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Theorem 111.3.4 (continued 1)

Theorem 111.3.4. Let p and ¢ be nonzero elements in an integral domain
R.

(i) pis prime if and only if (p) is a nonzero prime ideal.

Proof. (i) Let p be prime. Since R is an integral domain then R is
commutative with an identity, so p is in the center of R and by Theorem
[11.2.5(v), (p) ={rp | r € R}. Let ab € (p). Then ab = rp for some r € R
and p | ab. Since p is prime then (by Definition 111.3.3), either p | a or

p | b. But then either a= rip or b = ryp for some r1, r» € R, which
implies that either a € (p) or b € (p). By Theorem [11.2.15, we have that
principal ideal (p) is prime.

Let (p) be a nonzero prime ideal. Let p | ab. Then ab = rp for some

r € R and ab € (p). Since R is commutative, Theorem [11.2.15 implies
that either a € (p) or b € (p). So, by Theorem I11.2.5(v), either a = r1p or
b = ryp; that is, either p| a or p | b. Hence p is prime.
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Theorem 111.3.4

Theorem 111.3.4. Let p and c be nonzero elements in an integral domain
R.

(i) pis prime if and only if (p) is a nonzero prime ideal.
(ii) c is irreducible if and only if (¢) is maximal in the set S of all
proper principal ideals of R.
(iii) Every prime element of R is irreducible.
(iv) If R is a principal ideal domain, then p is prime if and only if
p is irreducible.

(v) Every associate of an irreducible (respectively, prime)
element of R is irreducible (respectively, prime).

(vi) The only divisors of an irreducible element of R are its
associates and the units of R.
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Theorem 111.3.4 (continued 2)

Theorem 111.3.4. Let p and c be nonzero elements in an integral domain
R.

(ii) c is irreducible if and only if (¢) is maximal in the set S of all
proper principal ideals of R.

Proof. (ii) Suppose c is irreducible. Then by definition, ¢ is a nonunit
and so by Theorem 111.3.2(iv), (c) is a proper ideal of R (i.e., (c) # R). If
(c) C (d) then by Theorem 111.3.2(i), ¢ = dx for some x € R. Since c is
irreducible then (by definition) either d is a unit or x is a unit. If d is a
unit then by Theorem 111.3.2(iv), (d) = R. If x is a unit then by Theorem
[11.3.2(vi), c and d are associates and then by Theorem I11.3.2(ii),

(c) = (d). Hence (c) is maximal in the set of proper principal ideals of R.
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Theorem 111.3.4

Theorem 111.3.4 (continued 3)

Theorem 111.3.4. Let p and ¢ be nonzero elements in an integral domain
R.

(i) cis irreducible if and only if (c¢) is maximal in the set S of all
proper principal ideals of R.

Proof (continued). (ii) Conversely, suppose (c) is maximal in set S.
Then c is a nonzero nonunit in R by Theorem 111.3.2(iv) since (c¢) # R. If
¢ = ab then (c¢) C (a) by Theorem I11.3.2(i), whence (¢) = (a) or (a) = R.
If (a) = R then ais a unit by Theorem I11.3.2(iv). If (c) = (a) then a = ¢y
(as in part (i) or by Theorem I11.3.2(i)) and ¢ = ab = (cy)b = c(yb).
Since R is an integral domain then by left cancellation (which holds by
Lemma I11.1.A) 1g = yb whence b is a unit. Hence, either a is a unit or b
is a unit, and c is irreducible.
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Theorem 111.3.4

Theorem 111.3.4 (continued 5)

Theorem 111.3.4. Let p and c be nonzero elements in an integral domain
R.

(iv) If R is a principal ideal domain, then p is prime if and only if
p is irreducible.

Proof. (iv) Suppose R is a principal ideal domain. If p is irreducible then
by (ii), (p) is maximal in the set of all proper principal ideals of R. Since
R is a principal ideal domain then (by definition) every ideal is principal, so
in fact (p) is maximal in R itself. Since R is an integral domain by
hypothesis, then (by definition) R has an identity. So by Theorem 111.2.19,
(p) is prime. By (i), p is prime (notice that p # 0 since the definition of
“irreducible” implies p # 0).

