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Theorem III.3.4

Theorem III.3.4

Theorem III.3.4. Let p and c be nonzero elements in an integral domain
R.

(i) p is prime if and only if (p) is a nonzero prime ideal.

(ii) c is irreducible if and only if (c) is maximal in the set S of all
proper principal ideals of R.

(iii) Every prime element of R is irreducible.

(iv) If R is a principal ideal domain, then p is prime if and only if
p is irreducible.

(v) Every associate of an irreducible (respectively, prime)
element of R is irreducible (respectively, prime).

(vi) The only divisors of an irreducible element of R are its
associates and the units of R.
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Theorem III.3.4

Theorem III.3.4 (continued 1)

Theorem III.3.4. Let p and c be nonzero elements in an integral domain
R.

(i) p is prime if and only if (p) is a nonzero prime ideal.

Proof. (i) Let p be prime. Since R is an integral domain then R is
commutative with an identity, so p is in the center of R and by Theorem
III.2.5(v), (p) = {rp | r ∈ R}. Let ab ∈ (p). Then ab = rp for some r ∈ R
and p | ab. Since p is prime then (by Definition III.3.3), either p | a or
p | b. But then either a = r1p or b = r2p for some r1, r2 ∈ R, which
implies that either a ∈ (p) or b ∈ (p). By Theorem III.2.15, we have that
principal ideal (p) is prime.

Let (p) be a nonzero prime ideal. Let p | ab. Then ab = rp for some
r ∈ R and ab ∈ (p). Since R is commutative, Theorem III.2.15 implies
that either a ∈ (p) or b ∈ (p). So, by Theorem III.2.5(v), either a = r1p or
b = r2p; that is, either p | a or p | b. Hence p is prime.
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Theorem III.3.4

Theorem III.3.4 (continued 2)

Theorem III.3.4. Let p and c be nonzero elements in an integral domain
R.

(ii) c is irreducible if and only if (c) is maximal in the set S of all
proper principal ideals of R.

Proof. (ii) Suppose c is irreducible. Then by definition, c is a nonunit
and so by Theorem III.3.2(iv), (c) is a proper ideal of R (i.e., (c) 6= R). If
(c) ⊂ (d) then by Theorem III.3.2(i), c = dx for some x ∈ R. Since c is
irreducible then (by definition) either d is a unit or x is a unit. If d is a
unit then by Theorem III.3.2(iv), (d) = R. If x is a unit then by Theorem
III.3.2(vi), c and d are associates and then by Theorem III.3.2(ii),
(c) = (d). Hence (c) is maximal in the set of proper principal ideals of R.

() Modern Algebra March 26, 2024 5 / 24



Theorem III.3.4

Theorem III.3.4 (continued 3)

Theorem III.3.4. Let p and c be nonzero elements in an integral domain
R.

(ii) c is irreducible if and only if (c) is maximal in the set S of all
proper principal ideals of R.

Proof (continued). (ii) Conversely, suppose (c) is maximal in set S .
Then c is a nonzero nonunit in R by Theorem III.3.2(iv) since (c) 6= R. If
c = ab then (c) ⊂ (a) by Theorem III.3.2(i), whence (c) = (a) or (a) = R.
If (a) = R then a is a unit by Theorem III.3.2(iv). If (c) = (a) then a = cy
(as in part (i) or by Theorem III.3.2(i)) and c = ab = (cy)b = c(yb).
Since R is an integral domain then by left cancellation (which holds by
Lemma III.1.A) 1R = yb whence b is a unit. Hence, either a is a unit or b
is a unit, and c is irreducible.
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Theorem III.3.4

Theorem III.3.4 (continued 4)

Theorem III.3.4. Let p and c be nonzero elements in an integral domain
R.

(iii) Every prime element of R is irreducible.

Proof. (iii) Let p be prime in R. If p = ab then either p | a or p | b.
WLOG, say p | a. Then a = px for some x ∈ R and so p = ab = pxb.
Since R is an integral domain (no zero divisors) then left cancellation
holds (by Lemma III.1.A) and 1R = xb. Therefore b is a unit. So (by
definition) p is irreducible.
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Theorem III.3.4

Theorem III.3.4 (continued 5)

Theorem III.3.4. Let p and c be nonzero elements in an integral domain
R.

(iv) If R is a principal ideal domain, then p is prime if and only if
p is irreducible.

