Modern Algebra

Chapter III. Rings

III.4. Rings of Quotients and Localization—Proofs of Theorems

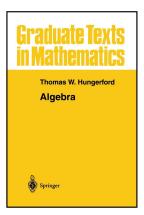


Table of contents

- 1 Theorem III.4.3
- 2 Theorem III.4.4
- 3 Theorem III.4.5
- 4 Corollary III.4.6
- 5 Theorem III.4.13
- 6 Theorem III.4.7
 - 7 Theorem III.4.8
- 8 Lemma III.4.9
- 9 Theorem III.4.10
- 10 Theorem III.4.11

Theorem III.4.3. Let S be a multiplicative subset of a commutative ring R and let $S^{-1}R$ be the set of equivalence classes of $R \times S$ under the equivalence relation of Theorem III.4.2.

(i) $S^{-1}R$ is a commutative ring with identity, where addition and multiplication are defined by

r/s + r'/s' = (rs' + r's)/(ss') and (r/s)(r'/s') = (rr')/(ss').

- (ii) If R is a nonzero ring with no zero divisors and $0 \notin S$, then $S^{-1}R$ is an integral domain.
- (iii) If R is a nonzero ring with no zero divisors and S is the set of all nonzero elements of R, then $S^{-1}R$ is a field.

Proof. (i) First, if $0 \in S$ then by Note III.4.A(iii) we have $S^{-1}R$ is a zero ring, so we assume without loss of generality that $0 \notin S$. To show that addition is well defined, let $r/s = r_1/s_1$ and $r'/s' = r'_1/s'_1$. Then by Note III.4.A(i), there exist $s_2, s_3 \in S$ such that $s_2(rs_1 - r_1s) = 0$ and $s_3(r's'_1 - r'_1s') = 0$.

Theorem III.4.3. Let S be a multiplicative subset of a commutative ring R and let $S^{-1}R$ be the set of equivalence classes of $R \times S$ under the equivalence relation of Theorem III.4.2.

(i) $S^{-1}R$ is a commutative ring with identity, where addition and multiplication are defined by

r/s + r'/s' = (rs' + r's)/(ss') and (r/s)(r'/s') = (rr')/(ss').

- (ii) If R is a nonzero ring with no zero divisors and $0 \notin S$, then $S^{-1}R$ is an integral domain.
- (iii) If R is a nonzero ring with no zero divisors and S is the set of all nonzero elements of R, then $S^{-1}R$ is a field.

Proof. (i) First, if $0 \in S$ then by Note III.4.A(iii) we have $S^{-1}R$ is a zero ring, so we assume without loss of generality that $0 \notin S$. To show that addition is well defined, let $r/s = r_1/s_1$ and $r'/s' = r'_1/s'_1$. Then by Note III.4.A(i), there exist $s_2, s_3 \in S$ such that $s_2(rs_1 - r_1s) = 0$ and $s_3(r's'_1 - r'_1s') = 0$.

Theorem III.4.3 (continued 1)

Proof (continued). Then by Note III.4.A(i), there exist $s_2, 3_2 \in S$ such that $s_2(rs_1 - r_1s) = 0$ and $s_3(r's'_1 - r'_1s') = 0$. Multiplying the first equation by $s_3s's'_1$ and multiplying the second equation by s_2ss_1 we have

$$s_2s_3s's_1'(rs_1-r_1s)=0$$
 and $s_2s_3ss_1(r's_1'-r_1's')=0.$

Adding these two equations gives

$$s_2 s_3 \left((rs_1 - r_1 s) s' s'_1 + (r' s'_1 - r'_1 s') ss_1 \right) = 0$$

or $s_2 s_3 (rs_1 s' s'_1 + r' s'_1 ss_1 - r_1 ss' s'_1 - r'_1 s' ss_1) = 0$
or $s_2 s_3 \left((rs' + r' s) s_1 s'_1 - (r_1 s'_1 + r'_1 s_1) ss' \right) = 0.$

Therefore $(rs' + r's)/(ss') = (r_1s'_1 + r'_1s_1)/(s_1s'_1)$ since $s_2s_3 \in S$ (because S is multiplicative), by Note II.4.A(i). Hence

$$r/s + r'/s' = (rs' + r's)/(ss') = (r_1s'_1 + r'_1s_1)/(s_1s'_1) = r_1/s_1 + r'_1/s'_1$$

and addition on $S^{-1}R$ is well-defined.

(

Theorem III.4.3 (continued 1)

Proof (continued). Then by Note III.4.A(i), there exist $s_2, 3_2 \in S$ such that $s_2(rs_1 - r_1s) = 0$ and $s_3(r's'_1 - r'_1s') = 0$. Multiplying the first equation by $s_3s's'_1$ and multiplying the second equation by s_2ss_1 we have

$$s_2s_3s's'_1(rs_1 - r_1s) = 0$$
 and $s_2s_3ss_1(r's'_1 - r'_1s') = 0$.

Adding these two equations gives

$$s_2 s_3 \left((rs_1 - r_1 s) s' s'_1 + (r' s'_1 - r'_1 s') ss_1 \right) = 0$$

or $s_2 s_3 (rs_1 s' s'_1 + r' s'_1 ss_1 - r_1 ss' s'_1 - r'_1 s' ss_1) = 0$
or $s_2 s_3 \left((rs' + r' s) s_1 s'_1 - (r_1 s'_1 + r'_1 s_1) ss' \right) = 0.$

Therefore $(rs' + r's)/(ss') = (r_1s'_1 + r'_1s_1)/(s_1s'_1)$ since $s_2s_3 \in S$ (because S is multiplicative), by Note II.4.A(i). Hence

$$r/s + r'/s' = (rs' + r's)/(ss') = (r_1s'_1 + r'_1s_1)/(s_1s'_1) = r_1/s_1 + r'_1/s'_1$$

and addition on $S^{-1}R$ is well-defined.

Modern Algebra

C

Theorem III.4.3 (continued 2)

Proof (continued). To show multiplication is well-defined, again let $r/s = r_1/s_1$ and $r'/s' = r'_1/s'_1$. Then by Notes II.4.A(i), there exists $s_2, s_3 \in S$ such that $s_2(rs_1 - r_1s) = 0$ and $s_3(r's'_1 - r'_1s') = 0$. Multiplying the first equation by $r's'_1s_3$ and multiplying the second equation by r_1ss_2 , we get

$$s_2(rs_1 - r_1s)r's_1's_3 = s_2s_3(rr's_1s_1' - r_1r's_1') = 0$$

and $s_3(r's_1' - r_1's')r_1ss_2 = s_2s_3(r_1r's_1' - r_1r_1's_1') = 0.$

Adding these two equations gives

$$s_2 s_3(rr' s_1 s'_1 - r_1 r' ss'_1 + r_1 r' ss'_1 - r_1 r'_1 ss') = 0$$

or $s_2 s_3(rr' s_1 s'_1 - r_1 r'_1 ss') = 0.$

Therefore $(rr')/(ss') = (r_1r'_1)/(s_1s'_1)$ since $s_2s_3 \in S$ (because S is multiplicative), by Note III.4.A(i). Hence

$$(r/s)(r'/s') = (rr')/(ss') = (r_1r'_1)/(s_1s'_1) = (r_1/s_1)(r'_1/s'_1)$$

and multiplication in $S^{-1}R$ is well-defined.

(

Theorem III.4.3 (continued 2)

Proof (continued). To show multiplication is well-defined, again let $r/s = r_1/s_1$ and $r'/s' = r'_1/s'_1$. Then by Notes II.4.A(i), there exists $s_2, s_3 \in S$ such that $s_2(rs_1 - r_1s) = 0$ and $s_3(r's'_1 - r'_1s') = 0$. Multiplying the first equation by $r's'_1s_3$ and multiplying the second equation by r_1ss_2 , we get

$$s_2(rs_1 - r_1s)r's_1's_3 = s_2s_3(rr's_1s_1' - r_1r's_1') = 0$$

and $s_3(r's_1' - r_1's')r_1ss_2 = s_2s_3(r_1r's_1' - r_1r_1's_1') = 0.$

Adding these two equations gives

$$s_2 s_3(rr' s_1 s'_1 - r_1 r' ss'_1 + r_1 r' ss'_1 - r_1 r'_1 ss') = 0$$

or $s_2 s_3(rr' s_1 s'_1 - r_1 r'_1 ss') = 0.$

Therefore $(rr')/(ss') = (r_1r'_1)/(s_1s'_1)$ since $s_2s_3 \in S$ (because S is multiplicative), by Note III.4.A(i). Hence

$$(r/s)(r'/s') = (rr')/(ss') = (r_1r'_1)/(s_1s'_1) = (r_1/s_1)(r'_1/s'_1)$$

and multiplication in $S^{-1}R$ is well-defined.

Theorem III.4.3 (continued 3)

Proof (continued). Next, since R is commutative then

$$(r/s)(r'/s') = (rr')/(ss') = (r'r)/(s's) = (r'/s')(r/s)$$

and so $S^{-1}R$ is commutative. For $s, s' \in S$ we have 0/s = 0/s' in $S^{-1}R$ and for any $r/s \in S^{-1}R$ we have

$$r/s + 0/s = (rs + 0s)/(ss) = (rs)/(ss) = r/s$$

(where the last equality holds because (rs)s = (ss)r) so that 0/s is the additive identity in $S^{-1}R$ (remember, 0/s represents an equivalence class). For $r/s \in S^{-1}R$ we know that $(-r)/s \in S^{-1}R$ and r/s + (-r)/s = (rs + (-r)(s))/s = 0/s so that the additive inverse of $r/s \in S^{-1}R$ is $(-r)/s \in S^{-1}R$. For $s, s' \in S$, we have s/s = s'/s' and for $r/s \in S^{-1}R$ we have (r/s)(s/s) = (rs)/(ss) = r/s so that $s/s \in S^{-1}R$ is the multiplicative identity of $S^{-1}R$. Therefore, $S^{-1}R$ is a commutative ring with identity with addition and multiplication as given, establishing (i).

()

Theorem III.4.3 (continued 3)

Proof (continued). Next, since R is commutative then

$$(r/s)(r'/s') = (rr')/(ss') = (r'r)/(s's) = (r'/s')(r/s)$$

and so $S^{-1}R$ is commutative. For $s, s' \in S$ we have 0/s = 0/s' in $S^{-1}R$ and for any $r/s \in S^{-1}R$ we have

$$r/s + 0/s = (rs + 0s)/(ss) = (rs)/(ss) = r/s$$

(where the last equality holds because (rs)s = (ss)r) so that 0/s is the additive identity in $S^{-1}R$ (remember, 0/s represents an equivalence class). For $r/s \in S^{-1}R$ we know that $(-r)/s \in S^{-1}R$ and r/s + (-r)/s = (rs + (-r)(s))/s = 0/s so that the additive inverse of $r/s \in S^{-1}R$ is $(-r)/s \in S^{-1}R$. For $s, s' \in S$, we have s/s = s'/s' and for $r/s \in S^{-1}R$ we have (r/s)(s/s) = (rs)/(ss) = r/s so that $s/s \in S^{-1}R$ is the multiplicative identity of $S^{-1}R$. Therefore, $S^{-1}R$ is a commutative ring with identity with addition and multiplication as given, establishing (i).