Conversely, suppose p is prime. Then by (iii) p is irreducible (all we need
for this is the hypothesis that R is an integral domain).
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Theorem 111.3.4 (continued 4)

Theorem 111.3.4. Let p and ¢ be nonzero elements in an integral domain
R.

(iii) Every prime element of R is irreducible.

Proof. (iii) Let p be prime in R. If p = ab then either p|aor p | b.
WLOG, say p | a. Then a = px for some x € R and so p = ab = pxb.
Since R is an integral domain (no zero divisors) then left cancellation
holds (by Lemma Ill.1.A) and 1g = xb. Therefore b is a unit. So (by
definition) p is irreducible.
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Theorem 111.3.4 (continued 6)

Theorem 111.3.4. Let p and c be nonzero elements in an integral domain

R. (v) Every associate of an irreducible (respectively, prime)

element of R is irreducible (respectively, prime).

Proof. (v) Let ¢ be irreducible and d an associate of c¢. Then by Theorem
[11.3.2(vi) ¢ = du where u € R is a unit. To show d is irreducible, suppose
d = ab. Then ¢ = du = abu, whence (since c is irreducible) either a or bu
is a unit. But if bu is a unit then (bu)v =1 for some v € R and so

b(uv) =1 and b is a unit. So either a or b is a unit and d is irreducible.
Let ¢ be prime and d an associate of c¢. Then by Theorem 111.3.2(vi),

¢ = du where u € R is a unit. To show d is prime, suppose d | ab. Then
dx = ab for some x € R. So dux = abu or cx = abu. Since c is prime,
either ¢ divides a or ¢ divides bu. If ¢ divides a then cy = a for some

y € R and so duy = (du)y = cy = a and d divides a. If ¢ divides bu then
cz = bu for some z € R, or (du)z = bu or dz = b (since u is a unit) and
d divides b. So d is prime.
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Theorem 111.3.4

Theorem 111.3.4 (continued 7)

Theorem 111.3.4. Let p and c be nonzero elements in an integral domain
R.

(vi) The only divisors of an irreducible element of R are its
associates and the units of R.

Proof. (vi) Let c be irreducible and suppose a is a divisor of ¢: a | c. By
Theorem 111.3.2(i), (¢) C (a). By (ii), since c is irreducible, then (c) is
maximal in the set of principal ideals of R. So it must be that either

(a) =(c) or (a) = R. If (a) = (¢) then a is an associate of ¢ by Theorem
[11.3.2(ii). If (a) = R then ais a unit by Theorem I11.3.2(iv). So a is either
an associate of ¢ or a unit. That is, the divisors of ¢ are its associates and
the units of R, as claimed. O
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Theorem 111.3.7

Theorem 111.3.7

Theorem 111.3.7. Every principal ideal domain R is a unique factorization
domain. That is, “every PID is a UFD."”

Proof. Let S be the set of all nonzero nonunit elements of R which
cannot be factored as a finite product of irreducible elements. We first
show that S is empty (and so all nonzero nonunits have at least one
factorization into irreducibles).

ASSUME S is not empty and a € S. Then a is not a unit and by Theorem
[11.3.2(iv), (a) # R is a proper ideal of R. By Theorem I11.2.18, (a) C (c)
where (¢) is some maximal ideal (since R is a principal ideal domain, by
definition, all ideals are principal). By Theorem I11.3.4(ii), c is irreducible.
Since (a) C (¢) then by Theorem 111.3.2(i), ¢ divides a. So there is an
irreducible ¢ dividing a for any a € S. Hence, by the AXIOM OF CHOICE,
for each a € S there is an irreducible divisor ¢, of a in R. Since ¢, | a then
there exists a x5 € R such that c;x; = a. Since R is an integral domain it
has no zero divisors and this x, is unique (c,xa = C,y, implies

ca(xa — ya) = 0 implies x; — y, = O since there are no zero divisors).

Modern Algebra March 26, 2024 12 / 24

Lemma I11.3.6

Lemma 111.3.6

Lemma 111.3.6. If R is a principal ideal ring and (a1) C (a2) C --- is a
chain of ideals in R, then for some positive integer n, (a;) = (an) for all
ji=>n.

