Modern Algebra

Chapter III. Rings

III.3. Supplement. Gaussian Integers-Proofs of Theorems

- 1 Theorem B (Fraleigh's Theorem 47.7)
- 2 Lemma A (Hungerford's Exercise III.3.3(a)
- 3 Lemma C (Hungerford's Exercise III.3.3(c)
- 4 Lemma E (Hungerford's Exercise III.3.6(a)

Theorem B (Fraleigh's Theorem 47.7)

Theorem B. (Fraleigh's Theorem 47.7) If *D* is an integral domain with a multiplicative norm *N*, then $N(1_D) = 1$ and |N(u)| = 1 for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in *D*, then an element $\pi \in D$ with $|N(\pi)| = p$, for a prime $p \in \mathbb{Z}$, is an irreducible of *D*.

Proof. Let *D* be an integral domain with a multiplicative norm *N*. Then $N(1_D) = N((1_D)(1_D)) = N(1_D)N(1_D)$ and so $N(1_D)$ is either 0 or 1. By Property 1 of the definition of multiplicative norm, we have that $N(1_D) = 1$. If $u \in D$ is a unit then $1 = N(1_D) = N(uu^{-1}) = N(u)N(u^{-1})$. Since N(u) is an integer then $N(u) = \pm 1$ and |N(u)| = 1.

Theorem B (Fraleigh's Theorem 47.7)

Theorem B. (Fraleigh's Theorem 47.7) If *D* is an integral domain with a multiplicative norm *N*, then $N(1_D) = 1$ and |N(u)| = 1 for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in *D*, then an element $\pi \in D$ with $|N(\pi)| = p$, for a prime $p \in \mathbb{Z}$, is an irreducible of *D*.

Proof. Let *D* be an integral domain with a multiplicative norm *N*. Then $N(1_D) = N((1_D)(1_D)) = N(1_D)N(1_D)$ and so $N(1_D)$ is either 0 or 1. By Property 1 of the definition of multiplicative norm, we have that $N(1_D) = 1$. If $u \in D$ is a unit then $1 = N(1_D) = N(uu^{-1}) = N(u)N(u^{-1})$. Since N(u) is an integer then $N(u) = \pm 1$ and |N(u)| = 1.

Now suppose that the units of D are exactly the elements of norm ± 1 . Let $\pi \in D$ be such that $|N(\pi)| = p$ where $p \in \mathbb{Z}$ is prime. Then if $\pi = \alpha\beta$ we have $p = |N(\pi)| = |N(\alpha)N(\beta)|$ so either $|N(\alpha)| = 1$ or $|N(\beta)| = 1$ since p is prime. By hypothesis then either α or β is a unit of D. So $\pi = \alpha\beta$ implies either α or β is a unit; that is, π is irreducible.

Theorem B (Fraleigh's Theorem 47.7)

Theorem B. (Fraleigh's Theorem 47.7) If *D* is an integral domain with a multiplicative norm *N*, then $N(1_D) = 1$ and |N(u)| = 1 for every unit $u \in D$. If, furthermore, every α satisfying $|N(\alpha)| = 1$ is a unit in *D*, then an element $\pi \in D$ with $|N(\pi)| = p$, for a prime $p \in \mathbb{Z}$, is an irreducible of *D*.

Proof. Let *D* be an integral domain with a multiplicative norm *N*. Then $N(1_D) = N((1_D)(1_D)) = N(1_D)N(1_D)$ and so $N(1_D)$ is either 0 or 1. By Property 1 of the definition of multiplicative norm, we have that $N(1_D) = 1$. If $u \in D$ is a unit then $1 = N(1_D) = N(uu^{-1}) = N(u)N(u^{-1})$. Since N(u) is an integer then $N(u) = \pm 1$ and |N(u)| = 1.

Now suppose that the units of D are exactly the elements of norm ± 1 . Let $\pi \in D$ be such that $|N(\pi)| = p$ where $p \in \mathbb{Z}$ is prime. Then if $\pi = \alpha\beta$ we have $p = |N(\pi)| = |N(\alpha)N(\beta)|$ so either $|N(\alpha)| = 1$ or $|N(\beta)| = 1$ since p is prime. By hypothesis then either α or β is a unit of D. So $\pi = \alpha\beta$ implies either α or β is a unit; that is, π is irreducible.