Theorem III.4.3 (continued 4)

Theorem III.4.3. Let S be a multiplicative subset of a commutative ring R and let $S^{-1}R$ be the set of equivalence classes of $R \times S$ under the equivalence relation of Theorem III.4.2.

(ii) If R is a nonzero ring with no zero divisors and $0 \notin S$, then $S^{-1}R$ is an integral domain.

Proof (continued). (ii) If r/s = 0/s then by Note III.4.A(i), $s_1(rs - 0s) = s_1 rs = 0$ for some $s_1 \in S$. Since we have hypothesized that R has no zero divisors and $0 \notin S$, then it must be that r = 0 (and conversely r = 0 implies r/s = 0/s). Consequently, (r/s)(r'/s') = (rr')/(ss') = 0/s in $S^{-1}R$ if and only if rr' = 0 in R. Since R has no zero divisors, then either r = 0 or r' = 0 and so either r/s = 0/sor r'/s' = 0/s' so that $S^{-1}R$ has no zero divisor and since $S^{-1}R$ is commutative, then it is an integral domain, as claimed.

Theorem III.4.3 (continued 5)

Theorem III.4.3. Let S be a multiplicative subset of a commutative ring R and let $S^{-1}R$ be the set of equivalence classes of $R \times S$ under the equivalence relation of Theorem III.4.2.

(iii) If R is a nonzero ring with no zero divisors and S is the set of all nonzero elements of R, then $S^{-1}R$ is a field.

Proof (continued). (iii) By part (ii), we have that $S^{-1}R$ is an integral domain. We only need to show that every nonzero element of $S^{-1}R$ has a multiplicative inverse. If $r/s \in S^{-1}R$ and $r/s \neq 0/s$ then $r \neq 0$ (as shown in part (ii)). So $s/r \in S^{-1}R$ and we have (r/s)(s/r) = (rs)/(rs) and this is the multiplicative identity, as shown in (i). Hence $S^{-1}R$ is a field, as claimed.

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring R.

- (i) The map $\varphi_S : R \to S^{-1}R$ given by $r \mapsto rs/s$ (for any $s \in S$) is a well-defined homomorphism of rings such that $\varphi_S(s)$ is a unit in $S^{-1}R$ for every $s \in S$.
- (ii) If $0 \notin S$ and S contains no zero divisors, then φ_S is a monomorphism. In particular, any integral domain may be embedded in its quotient field.
- (iii) If R has an identity and S consists of units, then φ_S is an isomorphism. In particular, the complete ring of quotients of a field F is isomorphic to F.

Proof. (i) To show φ_S is well-defined, we need to show that the value, for a given input $r \in R$, is independent of the element $s \in S$ used. If $s, s' \in S$ then we need to show that rs/s = rs'/s'. That is, we need $s_1(rss' - rs's) = 0$ for some $s_1 \in S$.

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring R.

- (i) The map $\varphi_S : R \to S^{-1}R$ given by $r \mapsto rs/s$ (for any $s \in S$) is a well-defined homomorphism of rings such that $\varphi_S(s)$ is a unit in $S^{-1}R$ for every $s \in S$.
- (ii) If $0 \notin S$ and S contains no zero divisors, then φ_S is a monomorphism. In particular, any integral domain may be embedded in its quotient field.
- (iii) If R has an identity and S consists of units, then φ_S is an isomorphism. In particular, the complete ring of quotients of a field F is isomorphic to F.

Proof. (i) To show φ_S is well-defined, we need to show that the value, for a given input $r \in R$, is independent of the element $s \in S$ used. If $s, s' \in S$ then we need to show that rs/s = rs'/s'. That is, we need $s_1(rss' - rs's) = 0$ for some $s_1 \in S$.

Theorem III.4.4 (continued 1)

Proof (continued). But since *R* is commutative, then rss' - rs's = rss' - rss' = 0 so that this holds for all $s_1 \in S$ and hence rs/s = rs'/s', as needed. Let $r, r' \in R$ and $s \in S$. Then

$$\varphi_{S}(r + r') = (r + r')s/s$$

= $rs/s + r's/s$ by Theorem III.4.3(i)
= $\varphi_{S}(r) + \varphi_{S}(r')$

and

$$\begin{split} \varphi_{S}(rr') &= (rr'(s^{2}))/(s^{2}) \text{ where } s^{2} \in S \text{ since } S \text{ is multiplicative} \\ &= ((rsr's))/s^{2} \text{ since } R \text{ is commutative} \\ &= (rs/s)(r's/s) \text{ by Theorem III.4.3(i)} \\ &= \varphi_{S}(r)\varphi_{S}(r'). \end{split}$$

So φ_S is a ring homomorphism, as claimed.

()

Theorem III.4.4 (continued 1)

Proof (continued). But since *R* is commutative, then rss' - rs's = rss' - rss' = 0 so that this holds for all $s_1 \in S$ and hence rs/s = rs'/s', as needed. Let $r, r' \in R$ and $s \in S$. Then

$$\varphi_{S}(r + r') = (r + r')s/s$$

= $rs/s + r's/s$ by Theorem III.4.3(i)
= $\varphi_{S}(r) + \varphi_{S}(r')$

and

$$\begin{split} \varphi_{S}(rr') &= (rr'(s^{2}))/(s^{2}) \text{ where } s^{2} \in S \text{ since } S \text{ is multiplicative} \\ &= ((rsr's))/s^{2} \text{ since } R \text{ is commutative} \\ &= (rs/s)(r's/s) \text{ by Theorem III.4.3(i)} \\ &= \varphi_{S}(r)\varphi_{S}(r'). \end{split}$$

So φ_S is a ring homomorphism, as claimed.

C

Theorem III.4.4 (continued 2)

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring R.

(ii) If $0 \notin S$ and S contains no zero divisors, then φ_S is a monomorphism. In particular, any integral domain may be embedded in its quotient field.

Proof (continued). Next, for $s \in S$ we have $\varphi_S(s) = s^2/s$, using *s* itself as the element of *R*. We have $s/s^2 \in S^{-1}R$ since $s \in S$ so that $s^2 \in S$ (because *S* is multiplicative, and hence $(s, s^2) \in R \times S$). Now $\varphi_S(s)(s/s^2) = (s^2/s)(s/s^2) = s^3/s^3 = s/s$ and s/s is a multiplicative identity of $S^{-1}R$, as shown in the proof of Theorem II.4.3(i). That is, $\varphi_S(s)$ is a unit in $S^{-1}R$, as claimed.

(ii) Let $r \in \text{Ker}(\varphi_S)$. Then $\varphi_S(r) = rs/s = 0$ in $S^{-1}R$. Now the additive identity in $S^{-1}R$ is 0/s as shown in the proof of Theorem III.4.3(i), so we have rs/s = 0/s or $s_1(rs^2 - 0s) = 0$ for some $s_1 \in S$, or $s_1rs^2 = rs_1s^2 = 0$. Now $s_1s^2 \neq 0$ since $s, s_1 \in S$, S is multiplicative, and $0 \notin S$.

Theorem III.4.4 (continued 2)

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring R.

(ii) If $0 \notin S$ and S contains no zero divisors, then φ_S is a monomorphism. In particular, any integral domain may be embedded in its quotient field.

Proof (continued). Next, for $s \in S$ we have $\varphi_S(s) = s^2/s$, using s itself as the element of R. We have $s/s^2 \in S^{-1}R$ since $s \in S$ so that $s^2 \in S$ (because S is multiplicative, and hence $(s, s^2) \in R \times S$). Now $\varphi_S(s)(s/s^2) = (s^2/s)(s/s^2) = s^3/s^3 = s/s$ and s/s is a multiplicative identity of $S^{-1}R$, as shown in the proof of Theorem II.4.3(i). That is, $\varphi_S(s)$ is a unit in $S^{-1}R$, as claimed.

(ii) Let $r \in \text{Ker}(\varphi_S)$. Then $\varphi_S(r) = rs/s = 0$ in $S^{-1}R$. Now the additive identity in $S^{-1}R$ is 0/s as shown in the proof of Theorem III.4.3(i), so we have rs/s = 0/s or $s_1(rs^2 - 0s) = 0$ for some $s_1 \in S$, or $s_1rs^2 = rs_1s^2 = 0$. Now $s_1s^2 \neq 0$ since $s, s_1 \in S$, S is multiplicative, and $0 \notin S$.

Theorem III.4.4 (continued 3)

Theorem III.4.4. Let *S* be a multiplicative subset of a commutative ring *R*.

(ii) If $0 \notin S$ and S contains no zero divisors, then φ_S is a monomorphism. In particular, any integral domain may be embedded in its quotient field.

Proof (continued). Since *S* has no zero divisors and $r(s_1s^2) = 0$ then we must have r = 0. That is, $Ker(\varphi_S) = \{0\}$ and by Theorem I.2.3(i) (to apply Theorem I.2.3, we technically need to consider φ_S restricted to the additive group in *R*, since Theorem I.2.3 applies to homomorphisms of groups), φ_S is an injective homomorphism; that is, φ_S is a monomorphism, as claimed. If *R* is an integral domain (i.e., a commutative ring with identity and no zero divisors) and *S* is the set of all nonzero elements of *R* (including 1) then $S^{-1}R$ is the field of quotients of *R* and, since φ_S is injective, φ_S embeds *R* in $S^{-1}R$ (notice $1 \in S$ in this case), as claimed.

Theorem III.4.4 (continued 3)

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring R.

(ii) If $0 \notin S$ and S contains no zero divisors, then φ_S is a monomorphism. In particular, any integral domain may be embedded in its quotient field.

Proof (continued). Since *S* has no zero divisors and $r(s_1s^2) = 0$ then we must have r = 0. That is, $Ker(\varphi_S) = \{0\}$ and by Theorem I.2.3(i) (to apply Theorem I.2.3, we technically need to consider φ_S restricted to the additive group in *R*, since Theorem I.2.3 applies to homomorphisms of groups), φ_S is an injective homomorphism; that is, φ_S is a monomorphism, as claimed. If *R* is an integral domain (i.e., a commutative ring with identity and no zero divisors) and *S* is the set of all nonzero elements of *R* (including 1) then $S^{-1}R$ is the field of quotients of *R* and, since φ_S is injective, φ_S embeds *R* in $S^{-1}R$ (notice $1 \in S$ in this case), as claimed.

Theorem III.4.4 (continued 4)

Theorem III.4.4. Let *S* be a multiplicative subset of a commutative ring *R*.

(iii) If R has an identity and S consists of units, then φ_S is an isomorphism. In particular, the complete ring of quotients of a field F is isomorphic to F.