Proof. (iv) Suppose R is a principal ideal domain. If p is irreducible then
by (ii), (p) is maximal in the set of all proper principal ideals of R. Since
R is a principal ideal domain then (by definition) every ideal is principal, so
in fact (p) is maximal in R itself. Since R is an integral domain by
hypothesis, then (by definition) R has an identity. So by Theorem III.2.19,
(p) is prime. By (i), p is prime (notice that p 6= 0 since the definition of
“irreducible” implies p 6= 0).

Conversely, suppose p is prime. Then by (iii) p is irreducible (all we need
for this is the hypothesis that R is an integral domain).
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Theorem III.3.4

Theorem III.3.4 (continued 5)
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Theorem III.3.4

Theorem III.3.4 (continued 6)

Theorem III.3.4. Let p and c be nonzero elements in an integral domain
R. (v) Every associate of an irreducible (respectively, prime)

element of R is irreducible (respectively, prime).

Proof. (v) Let c be irreducible and d an associate of c . Then by Theorem
III.3.2(vi) c = du where u ∈ R is a unit. To show d is irreducible, suppose
d = ab. Then c = du = abu, whence (since c is irreducible) either a or bu
is a unit. But if bu is a unit then (bu)v = 1 for some v ∈ R and so
b(uv) = 1 and b is a unit. So either a or b is a unit and d is irreducible.
Let c be prime and d an associate of c . Then by Theorem III.3.2(vi),
c = du where u ∈ R is a unit. To show d is prime, suppose d | ab. Then
dx = ab for some x ∈ R. So dux = abu or cx = abu. Since c is prime,
either c divides a or c divides bu. If c divides a then cy = a for some
y ∈ R and so duy = (du)y = cy = a and d divides a. If c divides bu then
cz = bu for some z ∈ R, or (du)z = bu or dz = b (since u is a unit) and
d divides b. So d is prime.
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Theorem III.3.4

Theorem III.3.4 (continued 7)

Theorem III.3.4. Let p and c be nonzero elements in an integral domain
R.

(vi) The only divisors of an irreducible element of R are its
associates and the units of R.

Proof. (vi) Let c be irreducible and suppose a is a divisor of c : a | c . By
Theorem III.3.2(i), (c) ⊂ (a). By (ii), since c is irreducible, then (c) is
maximal in the set of principal ideals of R. So it must be that either
(a) = (c) or (a) = R. If (a) = (c) then a is an associate of c by Theorem
III.3.2(ii). If (a) = R then a is a unit by Theorem III.3.2(iv). So a is either
an associate of c or a unit. That is, the divisors of c are its associates and
the units of R, as claimed.
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Lemma III.3.6

Lemma III.3.6

Lemma III.3.6. If R is a principal ideal ring and (a1) ⊂ (a2) ⊂ · · · is a
chain of ideals in R, then for some positive integer n, (aj) = (an) for all
j ≥ n.

Proof. Let A = ∪i (ai ). We claim that A is an ideal. If b, c ∈ A, then
b ∈ (ai ) and c ∈ (aj) for some i , j . WLOG, say i ≥ j . Consequently,
(aj) ⊂ (ai ) and b, c ∈ (ai ). Since (ai ) is an ideal then by Theorem III.2.2(i)
b − c ∈ (ai ) ⊂ A. Similarly if r ∈ R and b ∈ A then b ∈ (ai ) for some i ,
whence rb ∈ (ai ) ⊂ A and br ∈ (ai ) ⊂ A by Theorem III.2.2(ii). Then,
Theorem III.2.2 implies that A is an ideal.

Since R is a principal ideal ring
(by definition, all ideals are principal) then A is principal, say A = (a).
Since a ∈ A = ∪(ai ) then a ∈ (an) for some n. By Definition III.2.4 (of a
generating set of an ideal), A = (a) ⊂ (an). Therefore, for every j ≥ n we
have A = (a) ⊂ (an) ⊂ (aj) ⊂ A and whence (aj) = (an).
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Theorem III.3.7

Theorem III.3.7

Theorem III.3.7. Every principal ideal domain R is a unique factorization
domain. That is, “every PID is a UFD.”
Proof. Let S be the set of all nonzero nonunit elements of R which
cannot be factored as a finite product of irreducible elements. We first
show that S is empty (and so all nonzero nonunits have at least one
factorization into irreducibles).