Lemma A

Lemma A. (Hungerford's Exercise III.3.3(a)) With $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = (a + b\sqrt{10})(a - b\sqrt{10})$ = $a^2 - 10b^2$, we have that N is a multiplicative norm on R.

Proof. Let
$$u = a + b\sqrt{10}$$
 and $v = c + d\sqrt{10}$. Then
 $uv = (a + b\sqrt{10})(c + d\sqrt{10}) = ac + 10bd + (ad + bc)\sqrt{10}$ and

$$N(uv) = N(ac+10bd+(ad+bc)\sqrt{10})$$

 $= (ac + 10bd + (ad + bc)\sqrt{10})(ac + 10bd - (ad + bc)\sqrt{10})$

$$= (ac + 10bd)^2 - 10(ad + bc)^2$$

- $= a^{2}c^{2} + 10abcd + 100b^{2}d^{2} 10a^{2}d^{2} 20abcd 10b^{2}c^{2}$
- $= a^2c^2 10a^2d^2 10b^2c^2 + 100b^2d^2$

$$= a^2(c^2 - 10d^2) - 10b^2(c^2 - 10d^2)$$

- $= (a^2 10b^2)(c^2 10d^2)$
- $= N(a + b\sqrt{10})N(c + d\sqrt{10}) = N(u)N(v).$

Lemma A

Lemma A. (Hungerford's Exercise III.3.3(a)) With $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = (a + b\sqrt{10})(a - b\sqrt{10})$ = $a^2 - 10b^2$, we have that N is a multiplicative norm on R.

Proof. Let
$$u = a + b\sqrt{10}$$
 and $v = c + d\sqrt{10}$. Then
 $Av = (a + b\sqrt{10})(c + d\sqrt{10}) = ac + 10bd + (ad + bc)\sqrt{10}$ and
 $N(uv) = N(ac + 10bd + (ad + bc)\sqrt{10})$
 $= (ac + 10bd + (ad + bc)\sqrt{10})(ac + 10bd - (ad + bc)\sqrt{10})$
 $= (ac + 10bd)^2 - 10(ad + bc)^2$
 $= a^2c^2 + 10abcd + 100b^2d^2 - 10a^2d^2 - 20abcd - 10b^2c^2$
 $= a^2c^2 - 10a^2d^2 - 10b^2c^2 + 100b^2d^2$
 $= a^2(c^2 - 10d^2) - 10b^2(c^2 - 10d^2)$
 $= (a^2 - 10b^2)(c^2 - 10d^2)$
 $= N(a + b\sqrt{10})N(c + d\sqrt{10}) = N(u)N(v).$

Lemma A (continued)

Lemma A. (Hungerford's Exercise III.3.3(a)) With $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = (a + b\sqrt{10})(a - b\sqrt{10})$ = $a^2 - 10b^2$, we have that N is a multiplicative norm on R.

Proof (continued). If
$$u = 0 = 0 + 0\sqrt{10}$$
 then $N(u) = N(0) = (0)^2 - 10(0)^2 = 0$.

If $N(u) = N(a + b\sqrt{10}) = a^2 - 10b^2 = 0$ then $a^2 = 10b^2$. ASSUME either *a* or *b* in nonzero. Taking square roots, $\sqrt{a^2} = \sqrt{10b^2}$ or $|a| = \sqrt{10}|b|$. If $b \neq 0$ then we have $\sqrt{10} = |a|/|b| \in \mathbb{Q}$, a CONTRADICTION to the fact that $\sqrt{10}$ is irrational. So b = a = 0. That is, u = 0.

Lemma C

Lemma C. (Hungerford's Exercise III.3.3(c)) With $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = a^2 - 10b^2$, we have that 2, 3, $4 + \sqrt{10}$, and $4 - \sqrt{10}$ are irreducible elements of R.