Proof (continued). (iii) First, since *S* consists of units then $0 \notin S$ and *S* contains no zero divisors (since *s* is a unit and sr = 0 implies $0 = s^{-1}0 = s^{-1}(sr) = (s^{-1}s)(r) = r$), so by part (ii), φ_S is a monomorphism. For any $r/s \in S^{-1}R$ we have $rs^{-1} \in R$ and $\varphi_S(rs^{-1}) = ((rs^{-1})s)/s = r/s$ so that φ_S is surjective and hence φ_S is an isomorphism, as claimed. For field *F*, the complete ring of quotients has $S = F \setminus \{0\}$, so that $0 \notin S$ and *S* consists of units, and hence $\varphi_S : S^{-1}F \to F$ is an isomorphism. That is, the complete ring of quotients (or, equivalently, "quotient field") is isomorphic to *F*, as claimed.

Theorem III.4.4 (continued 4)

Theorem III.4.4. Let *S* be a multiplicative subset of a commutative ring *R*.

(iii) If R has an identity and S consists of units, then φ_S is an isomorphism. In particular, the complete ring of quotients of a field F is isomorphic to F.

Proof (continued). (iii) First, since *S* consists of units then $0 \notin S$ and *S* contains no zero divisors (since *s* is a unit and sr = 0 implies $0 = s^{-1}0 = s^{-1}(sr) = (s^{-1}s)(r) = r$), so by part (ii), φ_S is a monomorphism. For any $r/s \in S^{-1}R$ we have $rs^{-1} \in R$ and $\varphi_S(rs^{-1}) = ((rs^{-1})s)/s = r/s$ so that φ_S is surjective and hence φ_S is an isomorphism, as claimed. For field *F*, the complete ring of quotients has $S = F \setminus \{0\}$, so that $0 \notin S$ and *S* consists of units, and hence $\varphi_S : S^{-1}F \to F$ is an isomorphism. That is, the complete ring of quotients (or, equivalently, "quotient field") is isomorphic to *F*, as claimed.

Theorem III.4.5. Let S be a multiplicative subset of a commutative ring R and let T be any commutative ring with identity. If $f : R \to T$ is a homomorphism of rings such that f(s) is a unit in T for all $s \in S$, then there exists a unique homomorphism of rings $\overline{f} : S^{-1}R \to T$ such that $\overline{f}\varphi_S = f$. The ring $S^{-1}R$ is completely determined (up to isomorphism) by this property.

Proof. First, let $f : R \to T$ be a homomorphism such that f(s) is a unit in T for all $s \in S$. Define mapping $\overline{f} : S^{-1}R \to T$ as $\overline{f}(r/s) = f(r)(f(s))^{-1}$.

Theorem III.4.5. Let S be a multiplicative subset of a commutative ring R and let T be any commutative ring with identity. If $f: R \to T$ is a homomorphism of rings such that f(s) is a unit in T for all $s \in S$, then there exists a unique homomorphism of rings $\overline{f}: S^{-1}R \to T$ such that $\overline{f}\varphi_S = f$. The ring $S^{-1}R$ is completely determined (up to isomorphism) by this property.

Proof. First, let $f : R \to T$ be a homomorphism such that f(s) is a unit in T for all $s \in S$. Define mapping $\overline{f}: S^{-1}R \to T$ as $\overline{f}(r/s) = f(r)(f(s))^{-1}$. We need to show \overline{f} is well-defined. Let r/s = r'/s'. Then $s_1(rs' - r's) = 0$ for some $s_1 \in S$. Now $\overline{f}(r/s) = f(r)(f(s))^{-1}$ and $\overline{f}(r'/s') = f(r')(f(s'))^{-1}$ since f is a homomorphism. Next $f(s_1(rs' - r's)) = f(0)$ or $f(s_1)(f(r)f(s') - f(r')f(s)) = 0$. Since $f(s_1)$ is a unit in T by hypothesis, then f(r)r(s') - f(r')f(s) = 0 or f(r)f(s') = f(r')f(s) or $f(r)(f(s))^{-1} = f(r')(f(s'))^{-1}$ (since f(s) and f(s') are units) or $\overline{f}(r/s) = \overline{f}(r'/s')$ as needed, and \overline{f} is well defined, as claimed.

Theorem III.4.5. Let S be a multiplicative subset of a commutative ring R and let T be any commutative ring with identity. If $f : R \to T$ is a homomorphism of rings such that f(s) is a unit in T for all $s \in S$, then there exists a unique homomorphism of rings $\overline{f} : S^{-1}R \to T$ such that $\overline{f}\varphi_S = f$. The ring $S^{-1}R$ is completely determined (up to isomorphism) by this property.

Proof. First, let $f : R \to T$ be a homomorphism such that f(s) is a unit in T for all $s \in S$. Define mapping $\overline{f}: S^{-1}R \to T$ as $\overline{f}(r/s) = f(r)(f(s))^{-1}$. We need to show \overline{f} is well-defined. Let r/s = r'/s'. Then $s_1(rs' - r's) = 0$ for some $s_1 \in S$. Now $\overline{f}(r/s) = f(r)(f(s))^{-1}$ and $\overline{f}(r'/s') = f(r')(f(s'))^{-1}$ since f is a homomorphism. Next $f(s_1(rs' - r's)) = f(0)$ or $f(s_1)(f(r)f(s') - f(r')f(s)) = 0$. Since $f(s_1)$ is a unit in T by hypothesis, then f(r)r(s') - f(r')f(s) = 0 or f(r)f(s') = f(r')f(s) or $f(r)(f(s))^{-1} = f(r')(f(s'))^{-1}$ (since f(s) and f(s') are units) or $\overline{f}(r/s) = \overline{f}(r'/s')$ as needed, and \overline{f} is well defined, as claimed.

Theorem III.4.5 (continued 1)

Proof (continued). To see that $\overline{f}: S^{-1}R \to T$ is a ring homomorphism, consider

$$\overline{f}(r/s + r'/s') = \overline{f}((rs' + r's)/(ss')) \text{ by Theorem III.4.3(i)}$$

$$= f(rs' + r's)(f(ss'))^{-1} = f(rs' + r's)(f(s))^{-1}(f(s'))^{-1}$$

$$= f(r)f(s')(f(s))^{-1}(f(s'))^{-1} + f(r)f(s)(f(s))^{-1}(f(s'))^{-1}$$

$$= f(r)(f(s))^{-1} + f(r')(f(s'))^{-1}$$

$$= \overline{f}(r/s) + \overline{f}(r'/s') \text{ since } f \text{ is a homomorphism}$$

$$\text{ and } R \text{ is commutative,}$$

$$\overline{f}((r/s)(r'/s')) = \overline{f}(rr'/(ss')) \text{ by Theorem III.4.3(i)}$$

$$= f(rr')(r(ss'))^{-1} = f(r)(f(s))^{-1}f(r')(f(s'))^{-1}$$

$$= \overline{f}(r/s)\overline{f}(r'/s') \text{ since } f \text{ is a homomorphism,}$$
and R and T are commutative.

Theorem III.4.5 (continued 2)

Proof (continued). Also, for $r \in R$ we have

$$\overline{f}\varphi_{\mathcal{S}}(r) = \overline{f}(rs/s) = f(rs)(f(s))^{-1} = f(r)f(s)(f(s))^{-1} = f(r)$$

so that $\overline{f}\varphi_S = f$ on R, as claimed.

Now suppose $g: S^{-1}R \to T$ is another homomorphism such that $g\varphi_S = f$. Then for all $x \in S$ we have $g(\varphi_S(s)) = f(s)$ is a unit in T. Consequently $g((\varphi_S(s))^{-1}) = (f(\varphi_S(s)))^{-1}$ for every $s \in S$ by Exercise III.1.15(c) (since $\varphi_S(s)$ is a unit in $S^{-1}R$ by Theorem III.4.4(i), and $g(\varphi_S(s))$ is a unit, the hypotheses of Exercise III.1.15(c) are satisfied). Since $\varphi_S(s) = s^2/s$ then $(\varphi_S(s))^{-1} = s/s^2 \in S^{-1}R$. Thus for each $r/s \in S^{-1}R$:

$$g(r/s=f((rs/s)(s/s^{2}) = g(\varphi_{S}(r)(\varphi_{S}(s))^{-1}) = g(\varphi_{S}(r))g((\varphi_{S}(s))^{-1})$$

$$= f(\varphi_{\mathcal{S}}(r))(g(\varphi_{\mathcal{S}}(s))^{-1} = f(r)(f(s))^{-1} = \overline{f}(r/s).$$

Therefore, $g = \overline{f}$, so that homomorphism \overline{f} is unique.

0

Theorem III.4.5 (continued 2)

Proof (continued). Also, for $r \in R$ we have

$$\overline{f}\varphi_{\mathcal{S}}(r) = \overline{f}(rs/s) = f(rs)(f(s))^{-1} = f(r)f(s)(f(s))^{-1} = f(r)$$

so that $\overline{f}\varphi_S = f$ on R, as claimed.

Now suppose $g: S^{-1}R \to T$ is another homomorphism such that $g\varphi_S = f$. Then for all $x \in S$ we have $g(\varphi_S(s)) = f(s)$ is a unit in T. Consequently $g((\varphi_S(s))^{-1}) = (f(\varphi_S(s)))^{-1}$ for every $s \in S$ by Exercise III.1.15(c) (since $\varphi_S(s)$ is a unit in $S^{-1}R$ by Theorem III.4.4(i), and $g(\varphi_S(s))$ is a unit, the hypotheses of Exercise III.1.15(c) are satisfied). Since $\varphi_S(s) = s^2/s$ then $(\varphi_S(s))^{-1} = s/s^2 \in S^{-1}R$. Thus for each $r/s \in S^{-1}R$:

$$g(r/s_{=}f((rs/s)(s/s^{2}) = g(\varphi_{S}(r)(\varphi_{S}(s))^{-1}) = g(\varphi_{S}(r))g((\varphi_{S}(s))^{-1})$$

= $f(\varphi_{S}(r))(g(\varphi_{S}(s))^{-1} = f(r)(f(s))^{-1} = \overline{f}(r/s).$

Therefore, $g = \overline{f}$, so that homomorphism \overline{f} is unique.

()

Theorem III.4.5 (continued 3)

Proof (continued). Now we show that $S^{-1}R$ is completely determined (up to isomorphism) by R, S, and the stated properties. Let C be the category whose objects are all (f, T), where T is a commutative ring with identity and $f: R \to T$ is a homomorphism of rings such that f(s) is a unit in T for every $s \in S$. Define a morphism in C from (f_1, T_1) to (f_2, T_2) to be a homomorphism of rings $g: T_1 \to T_2$ such that $gf_1 = f_2$. To verify that C is a category (by Definition I.7.1), we need to verify that $g = hom(T_1, T_2)$ is a morphism. Let (f_1, T_1) , (f_2, T_2) , (f_3, T_3) be objects in C. Suppose $gT_1 \rightarrow T_2$ and $h: T_2 \rightarrow T_3$, where $gf_1 = f_2$ and $hf_2 = f_3$, are ring homomorphisms. Then $h \circ g : T_1 \to T_3$ is a ring homomorphism and $(h \circ g)f_1 = f(g(f_1) = hf_2 = f_3$. Because function composition is associative, then we have associativity of morphisms. For the identity on (f, T), we simply take the identity homomorphism $1_T: T \to T$.