Proof. Let A =U;(a;). We claim that A is an ideal. If b,c € A, then

b € (aj) and c € (a;) for some i,j. WLOG, say i > j. Consequently,

(aj) C (ai) and b, c € (a;). Since (a;) is an ideal then by Theorem I11.2.2(i)
b—c € (aj) C A Similarly if r € R and b € A then b € (a;) for some i,
whence rb € (a;) C A and br € (a;) C A by Theorem 111.2.2(ii). Then,
Theorem 111.2.2 implies that A is an ideal. Since R is a principal ideal ring
(by definition, all ideals are principal) then A is principal, say A = (a).
Since a € A= U(a;) then a € (a,) for some n. By Definition 111.2.4 (of a
generating set of an ideal), A = (a) C (an). Therefore, for every j > n we
have A = (a) C (an) C (aj) C A and whence (a;) = (an). O

Modern Algebra March 26, 2024 11 /24

Theorem 111.3.7

Theorem 111.3.7 (continued 1)

Theorem 111.3.7. Every principal ideal domain R is a unique factorization
domain. That is, “every PID is a UFD.”

Proof (continued). We claim x, € S. First, ASSUME that x;, is a unit
(in which case x; € S by the definition of S), then a = c,x, implies by
Theorem [11.3.2(iv) that a and c, are associates. Then by Theorem
[11.3.4(v), a is irreducible since ¢, is irreducible. But then a is a finite
product of irreducibles (namely, a itself) and so a ¢ S, a
CONTRADICTION. So x, is not a unit. Let x, be a nonunit and ASSUME
X, € S. Then x, has a factorization as a product of irreducibles, whence a
also does (just add irreducible ¢, to the product), which implies that

a¢ S, a CONTRADICTION. So it must be that x, € S.
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Theorem 111.3.7 (continued 2)

Proof (continued). Furthermore, we claim that (a) is properly contained
in (x5). Since x; | a then by Theorem 111.3.2(i) we have (a) C (xa).
ASSUME (a) = (x5). Then by Theorem I11.3.2(ii), a and x, are associates
and by Theorem 111.3.2(vi) (since R is an integral domain) x, = ay for
some unit y € R, whence a = x,¢, = ayc, and 1 = yc, (cancellation holds
in an integral domain by Lemma IlI.1.A). But then ¢, is a unit, a
CONTRADICTION since ¢, is irreducible (and by definition, “irreducibles”
are nonunits). Therefore, () C (xa).

We now define f : S — S as f(a) = x, where x, is described above (and f
is well-defined since x, is uniquely determined by c,; but the Axiom of
Choice is required to get ¢,). For each n € NU {0}, define f, = f. Then
by the Recursion Theorem (Theorem 0.6.2) there exists a function

¢ :NU{0} — S such that ¢(0) = a and

o(n+1) = f(e(n)) = f(p(n)) = x,(n) (this last one from the definition
of f) for all n € NU {0}.
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Theorem 111.3.7

Theorem 111.3.7 (continued 4)

Theorem 111.3.7. Every principal ideal domain R is a unique factorization
domain. That is, “every PID is a UFD.”

Proof (continued). By Theorem I11.3.2(vi), we then have that ¢; = din
for some unit r; € R (R is given to be an integral domain). So
Cc1Cp - Cy = dids - - - dy, implies that (d;rl)C2C3 cecp=didr---di - dy
Oor nNcaC3 -+ Ch = d1d2 s d,'_ld,'+1 ce dm. (VVLOG n< m) Then we
similarly have that rira---rpy = dydg... d, .

N——

m—n factors
ASSUME m — n > 0. Then we can reverse the argument above and use
the facts that d,, is prime (Theorem 111.3.4(iv)) and d,, divides rirp---rm
to see that d, must divide some unit r;. But then d,x = r; for some
x € R. But since r; is a unit, then da(xrj_l) =1 (integral domains have 1)
and so d,, is a unit, CONTRADICTING the fact that d, is irreducible and
hence is not a unit (by the definition of “irreducible”). So m — n =0,
m = n, and (ii) of the definition of UFD holds. O
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Theorem 111.3.7

Theorem 111.3.7 (continued 3)

Proof (continued). Denote ¢(n) € S as a, and then we have the
sequence ag = a, a1, a, - - - such that (since p(n + 1) = x,(n)):

a1 = Xa; 32 = Xa;; 83 = Xay; "+ ; dntl = Xa,; - - - . Consequently, since from
the previous paragraph (a) € (x,), we have

(a) € (a1) € (a2) € (a3) € - -, but this CONTRADICTS Lemma 111.3.6,
so the assumption that S is not empty is false, and so S = @. That is,
every nonzero nonunit in R has a factorization as a finite product of
irreducibles and (i) of the definition on UFD follows.