ASSUME S is not empty and a ∈ S . Then a is not a unit and by Theorem
III.3.2(iv), (a) 6= R is a proper ideal of R. By Theorem III.2.18, (a) ⊂ (c)
where (c) is some maximal ideal (since R is a principal ideal domain, by
definition, all ideals are principal). By Theorem III.3.4(ii), c is irreducible.
Since (a) ⊂ (c) then by Theorem III.3.2(i), c divides a. So there is an
irreducible c dividing a for any a ∈ S . Hence, by the AXIOM OF CHOICE,
for each a ∈ S there is an irreducible divisor ca of a in R. Since ca | a then
there exists a xa ∈ R such that caxa = a. Since R is an integral domain it
has no zero divisors and this xa is unique (caxa = caya implies
ca(xa − ya) = 0 implies xa − ya = 0 since there are no zero divisors).
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Theorem III.3.7

Theorem III.3.7 (continued 1)

Theorem III.3.7. Every principal ideal domain R is a unique factorization
domain. That is, “every PID is a UFD.”

Proof (continued). We claim xa ∈ S . First, ASSUME that xa is a unit
(in which case xa 6∈ S by the definition of S), then a = caxa implies by
Theorem III.3.2(iv) that a and ca are associates. Then by Theorem
III.3.4(v), a is irreducible since ca is irreducible. But then a is a finite
product of irreducibles (namely, a itself) and so a 6∈ S , a
CONTRADICTION. So xa is not a unit. Let xa be a nonunit and ASSUME
xa 6∈ S . Then xa has a factorization as a product of irreducibles, whence a
also does (just add irreducible ca to the product), which implies that
a 6∈ S , a CONTRADICTION. So it must be that xa ∈ S .
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Theorem III.3.7

Theorem III.3.7 (continued 2)

Proof (continued). Furthermore, we claim that (a) is properly contained
in (xa). Since xa | a then by Theorem III.3.2(i) we have (a) ⊂ (xa).
ASSUME (a) = (xa). Then by Theorem III.3.2(ii), a and xa are associates
and by Theorem III.3.2(vi) (since R is an integral domain) xa = ay for
some unit y ∈ R, whence a = xaca = ayca and 1 = yca (cancellation holds
in an integral domain by Lemma III.1.A). But then ca is a unit, a
CONTRADICTION since ca is irreducible (and by definition, “irreducibles”
are nonunits). Therefore, (a) ( (xa).
We now define f : S → S as f (a) = xa where xa is described above (and f
is well-defined since xa is uniquely determined by ca; but the Axiom of
Choice is required to get ca). For each n ∈ N ∪ {0}, define fn = f . Then
by the Recursion Theorem (Theorem 0.6.2) there exists a function
ϕ : N ∪ {0} → S such that ϕ(0) = a and
ϕ(n + 1) = fn(ϕ(n)) = f (ϕ(n)) = xϕ(n) (this last one from the definition
of f ) for all n ∈ N ∪ {0}.
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Theorem III.3.7 (continued 2)
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Theorem III.3.7

Theorem III.3.7 (continued 3)

Proof (continued). Denote ϕ(n) ∈ S as an and then we have the
sequence a0 = a, a1, a2, . . . such that (since ϕ(n + 1) = xϕ(n)):
a1 = xa; a2 = xa1 ; a3 = xa2 ; · · · ; an+1 = xan ; · · · . Consequently, since from
the previous paragraph (a) ( (xa), we have
(a) ( (a1) ( (a2) ( (a3) ( · · · , but this CONTRADICTS Lemma III.3.6,
so the assumption that S is not empty is false, and so S = ∅. That is,
every nonzero nonunit in R has a factorization as a finite product of
irreducibles and (i) of the definition on UFD follows.

Finally, if c1c2 · · · cn = d1d2 · · · dm are two factorizations of an element of
R into a product of irreducibles, then c1 is prime by Theorem III.3.4(iv)
and so (by definition of prime, and some induction) c1 divides some di .
Since di is irreducible, then by Theorem III.3.4(vi) c1 and di are associates
(since c1 is irreducible, it is not a unit).
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Theorem III.3.7

Theorem III.3.7 (continued 4)

Theorem III.3.7. Every principal ideal domain R is a unique factorization
domain. That is, “every PID is a UFD.”

Proof (continued). By Theorem III.3.2(vi), we then have that c1 = di r1
for some unit r1 ∈ R (R is given to be an integral domain). So
c1c2 · · · cn = d1d2 · · · dm implies that (di r1)c2c3 · · · cn = d1d2 · · · di · · · dm

or r1c2c3 · · · cn = d1d2 · · · di−1di+1 · · · dm. (WLOG n ≤ m.) Then we
similarly have that r1r2 · · · rm = dαdβ . . . dω︸ ︷︷ ︸

m−n factors

.