Theorem III.4.5 (continued 3)

Proof (continued). Now we show that $S^{-1}R$ is completely determined (up to isomorphism) by R, S, and the stated properties. Let C be the category whose objects are all (f, T), where T is a commutative ring with identity and $f: R \to T$ is a homomorphism of rings such that f(s) is a unit in T for every $s \in S$. Define a morphism in C from (f_1, T_1) to (f_2, T_2) to be a homomorphism of rings $g: T_1 \to T_2$ such that $gf_1 = f_2$. To verify that C is a category (by Definition I.7.1), we need to verify that $g = hom(T_1, T_2)$ is a morphism. Let (f_1, T_1) , (f_2, T_2) , (f_3, T_3) be objects in C. Suppose $gT_1 \rightarrow T_2$ and $h: T_2 \rightarrow T_3$, where $gf_1 = f_2$ and $hf_2 = f_3$, are ring homomorphisms. Then $h \circ g : T_1 \to T_3$ is a ring homomorphism and $(h \circ g)f_1 = f(g(f_1) = hf_2 = f_3$. Because function composition is associative, then we have associativity of morphisms. For the identity on (f, T), we simply take the identity homomorphism $1_T: T \to T$. If $g: T_1 \rightarrow T_2$ is an isomorphism and $gf_1 = f_2$, then $g^{-1}: T_2 \rightarrow T_1$ is an isomorphism and $g^{-1}(gf_1) = g^{-1}f_2$ or $g^{-1}f_2 = f_1$. Also, $g \circ g^{-1} = 1_{T_2}$ and $g^{-1} \circ g = 1_{T_1}$. That is, a ring isomorphism is an equivalence.

Theorem III.4.5 (continued 3)

Proof (continued). Now we show that $S^{-1}R$ is completely determined (up to isomorphism) by R, S, and the stated properties. Let C be the category whose objects are all (f, T), where T is a commutative ring with identity and $f: R \to T$ is a homomorphism of rings such that f(s) is a unit in T for every $s \in S$. Define a morphism in C from (f_1, T_1) to (f_2, T_2) to be a homomorphism of rings $g: T_1 \to T_2$ such that $gf_1 = f_2$. To verify that C is a category (by Definition I.7.1), we need to verify that $g = hom(T_1, T_2)$ is a morphism. Let (f_1, T_1) , (f_2, T_2) , (f_3, T_3) be objects in C. Suppose $gT_1 \rightarrow T_2$ and $h: T_2 \rightarrow T_3$, where $gf_1 = f_2$ and $hf_2 = f_3$, are ring homomorphisms. Then $h \circ g : T_1 \to T_3$ is a ring homomorphism and $(h \circ g)f_1 = f(g(f_1) = hf_2 = f_3$. Because function composition is associative, then we have associativity of morphisms. For the identity on (f, T), we simply take the identity homomorphism $1_T : T \to T$. If $g: T_1 \to T_2$ is an isomorphism and $gf_1 = f_2$, then $g^{-1}: T_2 \to T_1$ is an isomorphism and $g^{-1}(gf_1) = g^{-1}f_2$ or $g^{-1}f_2 = f_1$. Also, $g \circ g^{-1} = 1_{T_2}$ and $g^{-1} \circ g = 1_{T_1}$. That is, a ring isomorphism is an equivalence.

Theorem III.4.5 (continued 4)

Proof (continued). If $g: T_1 \to T_2$ is not an isomorphism (but still is a homomorphism), then g is not a bijection and no inverse mapping $T_2 \to T_1$ exists. That is, if g is not an isomorphism then it is not an equivalence. For given object $(\varphi_S, S^{-1}T)$ in category C there is, for every object (f_I, T_I) in C, by Theorem III.4.5 a unique mapping $(\varphi_S, S^{-1}R) \to (f_I, T_I)$ such that $\overline{f}: S^{-1}R \to T$ is a homomorphism and $\overline{f}\varphi_S = f$; that is, there is a unique morphism mapping $(\varphi_S, S^{-1}R) \to (f_I, T_I)$ for every object (f_I, T_I) in C. Therefore, by Definition 1.7.9, $(\varphi_S, S^{-1}R)$ is a universal object in category C.

Theorem III.4.5 (continued 4)

Proof (continued). If $g: T_1 \to T_2$ is not an isomorphism (but still is a homomorphism), then g is not a bijection and no inverse mapping $T_2 \rightarrow T_1$ exists. That is, if g is not an isomorphism then it is not an equivalence. For given object $(\varphi_S, S^{-1}T)$ in category C there is, for every object (f_I, T_I) in C, by Theorem III.4.5 a unique mapping $(\varphi_S, S^{-1}R) \to (f_I, T_I)$ such that $\overline{f} : S^{-1}R \to T$ is a homomorphism and $\overline{f}\varphi_{S} = f$; that is, there is a unique morphism mapping $(\varphi_S, S^{-1}R) \rightarrow (f_I, T_I)$ for every object (f_I, T_I) in C. Therefore, by Definition 1.7.9, $(\varphi_{5}, S^{-1}R)$ is a universal object in category C. By Theorem 1.710, we now have that nay two universal objects in \mathcal{C} are equivalent. That is, ring S^1R is completely determined (up to isomorphism; i.e., equivalence) by the properties of this theorem (namely, for given ring R and given homomorphism $f : R \to T$, where T is any commutative ring with unity, such that f(s) is a unit in T for all s in given set D, there exists unique ring homomorphism $\overline{f}: S^{-1}R \to T$ such that $\overline{f}\varphi_S = f$).

Theorem III.4.5 (continued 4)

Proof (continued). If $g: T_1 \to T_2$ is not an isomorphism (but still is a homomorphism), then g is not a bijection and no inverse mapping $T_2 \rightarrow T_1$ exists. That is, if g is not an isomorphism then it is not an equivalence. For given object $(\varphi_S, S^{-1}T)$ in category C there is, for every object (f_I, T_I) in C, by Theorem III.4.5 a unique mapping $(\varphi_S, S^{-1}R) \to (f_I, T_I)$ such that $\overline{f} : S^{-1}R \to T$ is a homomorphism and $\overline{f}\varphi_{S} = f$; that is, there is a unique morphism mapping $(\varphi_S, S^{-1}R) \to (f_I, T_I)$ for every object (f_I, T_I) in C. Therefore, by Definition 1.7.9, $(\varphi_{5}, S^{-1}R)$ is a universal object in category C. By Theorem 1.710, we now have that nay two universal objects in C are equivalent. That is, ring S^1R is completely determined (up to isomorphism; i.e., equivalence) by the properties of this theorem (namely, for given ring R and given homomorphism $f : R \to T$, where T is any commutative ring with unity, such that f(s) is a unit in T for all s in given set D, there exists unique ring homomorphism $\overline{f}: S^{-1}R \to T$ such that $\overline{f}\varphi_{S}=f$).

Corollary III.4.6

Corollary III.4.6. Let *R* be an integral domain considered as a subring of its quotient field *F* (see Theorem III.4.4(ii)). If *E* is a field and $f : R \to E$ is a monomorphism of rings, then there is a unique monomorphism of rings, then there is a unique monomorphism of fields $\overline{f} : F \to E$, such that $\overline{f}|_R = f$. In particular, any field E_1 containing *R* contains an isomorphic copy F_1 of *F* with $R \subset F_1 \subset E_1$.

Proof. Let *S* be the set of all nonzero elements of *R*. With $f : R \to E$ as a monomorphism (and so a homomorphism) of rings, and *R* as an integral domain (so that *S* contains no zero divisors; recall be Definition III.1.5 that an integral domain has no zero divisors), then by Theorem III.4.5 (with T = E and $S^{-1}R = F$) there is a unique homomorphism $\overline{f} : F \to E$ such that $\overline{f}\varphi_S = f$.

Corollary III.4.6

Corollary III.4.6. Let *R* be an integral domain considered as a subring of its quotient field *F* (see Theorem III.4.4(ii)). If *E* is a field and $f : R \to E$ is a monomorphism of rings, then there is a unique monomorphism of rings, then there is a unique monomorphism of fields $\overline{f} : F \to E$, such that $\overline{f}|_R = f$. In particular, any field E_1 containing *R* contains an isomorphic copy F_1 of *F* with $R \subset F_1 \subset E_1$.

Proof. Let *S* be the set of all nonzero elements of *R*. With $f : R \to E$ as a monomorphism (and so a homomorphism) of rings, and *R* as an integral domain (so that *S* contains no zero divisors; recall be Definition III.1.5 that an integral domain has no zero divisors), then by Theorem III.4.5 (with T = E and $S^{-1}R = F$) there is a unique homomorphism $\overline{f} : F \to E$ such that $\overline{f}\varphi_S = f$. Suppose for $f_1, f_2 \in F = S^{-1}R$ we have $\overline{f}(f_1) = \overline{f}(f_2)$. Notice that

 $\overline{f}(f_1) = \overline{f}(f_1\varphi_{\mathcal{S}}(s)(\varphi_{\mathcal{S}}(s))^{-1}) = \overline{f}(f_1(s^2/s)(s/s^2)) = \overline{f}(f_1(s/s)(s^2/s^2))$ $= \overline{f}(f_1s/s)\overline{f}(s^2/s^2) = \overline{f}\varphi_{\mathcal{S}}(f_1)\overline{f}(s^2/s^2) = f(f_1)\overline{f}(s^2/s^2).$

Corollary III.4.6

Corollary III.4.6. Let *R* be an integral domain considered as a subring of its quotient field *F* (see Theorem III.4.4(ii)). If *E* is a field and $f : R \to E$ is a monomorphism of rings, then there is a unique monomorphism of rings, then there is a unique monomorphism of fields $\overline{f} : F \to E$, such that $\overline{f}|_R = f$. In particular, any field E_1 containing *R* contains an isomorphic copy F_1 of *F* with $R \subset F_1 \subset E_1$.

Proof. Let S be the set of all nonzero elements of R. With $f : R \to E$ as a monomorphism (and so a homomorphism) of rings, and R as an integral domain (so that S contains no zero divisors; recall be Definition III.1.5 that an integral domain has no zero divisors), then by Theorem III.4.5 (with T = E and $S^{-1}R = F$) there is a unique homomorphism $\overline{f} : F \to E$ such that $\overline{f}\varphi_S = f$. Suppose for $f_1, f_2 \in F = S^{-1}R$ we have $\overline{f}(f_1) = \overline{f}(f_2)$. Notice that

$$\overline{f}(f_1) = \overline{f}(f_1\varphi_{\mathcal{S}}(s)(\varphi_{\mathcal{S}}(s))^{-1}) = \overline{f}(f_1(s^2/s)(s/s^2)) = \overline{f}(f_1(s/s)(s^2/s^2))$$
$$= \overline{f}(f_1s/s)\overline{f}(s^2/s^2) = \overline{f}\varphi_{\mathcal{S}}(f_1)\overline{f}(s^2/s^2) = f(f_1)\overline{f}(s^2/s^2).$$

Corollary III.4.6 (continued)

Proof (continued). Similarly $\overline{f}(f_2) = f(f_2)\overline{f}(s^2/s^2)$. So $\overline{f}(f_1) = \overline{f}(f_2)$ implies $f(f_1)\overline{f}(s^2/s^2) = f(f_2)\overline{f}(s^2/s^2)$ and, since $\overline{f}(s^2/s^2) \in E$ then $f(s^2/s^2)$ has an inverse (since $s^2/s^2 \neq 0$ in $F - S^{-1}R$ and \overline{f} is a monomorphism, then $\overline{f}(s^2/s^2) \neq 0$ in E). Therefore $f(f_1) = f(f_2)$ and, since f is a monomorphism by hypothesis, then $f_1 = f_2$. Therefore, \overline{f} is a monomorphism. Since R is identified with $\varphi_S(R)$ in $F = S^{-1}R$ then $\overline{f}|_R = f$, as claimed (though, strictly speaking, we have $\overline{f}\varphi_S|_R = f$).