Finally, if cicp -+ - ¢, = dids - - - d,, are two factorizations of an element of
R into a product of irreducibles, then c; is prime by Theorem 111.3.4(iv)
and so (by definition of prime, and some induction) ¢; divides some d;.
Since d; is irreducible, then by Theorem 111.3.4(vi) ¢; and d; are associates
(since c; is irreducible, it is not a unit).
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Theorem 111.3.9

Theorem 111.3.9

Theorem 111.3.9. Every Euclidean ring R is a principal ideal ring with
identity. Consequently every Euclidean domain is a unique factorization
domain.

Proof. If | is a nonzero ideal in R, choose a € [ such that ¢(a) is the
least nonnegative integer in the set {o(x) | x # 0;x € I} (where

¢ : R\ {0} — N as described in Definition 111.3.8; so a is a “p-least
nonzero element of ["). If b € | then b= ga+ r for some q,r € R with
either r =0 or r # 0 and ¢(r) < p(a) (by part (ii) of Definition 111.3.8).
Since b€ [ and ga €/ (I is an ideal), then r = b— ga € I. Since ¢(a) is
minimal as chosen, then we cannot have ¢(r) < ¢(a) if r # 0, and so it
must be that r = 0 (thatis, r € / but r € {x € I | x # 0}; the x's for
which we consider ¢(x) above). Whence b = ga and a divides b.
Therefore, every element of / is a multiple of a. So I C Ra.
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Theorem 111.3.9 (continued)

Proof (continued). Since Euclidean ring R is a commutative ring, a is in
the center of R and so by Theorem 111.2.5(iii), Ra C (a). Since a € /, then
(a) C 1. So we have | C Ra C (a) C I. Therefore | = Ra = (a) and
arbitrary ideal / of R is principal. So R is a principal ideal ring.

In the previous paragraph, we showed that any nonzero ideal / satisfies
| = Ra = (a). Since R itself is a nonzero ideal of R, then we have

R = Ra = (a) for some a € R. Consequently, for some e € R we have
a=ea=ae. If b€ R = Rathen b= xa for some x € R. Therefore,
be = (xa)e = x(ae) = xa = b, whence e is a multiplicative identity
element for R.

In the first paragraph we have that a Euclidean ring is a principal idea ring.
By Theorem I11.3.7, every principal ideal domain is a unique factorization
domain. “Whence" every Euclidean domain is a unique factorization
domain. O
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Theorem 111.3.11

Theorem 111.3.11 (continued 1)

Theorem 111.3.11. Let a1, a, ..
R with identity.
(i) d € R is a greatest common divisor of {aj, az,...,an} such
that d = nai + nax + -+ - + rpa, for some r; € R if and only
i (d) = (a1) + (22) + - + (an).
Proof (continued). (i) Since (d) is an ideal it is closed under addition
and so (a1) + (a2) + -+ (an) C (d). But
d=na+na+- --ra,€(a1)+(a)+---+(an). So
(a1) + (a2) + - - -+ (an) is an ideal (Theorem 111.2.6(i)) containing d and so
(d) C (a1) + (a2) + - - + (an). Therefore (d) = (a1) + (a2) + -+ - + (an).
Now suppose (d) = (a1) + (a2) + - - - + (an). Since R has an identity and
ai, a,...,an are in the center of R (since R is commutative), by Theorem
[11.2.5(v) we have that (a;) = a;R = Ra; for each a;. Also, d € (d) by
Theorem 11.2.5(iv), so d = rna; + nas + - - - + rya, for some r; € R. Now
(d) = (a1) + (a2) + - - + (an) implies that each (a;) C (d) and so by
Theorem 111.3.2(i), d | a; for each a;. So d is a divisor of each a;.