ASSUME m − n > 0. Then we can reverse the argument above and use
the facts that dα is prime (Theorem III.3.4(iv)) and dα divides r1r2 · · · rm
to see that dα must divide some unit rj . But then dαx = rj for some
x ∈ R. But since rj is a unit, then dα(xr−1

j ) = 1 (integral domains have 1)
and so dα is a unit, CONTRADICTING the fact that dα is irreducible and
hence is not a unit (by the definition of “irreducible”). So m − n = 0,
m = n, and (ii) of the definition of UFD holds.
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Theorem III.3.9

Theorem III.3.9

Theorem III.3.9. Every Euclidean ring R is a principal ideal ring with
identity. Consequently every Euclidean domain is a unique factorization
domain.

Proof. If I is a nonzero ideal in R, choose a ∈ I such that ϕ(a) is the
least nonnegative integer in the set {ϕ(x) | x 6= 0; x ∈ I} (where
ϕ : R \ {0} → N as described in Definition III.3.8; so a is a “ϕ-least
nonzero element of I”). If b ∈ I then b = qa + r for some q, r ∈ R with
either r = 0 or r 6= 0 and ϕ(r) < ϕ(a) (by part (ii) of Definition III.3.8).
Since b ∈ I and qa ∈ I (I is an ideal), then r = b − qa ∈ I . Since ϕ(a) is
minimal as chosen, then we cannot have ϕ(r) < ϕ(a) if r 6= 0, and so it
must be that r = 0 (that is, r ∈ I but r 6∈ {x ∈ I | x 6= 0}; the x ’s for
which we consider ϕ(x) above). Whence b = qa and a divides b.
Therefore, every element of I is a multiple of a. So I ⊂ Ra.
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Theorem III.3.9

Theorem III.3.9 (continued)

Proof (continued). Since Euclidean ring R is a commutative ring, a is in
the center of R and so by Theorem III.2.5(iii), Ra ⊂ (a). Since a ∈ I , then
(a) ⊂ I . So we have I ⊂ Ra ⊂ (a) ⊂ I . Therefore I = Ra = (a) and
arbitrary ideal I of R is principal. So R is a principal ideal ring.

In the previous paragraph, we showed that any nonzero ideal I satisfies
I = Ra = (a). Since R itself is a nonzero ideal of R, then we have
R = Ra = (a) for some a ∈ R. Consequently, for some e ∈ R we have
a = ea = ae. If b ∈ R = Ra then b = xa for some x ∈ R. Therefore,
be = (xa)e = x(ae) = xa = b, whence e is a multiplicative identity
element for R.

In the first paragraph we have that a Euclidean ring is a principal idea ring.
By Theorem III.3.7, every principal ideal domain is a unique factorization
domain. “Whence” every Euclidean domain is a unique factorization
domain.
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Theorem III.3.9 (continued)
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Theorem III.3.9

Theorem III.3.9 (continued)
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Theorem III.3.11

Theorem III.3.11

Theorem III.3.11. Let a1, a2, . . . , an be elements of a commutative ring
R with identity.

(i) d ∈ R is a greatest common divisor of {a1, a2, . . . , an} such
that d = r1a1 + r2a2 + · · ·+ rnan for some ri ∈ R if and only
if (d) = (a1) + (a2) + · · ·+ (an).

(ii) If R is a principal ideal ring, then a greatest common divisor
of a1, a2, . . . , an exists and every one is of the form
r1a1 + r2a2 + · · · rnan, where each ri ∈ R.

(iii) If R is a unique factorization domain, then there exists a
greatest common divisor of a1, a2, . . . , an.

Proof. (i) Suppose d = r1a1 + r2a2 + · · ·+ rnan is a greatest common
divisor of {a1, a2, . . . , an}. Then by Definition III.3.10(i),
d | a1, d | a2, . . . , d | an and so by Theorem III.3.2(i),
(a1) ⊂ (d), (a2) ⊂ (d), . . . , (an) ⊂ (d).
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Theorem III.3.11

Theorem III.3.11 (continued 1)

Theorem III.3.11. Let a1, a2, . . . , an be elements of a commutative ring
R with identity.

(i) d ∈ R is a greatest common divisor of {a1, a2, . . . , an} such
that d = r1a1 + r2a2 + · · ·+ rnan for some ri ∈ R if and only
if (d) = (a1) + (a2) + · · ·+ (an).