If E_1 is any field containing R, then with $f: R \to E_1$ as the inclusion map (namely, $f = 1_{E_1}|R$), we have $\overline{f}: F \to E_1$ such that $\overline{f}|_R = f = 1_{E_1}|R$ (more appropriately, $\overline{f}\varphi_S|R = f = 1_{E_1}|_R$). Then the image of \overline{f} is an isomorphic copy F_1 of F (since monomorphism \overline{f} is a surjection onto its image). That is, $R \subset F_1 \subset E_1$ where $F_1 \cong F$, as claimed.

Corollary III.4.6 (continued)

Proof (continued). Similarly $\overline{f}(f_2) = f(f_2)\overline{f}(s^2/s^2)$. So $\overline{f}(f_1) = \overline{f}(f_2)$ implies $f(f_1)\overline{f}(s^2/s^2) = f(f_2)\overline{f}(s^2/s^2)$ and, since $\overline{f}(s^2/s^2) \in E$ then $f(s^2/s^2)$ has an inverse (since $s^2/s^2 \neq 0$ in $F - S^{-1}R$ and \overline{f} is a monomorphism, then $\overline{f}(s^2/s^2) \neq 0$ in E). Therefore $f(f_1) = f(f_2)$ and, since f is a monomorphism by hypothesis, then $f_1 = f_2$. Therefore, \overline{f} is a monomorphism. Since R is identified with $\varphi_S(R)$ in $F = S^{-1}R$ then $\overline{f}|_R = f$, as claimed (though, strictly speaking, we have $\overline{f}\varphi_S|_R = f$).

If E_1 is any field containing R, then with $f: R \to E_1$ as the inclusion map (namely, $f = 1_{E_1}|R$), we have $\overline{f}: F \to E_1$ such that $\overline{f}|_R = f = 1_{E_1}|R$ (more appropriately, $\overline{f}\varphi_S|R = f = 1_{E_1}|_R$). Then the image of \overline{f} is an isomorphic copy F_1 of F (since monomorphism \overline{f} is a surjection onto its image). That is, $R \subset F_1 \subset E_1$ where $F_1 \cong F$, as claimed.

Theorem III.4.13. If *R* is a commutative ring with identity then the following conditions are equivalent:

(i) R is a local ring;

(ii) all nonunits of R are contained in some ideal $M \neq R$;

(iii) the nonunits of R form an ideal.

Proof. If *I* is an ideal of *R*, then by Theorem III.2.2 *I* is closed under "subtraction," left multiplication by elements of *R*, and right multiplication by elements of *R*. By Theorem III.2.5(i), principal ideal (*a*) consists of integer multiples of *a*, left multiples of *a* by elements of by elements of *R*, right multiples of *a* by elements of *R*, left and right multiples of *a* by elements of *R*, and sums of these. Therefore (*a*) \subset *I*. By Theorem III.3.2(iv), *u* is a unit if and only if (*u*) = *R*. So $I \neq R$ if and only if *I* consists only of nonunits.

Theorem III.4.13. If *R* is a commutative ring with identity then the following conditions are equivalent:

(i) R is a local ring;

- (ii) all nonunits of R are contained in some ideal $M \neq R$;
- (iii) the nonunits of R form an ideal.

Proof. If *I* is an ideal of *R*, then by Theorem III.2.2 *I* is closed under "subtraction," left multiplication by elements of *R*, and right multiplication by elements of *R*. By Theorem III.2.5(i), principal ideal (*a*) consists of integer multiples of *a*, left multiples of *a* by elements of by elements of *R*, right multiples of *a* by elements of *R*, left and right multiples of *a* by elements of *R*, and sums of these. Therefore $(a) \subset I$. By Theorem III.3.2(iv), *u* is a unit if and only if (u) = R. So $I \neq R$ if and only if *I* consists only of nonunits. If (ii) holds and all nonunits are in ideal $M \neq R$, then *M* contains all nonunites (and not unites, since $M \neq R$) so that (iii) holds.

Theorem III.4.13. If *R* is a commutative ring with identity then the following conditions are equivalent:

(i) R is a local ring;

- (ii) all nonunits of R are contained in some ideal $M \neq R$;
- (iii) the nonunits of R form an ideal.

Proof. If *I* is an ideal of *R*, then by Theorem III.2.2 *I* is closed under "subtraction," left multiplication by elements of *R*, and right multiplication by elements of *R*. By Theorem III.2.5(i), principal ideal (*a*) consists of integer multiples of *a*, left multiples of *a* by elements of by elements of *R*, right multiples of *a* by elements of *R*, left and right multiples of *a* by elements of *R*, and sums of these. Therefore $(a) \subset I$. By Theorem III.3.2(iv), *u* is a unit if and only if (u) = R. So $I \neq R$ if and only if *I* consists only of nonunits. If (ii) holds and all nonunits are in ideal $M \neq R$, then *M* contains all nonunites (and not unites, since $M \neq R$) so that (iii) holds.

Theorem III.4.13.

- (i) R is a local ring;
- (ii) all nonunits of R are contained in some ideal $M \neq R$;
- (iii) the nonunits of R form an ideal.

Proof (continued). If (iii) holds and the nonunits of R form an ideal M, then this ideal is maximal (or else there would be an ideal containing all the nonunits and a unit, but then this ideal would be R itself). Any ideal not equal to R similarly cannot contain any units and so can consist only of nonunits. Therefore, any ideal not equal to R is a subset of M. Hence, M is maximal. That is, R is a local ring and (i) holds.

Theorem III.4.13.

- (i) R is a local ring;
- (ii) all nonunits of R are contained in some ideal $M \neq R$;
- (iii) the nonunits of R form an ideal.

Proof (continued). If (iii) holds and the nonunits of R form an ideal M, then this ideal is maximal (or else there would be an ideal containing all the nonunits and a unit, but then this ideal would be R itself). Any ideal not equal to R similarly cannot contain any units and so can consist only of nonunits. Therefore, any ideal not equal to R is a subset of M. Hence, M is maximal. That is, R is a local ring and (i) holds. Suppose (i) holds. Then R is a local ring, so that it has a unique maximal ideal. If $a \in R$ is a nonunit, then $(a) \neq R$. But by Note III.4.E, the maximal ideal contains every ideal in R (except R itself), and so contains every principal ideal (a)where a is a nonunit. That is, all nonunits are contained in some ideal $M \neq R$ (namely, the unique maximal one in R), and (ii) holds.

Theorem III.4.13.

- (i) R is a local ring;
- (ii) all nonunits of R are contained in some ideal $M \neq R$;
- (iii) the nonunits of R form an ideal.

Proof (continued). If (iii) holds and the nonunits of R form an ideal M, then this ideal is maximal (or else there would be an ideal containing all the nonunits and a unit, but then this ideal would be R itself). Any ideal not equal to R similarly cannot contain any units and so can consist only of nonunits. Therefore, any ideal not equal to R is a subset of M. Hence, M is maximal. That is, R is a local ring and (i) holds. Suppose (i) holds. Then R is a local ring, so that it has a unique maximal ideal. If $a \in R$ is a nonunit, then $(a) \neq R$. But by Note III.4.E, the maximal ideal contains every ideal in R (except R itself), and so contains every principal ideal (a)where a is a nonunit. That is, all nonunits are contained in some ideal $M \neq R$ (namely, the unique maximal one in R), and (ii) holds. Hence (ii) \Rightarrow (iii) \Rightarrow (i) \Rightarrow (ii), as claimed.

Theorem III.4.13.

- (i) R is a local ring;
- (ii) all nonunits of R are contained in some ideal $M \neq R$;
- (iii) the nonunits of R form an ideal.

Proof (continued). If (iii) holds and the nonunits of R form an ideal M, then this ideal is maximal (or else there would be an ideal containing all the nonunits and a unit, but then this ideal would be R itself). Any ideal not equal to R similarly cannot contain any units and so can consist only of nonunits. Therefore, any ideal not equal to R is a subset of M. Hence, M is maximal. That is, R is a local ring and (i) holds. Suppose (i) holds. Then R is a local ring, so that it has a unique maximal ideal. If $a \in R$ is a nonunit, then $(a) \neq R$. But by Note III.4.E, the maximal ideal contains every ideal in R (except R itself), and so contains every principal ideal (a)where *a* is a nonunit. That is, all nonunits are contained in some ideal $M \neq R$ (namely, the unique maximal one in R), and (ii) holds. Hence (ii) \Rightarrow (iii) \Rightarrow (i) \Rightarrow (ii), as claimed.

Theorem III.4.7. Let S be a multiplicative subset of a commutative ring R.

- (i) If I is an ideal in R, then $S^{-1}I = \{a/s \mid a \in I, x \in S\}$ is an ideal in $S^{-1}R$.
- (ii) If J is another ideal in R, then $S^{-1}(I + J) = S^{-1}I + S^{-1}J$, $S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$, and $S^{-1}(I \cap J) = (S^{-1}I)(S^{-1}J)$.

Proof. We start with three identities in $S^{-1}R$ which can be proved by induction. We give the base case and the general case follows similarly. Since $c_1/s + c_2/s = (c_1s + c_2s)/s^2$ by Theorem II.4.3(i), then $c_1/s + c_2/s = (c_1 + c_2)/s$ by Theorem II.4.2 because $s(c_1s + c_2s) = s^2(c_1 + c_2)$. By induction we then have

$$\sum_{i=1}^{n} (c_i/s) = \left(\sum_{i=1}^{n} c_i\right) / s.$$
(1)

Theorem III.4.7. Let *S* be a multiplicative subset of a commutative ring *R*.

- (i) If I is an ideal in R, then $S^{-1}I = \{a/s \mid a \in I, x \in S\}$ is an ideal in $S^{-1}R$.
- (ii) If J is another ideal in R, then $S^{-1}(I + J) = S^{-1}I + S^{-1}J$, $S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$, and $S^{-1}(I \cap J) = (S^{-1}I)(S^{-1}J)$.