., ap be elements of a commutative ring
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Theorem 111.3.11

Theorem 111.3.11. Let a1, a, ..
R with identity.

., ap be elements of a commutative ring

(i) d € R is a greatest common divisor of {a1,a,...,an} such
that d = nai + nax + - -+ + rpa, for some r; € R if and only
if (d) = (a1) + (a2) + -+~ + (an).

(i) If R is a principal ideal ring, then a greatest common divisor
of ai,an,...,a, exists and every one is of the form
rai+ mas + - rpan, where each r; € R.

(iii) If R is a unique factorization domain, then there exists a
greatest common divisor of a1, as, ..., an.
Proof. (i) Suppose d = ria; + rnax + - -+ + rpa, is a greatest common
divisor of {a1,a2,...,an}. Then by Definition 111.3.10(i),
d|ai,d]|a,...,d| a, and so by Theorem 111.3.2(i),
(a1) C (d),(a2) C (d),...,(an) C (d).
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Theorem 111.3.11 (continued 2)

Theorem 111.3.11. Let a1, a, ..
R with identity.

., ap be elements of a commutative ring

(i) d € R is a greatest common divisor of {a1, az,...,an} such
that d = nai + nax + - -+ + rpa, for some r; € R if and only
if (d) =(a1)+ (a2)+---+ (an).

Proof (continued). (i) Suppose now that c also divides each a;: ¢ | a;
for each a;. Then Theorem 111.3.2(i) implies that (a;) C (c) for each a;.
But then (d) = (a1) + (a2) + -+ - + (an) C (c) (since (c) is an ideal and
hence closed under addition) and again by Theorem 111.3.2(i) we have that
c | d. Therefore, by Definition 111.3.10, d is the greatest common divisor of
di,d2,...,dn-
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Theorem 111.3.11 (continued 3) Theorem 111.3.11 (continued 4)

Theorem 111.3.11. Let a1, as, ..., a, be elements of a commutative ring
R with identity.
(iii) If R is a unique factorization domain, then there exists a
greatest common divisor of a, as, ..., an.

Theorem 111.3.11. Let a3, a», ..., a, be elements of a commutative ring
R with identity.

(i) If R is a principal ideal ring, then a greatest common divisor
of aj,as,...,a, exists and every one is of the form

Proof. (iii) Suppose R is a unique factorization domain. Then for each a;
rnai+ mas + - rpa,, where each r; € R.

we have a; = ¢, ¢y "% -+ - ¢, for distinct irreducible c's and with each

mj; > 0 (we get the c's for each a; and then use exponents of 0 as

Proof. (ii) Suppose R is a principal ideal ring and let a1, a5,...,a, € R. necessary). Then d = CflcéQ .-kt where ki = min{myj, myj, ..., my} is

By Theorem 111.2.6(i), (a1) + (a2) + - - - + (an) is an ideal of R. Since R is a divisor of each a1, as, ..., a,.

a principal ideal ring, then (a1) + (a2) + -+ - + (an) = (d) for some d € R. o _ _ _ _

By (i), we have that d is a greatest common divisor of aj, as,...,a, and is Let ¢ be a divisor Qf each a;. Write ¢ in terms of |.rreduables. d,-:_

of the form d = ra; + may + - - - + ryap,. c= d.1d2 o dyp, which can be d(.)n.e since R |;<,na L::lque f?:tonzatlon
domain. Since ¢ = did> - - d; divides a; = ¢; "¢y, - - ¢; ", then each d;

divides a;. Now each of the ¢;'s are irreducible (and so are not units by
definition), so d; | a; implies that irreducible d; = ¢; for some ;.

Theorem 111.3.11 (continued 5)

Theorem 111.3.11. Let a1, a5, ..., a, be elements of a commutative ring
R with identity.

(iii) If R is a unique factorization domain, then there exists a

greatest common divisor of a, as, ..., an.
Proof (continued). (iii) Hence ¢ = ¢ ¢5? - - - ¢/ for some n; > 0. If
each n; < k; then ¢ | d. ASSUME n;- > k;j« for some i*. Then there is an
aj where aj = ¢ ¢y - - - C,-Ii"* -+ ¢ and ¢ does not divide this a;, a
CONTRADICTION. So each nj < kj and c | d. That is, d is a greatest
common divisor. O