Proof (continued). (i) Since (d) is an ideal it is closed under addition
and so (a1) + (a2) + · · ·+ (an) ⊂ (d). But
d = r1a1 + r2a2 + · · · rnan ∈ (a1) + (a2) + · · ·+ (an). So
(a1) + (a2) + · · ·+ (an) is an ideal (Theorem III.2.6(i)) containing d and so
(d) ⊂ (a1) + (a2) + · · ·+ (an). Therefore (d) = (a1) + (a2) + · · ·+ (an).
Now suppose (d) = (a1) + (a2) + · · ·+ (an). Since R has an identity and
a1, a2, . . . , an are in the center of R (since R is commutative), by Theorem
III.2.5(v) we have that (ai ) = aiR = Rai for each ai . Also, d ∈ (d) by
Theorem III.2.5(iv), so d = r1a1 + r2a2 + · · ·+ rnan for some ri ∈ R. Now
(d) = (a1) + (a2) + · · ·+ (an) implies that each (ai ) ⊂ (d) and so by
Theorem III.3.2(i), d | ai for each ai . So d is a divisor of each ai .
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Theorem III.3.11

Theorem III.3.11 (continued 1)
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Theorem III.3.11

Theorem III.3.11 (continued 2)

Theorem III.3.11. Let a1, a2, . . . , an be elements of a commutative ring
R with identity.

(i) d ∈ R is a greatest common divisor of {a1, a2, . . . , an} such
that d = r1a1 + r2a2 + · · ·+ rnan for some ri ∈ R if and only
if (d) = (a1) + (a2) + · · ·+ (an).

Proof (continued). (i) Suppose now that c also divides each ai : c | ai

for each ai . Then Theorem III.3.2(i) implies that (ai ) ⊂ (c) for each ai .
But then (d) = (a1) + (a2) + · · ·+ (an) ⊂ (c) (since (c) is an ideal and
hence closed under addition) and again by Theorem III.3.2(i) we have that
c | d . Therefore, by Definition III.3.10, d is the greatest common divisor of
a1, a2, . . . , an.
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Theorem III.3.11

Theorem III.3.11 (continued 3)

Theorem III.3.11. Let a1, a2, . . . , an be elements of a commutative ring
R with identity.

(ii) If R is a principal ideal ring, then a greatest common divisor
of a1, a2, . . . , an exists and every one is of the form
r1a1 + r2a2 + · · · rnan, where each ri ∈ R.

Proof. (ii) Suppose R is a principal ideal ring and let a1, a2, . . . , an ∈ R.
By Theorem III.2.6(i), (a1) + (a2) + · · ·+ (an) is an ideal of R. Since R is
a principal ideal ring, then (a1) + (a2) + · · ·+ (an) = (d) for some d ∈ R.
By (i), we have that d is a greatest common divisor of a1, a2, . . . , an and is
of the form d = r1a1 + r2a2 + · · ·+ rnan.
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Theorem III.3.11

Theorem III.3.11 (continued 4)

Theorem III.3.11. Let a1, a2, . . . , an be elements of a commutative ring
R with identity.

(iii) If R is a unique factorization domain, then there exists a
greatest common divisor of a1, a2, . . . , an.

Proof. (iii) Suppose R is a unique factorization domain. Then for each ai

we have ai = cmi1
1 cmi2

2 · · · cmit
t for distinct irreducible ck ’s and with each

mij ≥ 0 (we get the ck ’s for each ai and then use exponents of 0 as

necessary). Then d = ck1
1 ck2

2 · · · ckt
t where kj = min{m1j ,m2j , . . . ,mnj} is

a divisor of each a1, a2, . . . , an.

Let c be a divisor of each ai . Write c in terms of irreducibles di :
c = d1d2 · · · d`, which can be done since R is a unique factorization
domain. Since c = d1d2 · · · d` divides ai = cmi1

1 cmi2
2 · · · cmit

t , then each dj

divides ai . Now each of the ci ’s are irreducible (and so are not units by
definition), so dj | ai implies that irreducible dj = ci for some ci .
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Theorem III.3.11 (continued 4)
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Theorem III.3.11

Theorem III.3.11 (continued 5)

Theorem III.3.11. Let a1, a2, . . . , an be elements of a commutative ring
R with identity.

(iii) If R is a unique factorization domain, then there exists a
greatest common divisor of a1, a2, . . . , an.

Proof (continued). (iii) Hence c = cn1
1 cn2

2 · · · cnt
t for some ni ≥ 0. If

each ni ≤ ki then c | d . ASSUME ni∗ > ki∗ for some i∗. Then there is an

ai where ai = cmi1
1 cmi2

2 · · · cki∗
i∗ · · · cmit

t and c does not divide this ai , a
CONTRADICTION. So each ni ≤ ki and c | d . That is, d is a greatest
common divisor.
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