Proof. We start with three identities in $S^{-1}R$ which can be proved by induction. We give the base case and the general case follows similarly. Since $c_1/s + c_2/s = (c_1s + c_2s)/s^2$ by Theorem II.4.3(i), then $c_1/s + c_2/s = (c_1 + c_2)/s$ by Theorem II.4.2 because $s(c_1s + c_2s) = s^2(c_1 + c_2)$. By induction we then have

$$\sum_{i=1}^{n} (c_i/s) = \left(\sum_{i=1}^{n} c_i\right) / s.$$
 (1)

Proof (continued). Now $(a_1/s)(b_1s/s) = (a_1b_1s)/a^2 = a_1b_1/s$ by Note III.4.A(ii), so by substitution

$$\sum_{j=1}^{m} (a_j b_j / s) = \sum_{j=1}^{m} (a_j / s) (b_j s / s).$$
 (2)

Since $c_1/s_1 + c_2/s_2 = (c_1s_2 + c_2s_1)/(s_1s_2)$ by Theorem III.4.3(i), then by induction

$$\sum_{k=1}^{t} (c_k/s_k) = \sum_{k=1}^{t} (c_k s_1 s s_2 \cdots s_{k-1} s_{k+1} \cdots s_t) / (s_1 s_2 \cdots s_t).$$
(3)

(i) Let $r/s \in S^{-1}R$ and $a/s' \in S^{-1}I$. Then (r/s)(a/s') = (ra)/(ss') by Theorem III.4.3(i). Since I is an ideal of R then $ra \in I$ and since S is multiplicative then $ss' \in S$. Therefore $(ra)/(ss') \in S^{-1}I$ so that $S^{-1}I$ is a left and (since R is commutative) right deal of $S^{-1}R$, as claimed.

Proof (continued). Now $(a_1/s)(b_1s/s) = (a_1b_1s)/a^2 = a_1b_1/s$ by Note III.4.A(ii), so by substitution

$$\sum_{j=1}^{m} (a_j b_j / s) = \sum_{j=1}^{m} (a_j / s) (b_j s / s).$$
 (2)

Since $c_1/s_1 + c_2/s_2 = (c_1s_2 + c_2s_1)/(s_1s_2)$ by Theorem III.4.3(i), then by induction

$$\sum_{k=1}^{t} (c_k/s_k) = \sum_{k=1}^{t} (c_k s_1 s s_2 \cdots s_{k-1} s_{k+1} \cdots s_t) / (s_1 s_2 \cdots s_t).$$
(3)

(i) Let $r/s \in S^{-1}R$ and $a/s' \in S^{-1}I$. Then (r/s)(a/s') = (ra)/(ss') by Theorem III.4.3(i). Since I is an ideal of R then $ra \in I$ and since S is multiplicative then $ss' \in S$. Therefore $(ra)/(ss') \in S^{-1}I$ so that $S^{-1}I$ is a left and (since R is commutative) right deal of $S^{-1}R$, as claimed.

Proof (continued). (ii) Notice that $I + J = \{a + b \mid a \in I, b \in J\}$ is an ideal of R by Theorem III.2.6(i). Now an element of $S^{-1}(I + J)$ is of the form (a + b)/s where $a \in I$, $b \in J$, and $s \in S$. By (1) with n = 2 we have (a + b)/s = a/s + b/s where $a/s \in S^{-1}I$ and $b/s \in S^{-1}J$. Therefore $S^{-1}(I + J) \subset S^{-1}I + S^{-1}J$. An element of $S^{-1}I + S^{-1}J$ is of the form a/s + b/s'. By (3) with t = 2 we have a/s + b/s' = (as' + bs)/(ss'). Since I and J are ideals of R then $as' \in I$ and $bs \in J$. Since S is multiplicative then $ss' \in S$. Therefore, (as' + bs)/(ss') is an element of $S^{-1}(I + J)$. That is, $S^{-1}I + S^{-1}J \in S^{-1}(I + J)$. Hence $S^{-1}(I + J) = S^{-1}I + S^{-1}J$, as claimed.

Notice that IJ is an ideal of R by Theorem II.2.6(i). By definition (see Section III.2. Ideals)

$$IJ = \{a_1b_1 + a_2b_2 + \cdots + a_nb_n \mid n \in \mathbb{N}, a_i \in I, b_i \in J\}.$$

So (with the same notation) an element of $S^{-1}(IJ)$ is of the form $(a_1b_1 + a_2b_2 + \cdots + a_nb_n)/s$ for some $s \in S$.

Proof (continued). (ii) Notice that $I + J = \{a + b \mid a \in I, b \in J\}$ is an ideal of R by Theorem III.2.6(i). Now an element of $S^{-1}(I + J)$ is of the form (a + b)/s where $a \in I$, $b \in J$, and $s \in S$. By (1) with n = 2 we have (a + b)/s = a/s + b/s where $a/s \in S^{-1}I$ and $b/s \in S^{-1}J$. Therefore $S^{-1}(I + J) \subset S^{-1}I + S^{-1}J$. An element of $S^{-1}I + S^{-1}J$ is of the form a/s + b/s'. By (3) with t = 2 we have a/s + b/s' = (as' + bs)/(ss'). Since I and J are ideals of R then $as' \in I$ and $bs \in J$. Since S is multiplicative then $ss' \in S$. Therefore, (as' + bs)/(ss') is an element of $S^{-1}(I + J)$. That is, $S^{-1}I + S^{-1}J \in S^{-1}(I + J)$. Hence $S^{-1}(I + J) = S^{-1}I + S^{-1}J$, as claimed.

Notice that IJ is an ideal of R by Theorem II.2.6(i). By definition (see Section III.2. Ideals)

$$IJ = \{a_1b_1 + a_2b_2 + \cdots + a_nb_n \mid n \in \mathbb{N}, a_i \in I, b_i \in J\}.$$

So (with the same notation) an element of $S^{-1}(IJ)$ is of the form $(a_1b_1 + a_2b_2 + \cdots + a_nb_n)/s$ for some $s \in S$.

Proof (continued). By (1) (with $c_i = a_i b_i$) and (2) we have

$$\left(\sum_{i=1}^n a_i b_i\right) \middle/ s = \sum_{i=1}^n (a_i b_i)/s = \sum_{i=1}^n (a_i/s)(b_i s/s).$$

For each *i* we have $a_i/s \in S^{-1}I$, since *J* is an ideal then $b_i sinJ$, and so $(b_i s)/s \in S^{-1}J$. Therefore, by the definition of the product of ideals $(S^{-1}I)(S^{-1}J)$, we have $(\sum_{i=1}^{n} a_i b_i)/s \in (S^{-1}I)(S^{-1}J)$. Therefore $S^{-1}(IJ) \subset (S^{-1}I)(S^{-1}J)$. An element of $(S^{-1}I)(S^{-1}J)$ is of the form $\sum_{k=1}^{t} (a'_k/s'_k)(b_k/s'') = \sum_{k=1}^{t} (a_k b_k)/(s'_k s''_k)$ by Theorem III.4.3(i). By (3) with $c_k = a_k b_k$ and $s_k = s'_k s''_k$ we have that this is of the form $\sum_{k=1}^{t} (c_k/s_k) = \sum_{k=1}^{t} (c_k s_1 s_2 \cdots s_{k-1} s_{k+1} \cdots s_t)/(s_1 s_2 \cdots s_t) = \sum_{k=1}^{t} (a_k b_k s''_k)/s$ where $s''_k = s_1 s_2 \cdots s_{k-1} s_{k+1} \cdots s_t$ and $s = s_1 s_2 \cdots s_t$. Since *J* is an ideal

then $b_k s_k'' \in J$, say $b_k s_k'' = b'_k \in J$, and since S is multiplicative then $s \in S$.

Proof (continued). By (1) (with $c_i = a_i b_i$) and (2) we have

$$\left(\sum_{i=1}^n a_i b_i\right) \middle/ s = \sum_{i=1}^n (a_i b_i)/s = \sum_{i=1}^n (a_i/s)(b_i s/s).$$

For each *i* we have $a_i/s \in S^{-1}I$, since *J* is an ideal then $b_i sinJ$, and so $(b_i s)/s \in S^{-1}J$. Therefore, by the definition of the product of ideals $(S^{-1}I)(S^{-1}J)$, we have $(\sum_{i=1}^{n} a_i b_i)/s \in (S^{-1}I)(S^{-1}J)$. Therefore $S^{-1}(IJ) \subset (S^{-1}I)(S^{-1}J)$. An element of $(S^{-1}I)(S^{-1}J)$ is of the form $\sum_{k=1}^{t} (a'_k/s'_k)(b_k/s'') = \sum_{k=1}^{t} (a_k b_k)/(s'_k s''_k)$ by Theorem III.4.3(i). By (3) with $c_k = a_k b_k$ and $s_k = s'_k s''_k$ we have that this is of the form

$$\sum_{k=1}^{t} (c_k/s_k) = \sum_{k=1}^{t} (c_k s_1 s_2 \cdots s_{k-1} s_{k+1} \cdots s_t) / (s_1 s_2 \cdots s_t) = \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k s_k''' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k s_k''' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k s_k'' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k s_k'' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k s_k'' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k s_k'' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k s_k'' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k s_k'' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k s_k'' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k'' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k s_k' + \sum_{k=1}^{t} (a_k b_k s_k'') / s_k' + \sum_{k=1}^{t} (a_k b_k s_k''$$

where $s_k''' = s_1 s_2 \cdots s_{k-1} s_{k+1} \cdots s_t$ and $s = s_1 s_2 \cdots s_t$. Since J is an ideal then $b_k s_k''' \in J$, say $b_k s_k''' = b'_k \in J$, and since S is multiplicative then $s \in S$.

Theorem III.4.7. Let *S* be a multiplicative subset of a commutative ring *R*.

- (i) If I is an ideal in R, then $S^{-1}I = \{a/s \mid a \in I, x \in S\}$ is an ideal in $S^{-1}R$.
- (ii) If J is another ideal in R, then $S^{-1}(I + J) = S^{-1}I + S^{-1}J$, $S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$, and $S^{-1}(I \cap J) = (S^{-1}I)(S^{-1}J)$.

Proof (continued). So an element of $(S^{-1}I)(S^{-1}J)$ is of the form $\sum_{k=1}^{t} (a_k b'_k)/s$ where, by (1), equals $(\sum_{k=1}^{t} a_b b'_k)/s$. since $\sum_{k=1}^{t} a_k b'_k \in IJ$, then we have that an arbitrary element of $(S^{-1}I)(S^{-1}J)$ is an element of $S^{-1}(IJ)$. That is, $(S^{-1}I)(S^{-1}J) \subset S^{-1}(IJ)$. Hence $S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$, as claimed.