Proof. ASSUME that 2 is *not* irreducible. Notice that 2 is a nonzero nonunit (since $N(2) = 4 \neq \pm 1$, by part (a)). So, by definition (Definition III.3.3) 2 can be written as a product of two nonunits, 2 = uv. By part (a), 4 = N(2) = N(uv) = N(u)N(v) where $N(u), N(v) \in \mathbb{Z}$. Since u and v are nonunits then by part (b) $N(u), N(v) \neq \pm 1$, and so we must have N(u) = N(v) = 2 or N(u) = N(v) = -2. With $u = a + b\sqrt{10}$ and N(u) = 2 we have $N(u) = a^2 - 10b^2 = 2$ and so $a^2 = 2 + 10b^2$. But this means that $a^2 \equiv 2 \pmod{10}$.

Lemma C

Lemma C. (Hungerford's Exercise III.3.3(c)) With $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = a^2 - 10b^2$, we have that 2, 3, $4 + \sqrt{10}$, and $4 - \sqrt{10}$ are irreducible elements of R.

Proof. ASSUME that 2 is *not* irreducible. Notice that 2 is a nonzero nonunit (since $N(2) = 4 \neq \pm 1$, by part (a)). So, by definition (Definition III.3.3) 2 can be written as a product of two nonunits, 2 = uv. By part (a), 4 = N(2) = N(uv) = N(u)N(v) where $N(u), N(v) \in \mathbb{Z}$. Since *u* and *v* are nonunits then by part (b) $N(u), N(v) \neq \pm 1$, and so we must have N(u) = N(v) = 2 or N(u) = N(v) = -2. With $u = a + b\sqrt{10}$ and N(u) = 2 we have $N(u) = a^2 - 10b^2 = 2$ and so $a^2 = 2 + 10b^2$. But this means that $a^2 \equiv 2 \pmod{10}$.

Lemma C (Hungerford's Exercise III.3.3(c)

Lemma C (continued 1)

Proof (continued). But this means that $a^2 \equiv 2 \pmod{10}$ This cannot happen since:

<i>a</i> (mod 10)	$a^2 \pmod{10}$
0	0
1	1
2	4
3 4	9
4	6
5	5
6	6
7	9
8	4
9	1

With $u = a + b\sqrt{10}$ and N(u) = -2 we have $N(u) = a^2 - 10b^2 = -2$ and so $a^2 = -2 + 10b^2$. But this means that $a^2 \equiv 8 \pmod{10}$.

Lemma C (continued 2)

Proof (continued). But this means that $a^2 \equiv 8 \pmod{10}$ This cannot happen, as shown in the table above. These CONTRADICTIONS show that the assumption that 2 is *not* irreducible is false and hence 2 is irreducible.

ASSUME 3 is *not* irreducible, say 3 = uv for nonunits u and v. As argued for 2, we must have 9 = N(3) = N(u)N(v) where $N(u), N(v) \in \mathbb{Z}$, and we must have either N(u) = N(v) = 3 or N(u) = N(v) = -3. With $u = a + b\sqrt{10}$ and N(u) = 3 we have $N(u) = a^2 - 10b^2 = 3$ and so $a^2 = 3 + 10b^2$. But this means that $a^2 \equiv 3 \pmod{10}$. This cannot happen as shown in the table above. With $u = a + b\sqrt{10}$ and N(u) = -3 we have $N(u) = a^2 - 10b^2 = -3$ and so $a^2 = -3 + 10b^2$. But this means that $a^2 \equiv 7 \pmod{10}$. This cannot happen as shown in the table above. These CONTRADICTIONS show that the assumption that 3 is not irreducible is false and hence 3 is irreducible.

Lemma C (continued 2)

Proof (continued). But this means that $a^2 \equiv 8 \pmod{10}$ This cannot happen, as shown in the table above. These CONTRADICTIONS show that the assumption that 2 is *not* irreducible is false and hence 2 is irreducible.

ASSUME 3 is *not* irreducible, say 3 = uv for nonunits u and v. As argued for 2, we must have 9 = N(3) = N(u)N(v) where $N(u), N(v) \in \mathbb{Z}$, and we must have either N(u) = N(v) = 3 or N(u) = N(v) = -3. With $u = a + b\sqrt{10}$ and N(u) = 3 we have $N(u) = a^2 - 10b^2 = 3$ and so $a^2 = 3 + 10b^2$. But this means that $a^2 \equiv 3 \pmod{10}$. This cannot happen as shown in the table above. With $u = a + b\sqrt{10}$ and N(u) = -3 we have $N(u) = a^2 - 10b^2 = -3$ and so $a^2 = -3 + 10b^2$. But this means that $a^2 \equiv 7 \pmod{10}$. This cannot happen as shown in the table above. These CONTRADICTIONS show that the assumption that 3 is not irreducible is false and hence 3 is irreducible.

