. This gives $-n/2 < r = r' - n < 0$ and so $|r| < n/2$ and $qn + r = (q' + 1)n + (r' - n) = q'n + r' = a$, so q and r are the desired integers.