Proof (continued). Notice that $I \cap J$ is an ideal of R by Corollary III.2.3 An element of $S^{-1}(I \cap J)$ is of the form r/s where $r \in I \cap J$. Notice that $r \in I$ so $r/s \in S^{-1}I$, and $r \in J$ so $r/s \in S^{-1}J$. Therefore $r/s \in (S^{-1}I) \cap (S^{-1}J)$ and hence $S^{-1}(I \cap J) \subset (S^{-1}I)(S^{-1}J)$. An element of $(S^{-1}I) \cap (S^{-1}J)$ is of forms a/s and s/b' where $a \in I$, $b \in J$, and $s, s' \in S$. So a/s = b/s' and $s_1(as' - bs) = 0$ for some $s_1 \in S$ by Theorem III.4.2. That is, $s_1 as' = s_1 bs$. Since *I* and *J* are ideals then $s_1 as' \in I$ and $s_1 bs \in J$. Say $c = s_1 as' = s_1 bs$ and then $c \in I \cap J$. Now $ss_1s' \in S$ since S is multiplicative, so $c/(ss_1s') = (s_1s'a)/(ss_1s') = a/s \in S^{-1}(I \cap J)$. So any element of $(S^{-1}I) \cap (S^{-1}J)$ is an element of $S^{-1}(I \cap J)$. That is, $(S^{-1}I) \cap (S^{-1}J) \subset S^{-1}(I \cap J)$. Therefore, $S^{-1}(I \cap J) = (S^{-1}I)(S^{-1}J)$, as claimed.

Proof (continued). Notice that $I \cap J$ is an ideal of R by Corollary III.2.3 An element of $S^{-1}(I \cap J)$ is of the form r/s where $r \in I \cap J$. Notice that $r \in I$ so $r/s \in S^{-1}I$, and $r \in J$ so $r/s \in S^{-1}J$. Therefore $r/s \in (S^{-1}I) \cap (S^{-1}J)$ and hence $S^{-1}(I \cap J) \subset (S^{-1}I)(S^{-1}J)$. An element of $(S^{-1}I) \cap (S^{-1}J)$ is of forms a/s and s/b' where $a \in I$, $b \in J$, and $s, s' \in S$. So a/s = b/s' and $s_1(as' - bs) = 0$ for some $s_1 \in S$ by Theorem III.4.2. That is, $s_1 as' = s_1 bs$. Since I and J are ideals then $s_1 as' \in I$ and $s_1 bs \in J$. Say $c = s_1 as' = s_1 bs$ and then $c \in I \cap J$. Now $ss_1s' \in S$ since S is multiplicative, so $c/(ss_1s') = (s_1s'a)/(ss_1s') = a/s \in S^{-1}(I \cap J)$. So any element of $(S^{-1}I) \cap (S^{-1}J)$ is an element of $S^{-1}(I \cap J)$. That is, $(S^{-1}I) \cap (S^{-1}J) \subset S^{-1}(I \cap J)$. Therefore, $S^{-1}(I \cap J) = (S^{-1}I)(S^{-1}J)$, as claimed.

Theorem III.4.8. Let *S* be a multiplicative subset of a commutative ring *R* with identity and let *I* be an ideal of *R*. Then $S^{-1}I = S^{-1}R$ if and only if $S \cap I \neq \emptyset$.

Proof. If $s \in S \cap I$, then $s/s \in S^{-1}I$ and s/s is the identity in $S^{-1}I$ as shown in the proof of Theorem III.4.3(i). We denote the identity in $S^{-1}R$ as $1_{S^{-1}R} = s/s$. Now $S^{-1}I$ is an ideal of $S^{-1}R$ by Theorem III.4.7(i), and by definition of an ideal $(r/s)(S^{-1}I) \sin S^{-1}I$ for all $r/s \in S^{-1}R$. With $1_{S^{-1}R} \in S^{-1}I$ we then have all elements of $S^{-1}R$ in $S^{-1}I$. Therefore, $S^{-1}I = S^{-1}R$ (of course, $S^{-1}I$ is always a subset of $S^{-1}R$), as claimed.

Theorem III.4.8. Let *S* be a multiplicative subset of a commutative ring *R* with identity and let *I* be an ideal of *R*. Then $S^{-1}I = S^{-1}R$ if and only if $S \cap I \neq \emptyset$.

Proof. If $s \in S \cap I$, then $s/s \in S^{-1}I$ and s/s is the identity in $S^{-1}I$ as shown in the proof of Theorem III.4.3(i). We denote the identity in $S^{-1}R$ as $1_{S^{-1}R} = s/s$. Now $S^{-1}I$ is an ideal of $S^{-1}R$ by Theorem III.4.7(i), and by definition of an ideal $(r/s)(S^{-1}I) \sin S^{-1}I$ for all $r/s \in S^{-1}R$. With $1_{S^{-1}R} \in S^{-1}I$ we then have all elements of $S^{-1}R$ in $S^{-1}I$. Therefore, $S^{-1}I = S^{-1}R$ (of course, $S^{-1}I$ is always a subset of $S^{-1}R$), as claimed.

Now suppose $S^{-1}I = S^{-1}R$. The homomorphism $\varphi_S : R \to S^{-1}R$ given in Theorem III.4.4(i) gives the inverse image $\varphi_S(S^{-1}R) = R$. Since $S^{-1}I = S^{-1}R$ then $\varphi_S^{-1}(S^{-1}I) = R$. Whence because $1_R \in R$ then $\varphi_S(1_R) \in S^{-1}I$, so $\varphi_S(1_R) = a/s$ for some $a \in I$ and $s \in S$.

Theorem III.4.8. Let *S* be a multiplicative subset of a commutative ring *R* with identity and let *I* be an ideal of *R*. Then $S^{-1}I = S^{-1}R$ if and only if $S \cap I \neq \emptyset$.

Proof. If $s \in S \cap I$, then $s/s \in S^{-1}I$ and s/s is the identity in $S^{-1}I$ as shown in the proof of Theorem III.4.3(i). We denote the identity in $S^{-1}R$ as $1_{S^{-1}R} = s/s$. Now $S^{-1}I$ is an ideal of $S^{-1}R$ by Theorem III.4.7(i), and by definition of an ideal $(r/s)(S^{-1}I) \sin S^{-1}I$ for all $r/s \in S^{-1}R$. With $1_{S^{-1}R} \in S^{-1}I$ we then have all elements of $S^{-1}R$ in $S^{-1}I$. Therefore, $S^{-1}I = S^{-1}R$ (of course, $S^{-1}I$ is always a subset of $S^{-1}R$), as claimed.

Now suppose $S^{-1}I = S^{-1}R$. The homomorphism $\varphi_S : R \to S^{-1}R$ given in Theorem III.4.4(i) gives the inverse image $\varphi_S(S^{-1}R) = R$. Since $S^{-1}I = S^{-1}R$ then $\varphi_S^{-1}(S^{-1}I) = R$. Whence because $1_R \in R$ then $\varphi_S(1_R) \in S^{-1}I$, so $\varphi_S(1_R) = a/s$ for some $a \in I$ and $s \in S$.

Theorem III.4.8. Let S be a multiplicative subset of a commutative ring R with identity and let I be an ideal of R. Then $S^{-1}I = S^{-1}R$ if and only if $S \cap I \neq \emptyset$.

Proof (continued). Also, $\varphi_S(1_R) = 1_R s/s$, so we must have $a/s = 1_R s/s$ or $s_1(as - 1_R s^2) = 0$ for some $s_1 \in S$ by Theorem III.4.2. That is, $ass_1 = s^2 s_1$. But since S is multiplicative then $s^2 s_1 \in S$, and since I is an ideal then $ass_1 \in I$. Therefore $ass_1 = s^2 s_1 \in S \cap I$ and $S \cap I \neq \emptyset$, as claimed.

Lemma III.4.9

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R with identity and let I be an ideal in R.

- (i) I ⊂ φ_S⁻¹(S⁻¹I).
 (ii) If I = φ_S⁻¹(J) for some ideal J in S⁻¹R, then S⁻¹I = J. That is, every ideal in S⁻¹R is of the form S⁻¹I for some ideal I in R.
- (iii) If P is a prime ideal in R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$ and $\varphi_S^{-1}(S^{-1}P) = P$.

Proof. (i) Since *I* is an ideal, then for any $a \in I$ we have $as \in I$ for all $s \in S$. So $\varphi_S(a) = (as)/s \in S^{-1}I$, and hence $a \in \varphi_2^{-1}(S^{-1}I)$. That is, $I \subset \varphi_S^{-1}(S^{-1}I)$, as claimed.

Lemma III.4.9

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R with identity and let I be an ideal in R.

- (i) I ⊂ φ_S⁻¹(S⁻¹I).
 (ii) If I = φ_S⁻¹(J) for some ideal J in S⁻¹R, then S⁻¹I = J. That is, every ideal in S⁻¹R is of the form S⁻¹I for some ideal I in R.
- (iii) If P is a prime ideal in R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$ and $\varphi_S^{-1}(S^{-1}P) = P$.

Proof. (i) Since *I* is an ideal, then for any $a \in I$ we have $as \in I$ for all $s \in S$. So $\varphi_S(a) = (as)/s \in S^{-1}I$, and hence $a \in \varphi_2^{-1}(S^{-1}I)$. That is, $I \subset \varphi_S^{-1}(S^{-1}I)$, as claimed.

(ii) Since $I = \varphi_S^{-1}(J)$ by hypothesis, then every element of $S^{-1}I$ is of the form r/s where $r \in I = \varphi_S^{-1}(J)$; that is, $\varphi_S(r) \in J$. Therefore, $r/s = (1 + Rrs)/s^2 = (1_R/s = rs/s) = (1_R/s)\varphi_S(r)$ and this is in J since $\varphi_S(r) \in J$ and J is an ideal in $S^{-1}R$.

Lemma III.4.9

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R with identity and let I be an ideal in R.

- (i) I ⊂ φ_S⁻¹(S⁻¹I).
 (ii) If I = φ_S⁻¹(J) for some ideal J in S⁻¹R, then S⁻¹I = J. That is, every ideal in S⁻¹R is of the form S⁻¹I for some ideal I in R.
- (iii) If P is a prime ideal in R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$ and $\varphi_S^{-1}(S^{-1}P) = P$.

Proof. (i) Since *I* is an ideal, then for any $a \in I$ we have $as \in I$ for all $s \in S$. So $\varphi_S(a) = (as)/s \in S^{-1}I$, and hence $a \in \varphi_2^{-1}(S^{-1}I)$. That is, $I \subset \varphi_S^{-1}(S^{-1}I)$, as claimed.

(ii) Since $I = \varphi_S^{-1}(J)$ by hypothesis, then every element of $S^{-1}I$ is of the form r/s where $r \in I = \varphi_S^{-1}(J)$; that is, $\varphi_S(r) \in J$. Therefore, $r/s = (1 + Rrs)/s^2 = (1_R/s = rs/s) = (1_R/s)\varphi_S(r)$ and this is in J since $\varphi_S(r) \in J$ and J is an ideal in $S^{-1}R$.

Lemma III.4.9 (continued 1)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$ and $\varphi_S^{-1}(S^{-1}P) = P$.

Proof (continued). So every element of $S^{-1}I$ is an element of J and $S^{-1}I \subset J$. Conversely, if $r/s \in J$, then $\varphi_S(r) = rs/s = rs^2/s^2 = (r/s)(s^2/s)$ and this is in J since $r/s \in J$, $s^2/s \in S^{-1}R$, and J is an ideal in $S^{-1}R$. Since $\varphi_S(r) \in J$ then $r \in \varphi_S^{-1}(J) = I$. Thus $r/s \in S^{-1}I$, and hence $J \subset S^{-1}I$. Therefore, we have $S^{-1}I = J$, as claimed.