Lemma C (continued 3)

Lemma C. (Hungerford's Exercise III.3.3(c)) With $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = a^2 - 10b^2$, we have that 2, 3, $4 + \sqrt{10}$, and $4 - \sqrt{10}$ are irreducible elements of R.

Proof (continued). ASSUME $4 + \sqrt{10}$ is *not* irreducible, say $4 + \sqrt{10} = uv$ for nonunits u and v. As argued for 2, we must have $N(4 + \sqrt{10}) = (4)^2 - 10(1)^2 = 6 = N(u)N(v)$ where $N(u), N(v) \in \mathbb{Z}$ and we must have either $N(u) = \pm 2$ and $N(v) = \pm 3$ (respectively) or $N(u) = \pm 3$ and $N(v) = \pm 2$ (respectively). However, we have seen above that we cannot have $N(u) = \pm 2$ nor $N(u) = \pm 3$, a CONTRADICTION. So the assumption that $4 + \sqrt{10}$ is irreducible.

For the irreducibility of $4 - \sqrt{10}$, the argument is the same as for $4 + \sqrt{10}$, since $N(4 + \sqrt{10}) = N(4 - \sqrt{10}) = 6$.

Lemma C (continued 3)

Lemma C. (Hungerford's Exercise III.3.3(c)) With $R = \{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\}$ and $N : R \to \mathbb{Z}$ as $N(a + b\sqrt{10}) = a^2 - 10b^2$, we have that 2, 3, $4 + \sqrt{10}$, and $4 - \sqrt{10}$ are irreducible elements of R.

Proof (continued). ASSUME $4 + \sqrt{10}$ is *not* irreducible, say $4 + \sqrt{10} = uv$ for nonunits u and v. As argued for 2, we must have $N(4 + \sqrt{10}) = (4)^2 - 10(1)^2 = 6 = N(u)N(v)$ where $N(u), N(v) \in \mathbb{Z}$ and we must have either $N(u) = \pm 2$ and $N(v) = \pm 3$ (respectively) or $N(u) = \pm 3$ and $N(v) = \pm 2$ (respectively). However, we have seen above that we cannot have $N(u) = \pm 2$ nor $N(u) = \pm 3$, a CONTRADICTION. So the assumption that $4 + \sqrt{10}$ is irreducible.

For the irreducibility of $4 - \sqrt{10}$, the argument is the same as for $4 + \sqrt{10}$, since $N(4 + \sqrt{10}) = N(4 - \sqrt{10}) = 6$.

Lemma E

Lemma E. (Hungerford's Exercise III.3.6(a)) If a and n are integers, n > 0, then there exist integers q and r such that a = qn + r, where $|r| \le n/2$.

Proof. By the Division Algorithm (Theorem 0.6.3) there are integers q' and r' such that a = q'n + r' with $0 \le r' < |n| = n$. If $0 \le r' \le n/2$ then q = q' and r = r' are the desired integers. If n/2 < r' < n, then take q = q' + 1 and r = r' - n. This gives -n/2 < r = r' - n < 0 and so |r| < n/2 and qn + r = (q' + 1)n + (r' - n) = q'n + r' = a, so q and r are the desired integers.

Lemma E. (Hungerford's Exercise III.3.6(a)) If *a* and *n* are integers, n > 0, then there exist integers *q* and *r* such that a = qn + r, where $|r| \le n/2$.

Proof. By the Division Algorithm (Theorem 0.6.3) there are integers q' and r' such that a = q'n + r' with $0 \le r' < |n| = n$. If $0 \le r' \le n/2$ then q = q' and r = r' are the desired integers. If n/2 < r' < n, then take q = q' + 1 and r = r' - n. This gives -n/2 < r = r' - n < 0 and so |r| < n/2 and qn + r = (q' + 1)n + (r' - n) = q'n + r' = a, so q and r are the desired integers.

()