(iii) Suppose *P* is a prime ideal in *R* and $S \cap P = \emptyset$. First, $S^{-1}P$ is an ideal of $S^{-1}R$ by Theorem III.4.7. Since $S \cap P = \emptyset$ then by Theorem III.4.7 $S^{-1}P \neq S^{-1}R$ (this is one requirement for $S^{-1}P$ to be a prime ideal in $S^{-1}R$). To show $S^{-1}P$ is a prime ideal, we consider a product of two elements of $S^{-1}P$, say $(r/s)(r'/s') \in S^{-1}P$.

()

Lemma III.4.9 (continued 1)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$ and $\varphi_S^{-1}(S^{-1}P) = P$.

Proof (continued). So every element of $S^{-1}I$ is an element of J and $S^{-1}I \subset J$. Conversely, if $r/s \in J$, then $\varphi_S(r) = rs/s = rs^2/s^2 = (r/s)(s^2/s)$ and this is in J since $r/s \in J$, $s^2/s \in S^{-1}R$, and J is an ideal in $S^{-1}R$. Since $\varphi_S(r) \in J$ then $r \in \varphi_S^{-1}(J) = I$. Thus $r/s \in S^{-1}I$, and hence $J \subset S^{-1}I$. Therefore, we have $S^{-1}I = J$, as claimed.

(iii) Suppose *P* is a prime ideal in *R* and $S \cap P = \emptyset$. First, $S^{-1}P$ is an ideal of $S^{-1}R$ by Theorem III.4.7. Since $S \cap P = \emptyset$ then by Theorem III.4.7 $S^{-1}P \neq S^{-1}R$ (this is one requirement for $S^{-1}P$ to be a prime ideal in $S^{-1}R$). To show $S^{-1}P$ is a prime ideal, we consider a product of two elements of $S^{-1}P$, say $(r/s)(r'/s') \in S^{-1}P$.

Lemma III.4.9 (continued 2)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$ and $\varphi_S^{-1}(S^{-1}P) = P$.

Proof (continued). We then have (rr')/(ss') = a/t for some $a \in P$ and some $t \in S$. Then by Theorem III.4.2, $s_1(trr' - ss'a) = 0$ for some $s_1 \in S$, or $s_1 trr' = s_1 ss'a$. Since $a \in P$ and P is an ideal of R then $s_1 trr' = s_1 ss' a \in P$. Now $s_1 t \in S$ (since S is multiplicative and $S \cap P = \emptyset$, so by Theorem III.2.15 (with $a = s_1 t$ and b = rr' with a and b as the parameters of Theorem III.2.15), we have either $s_1 t \in P$ or $rr' \in P$. But $s_1 t \in S$ and $s_1 t \notin P$ (since $S \cap P = \emptyset$), so we must have $rr' \in P$ (Theorem III.2.15 requires the fact that P is prime). Again based on the fact that P is prime, either $r \in P$ or $r' \in P$. Thus either $r/s \in S^{-1}P$ or $r'/s' \in S^{-1}P$. Since we considered arbitrary $(r/s)(r'/s') \in S^{-1}P$, then we now have that $S^{-1}P$ is a prime ideal in $S^{-1}R$ by Theorem III.2.15 (applied to $S^{-1}P$), as claimed.

Lemma III.4.9 (continued 2)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$ and $\varphi_S^{-1}(S^{-1}P) = P$.

Proof (continued). We then have (rr')/(ss') = a/t for some $a \in P$ and some $t \in S$. Then by Theorem III.4.2, $s_1(trr' - ss'a) = 0$ for some $s_1 \in S$, or $s_1 trr' = s_1 ss'a$. Since $a \in P$ and P is an ideal of R then $s_1 trr' = s_1 ss' a \in P$. Now $s_1 t \in S$ (since S is multiplicative and $S \cap P = \emptyset$, so by Theorem III.2.15 (with $a = s_1 t$ and b = rr' with a and b as the parameters of Theorem III.2.15), we have either $s_1 t \in P$ or $rr' \in P$. But $s_1 t \in S$ and $s_1 t \notin P$ (since $S \cap P = \emptyset$), so we must have $rr' \in P$ (Theorem III.2.15 requires the fact that P is prime). Again based on the fact that P is prime, either $r \in P$ or $r' \in P$. Thus either $r/s \in S^{-1}P$ or $r'/s' \in S^{-1}P$. Since we considered arbitrary $(r/s)(r'/s') \in S^{-1}P$, then we now have that $S^{-1}P$ is a prime ideal in $S^{-1}R$ by Theorem III.2.15 (applied to $S^{-1}P$), as claimed.

Lemma III.4.9 (continued 3)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$ and $\varphi_S^{-1}(S^{-1}P) = P$.

Proof (continued). By part (i), $P \subset \varphi_S^{-1}(S^{-1}P)$. If $r \in \varphi_S^{-1}(S^{-1}P)$ then $\varphi_S(r) \in S^{-1}P$ so that $\varphi_S(r) = rs/s = at$ with $a \in P$ and $s, t \in S$. Again by Theorem III.4.2, $s_1(str - sa) = 0$ or $s_1str = s_1sa$. Since P is an ideal then $s_1sa \in P$ and so $(s_1st)r \in P$. By Theorem III.2.15 (because P is prime), either $s_1st \in P$ or $r \in P$. But $s_1st \in S$ and $S \cap P = \emptyset$ so we have $s_1st \notin P$ and hence we must have $r \in P$. Since r is an arbitrary element of $\varphi_S^{-1}(S^{-1}P)$, then we now have $\varphi_S^{-1}(S^{-1}P) \subset P$. That is, $\varphi_S^{-1}(S^{-1}P) = P$, as claimed.

Theorem III.4.10. Let S be a multiplicative subset of a commutative ring R with identity. Then there is a one-to-one correspondence between the set \mathcal{U} of prime ideals of R which are disjoint from S and the set \mathcal{V} of prime ideals of $S^{-1}R$, given by $P \mapsto S^{-1}P$.

Proof. Let S be a given multiplicative set. Symbolically, $\mathcal{U} = \{P \mid \text{ is a prime ideal of } R \text{ and } S \cap P = \emptyset\}$. By Lemma III.4.9(iii), the assignment of P to $S^{-1}P$ is one to one since for $S^{-1}P_1 \neq S^{-1}P_2$ we have $\varphi_S^{-1}(S^{-1}P_1) = P_1 \neq P_2 = \varphi_S^{-1}(S^{-1}P_2)$.

Theorem III.4.10. Let S be a multiplicative subset of a commutative ring R with identity. Then there is a one-to-one correspondence between the set \mathcal{U} of prime ideals of R which are disjoint from S and the set \mathcal{V} of prime ideals of $S^{-1}R$, given by $P \mapsto S^{-1}P$.

Proof. Let S be a given multiplicative set. Symbolically, $\mathcal{U} = \{P \mid \text{ is a prime ideal of } R \text{ and } S \cap P = \emptyset\}$. By Lemma III.4.9(iii), the assignment of P to $S^{-1}P$ is one to one since for $S^{-1}P_1 \neq S^{-1}P_2$ we have $\varphi_S^{-1}(S^{-1}P_1) = P_1 \neq P_2 = \varphi_S^{-1}(S^{-1}P_2)$.

To show the mapping is surjective, let J be an element of \mathcal{V} (i.e., J is a prime ideal of $S^{-1}R$), and let $P = \varphi_S^{-1}(J)$. By Lemma III.4.9(ii), if we show P is prime then we have $P \mapsto S^{-1}P = J$, so that the mapping is surjective ("onto"). Suppose $ab \in P$. Then, since φ_S is a homomorphism by Theorem III.4.4(i), $\varphi_S(ab) = \varphi_S(a)\varphi_S(b) \in J$ since $P = \varphi_S^{-1}(J)$.

Theorem III.4.10. Let S be a multiplicative subset of a commutative ring R with identity. Then there is a one-to-one correspondence between the set \mathcal{U} of prime ideals of R which are disjoint from S and the set \mathcal{V} of prime ideals of $S^{-1}R$, given by $P \mapsto S^{-1}P$.

Proof. Let *S* be a given multiplicative set. Symbolically, $\mathcal{U} = \{P \mid \text{ is a prime ideal of } R \text{ and } S \cap P = \emptyset\}$. By Lemma III.4.9(iii), the assignment of *P* to $S^{-1}P$ is one to one since for $S^{-1}P_1 \neq S^{-1}P_2$ we have $\varphi_S^{-1}(S^{-1}P_1) = P_1 \neq P_2 = \varphi_S^{-1}(S^{-1}P_2)$.

To show the mapping is surjective, let J be an element of \mathcal{V} (i.e., J is a prime ideal of $S^{-1}R$), and let $P = \varphi_S^{-1}(J)$. By Lemma III.4.9(ii), if we show P is prime then we have $P \mapsto S^{-1}P = J$, so that the mapping is surjective ("onto"). Suppose $ab \in P$. Then, since φ_S is a homomorphism by Theorem III.4.4(i), $\varphi_S(ab) = \varphi_S(a)\varphi_S(b) \in J$ since $P = \varphi_S^{-1}(J)$.

Theorem III.4.10. Let S be a multiplicative subset of a commutative ring R with identity. Then there is a one-to-one correspondence between the set \mathcal{U} of prime ideals of R which are disjoint from S and the set \mathcal{V} of prime ideals of $S^{-1}R$, given by $P \mapsto S^{-1}P$.

Proof (continued). Since *J* is prime in $S^{-1}R$, then by Theorem III.2.15 (notice that *P* is a prime ideal of $S^{-1}R$, so $J \neq S^{-1}R$) either $\varphi_S(a) \in J$ or $\varphi_S(b) \in J$. That is, either $a \in \varphi_S^{-1}(J) = P$ or $b \in \varphi_S^{-1}(J) = P$ and hence *P* is prime (again, by Theorem III.2.25). Therefore the mapping $P \mapsto S^{-1}P$ is also surjective and, hence, is a bijection. We now have that this mapping is a one-to-one correspondence from \mathcal{U} to \mathcal{V} , as claimed. \Box

Theorem III.4.11. Let P be a prime ideal in a commutative ring R with identity, and let S = R - P.

(i) There is a one-to-one correspondence between the set of prime ideals of *R* which are contained in *P* and the set of prime ideals of *R_p* = *S*⁻¹*R*, given by *Q* → *Q_P* = *S*⁻¹*Q*;
(ii) the ideal *P_P* = *S*⁻¹*P* in *R_P* is the unique maximal ideal of *R_P*.

Proof. (i) The prime ideals of R contained in P are precisely the prime ideals which are disjoint from the complement of P, S = R - P. The one-to-one correspondence is then given by Theorem III.4.10 since $S^{-1}R = R_p$

Theorem III.4.11. Let P be a prime ideal in a commutative ring R with identity, and let S = R - P.

(i) There is a one-to-one correspondence between the set of prime ideals of *R* which are contained in *P* and the set of prime ideals of *R_p* = *S*⁻¹*R*, given by *Q* → *Q_P* = *S*⁻¹*Q*;
(ii) the ideal *P_P* = *S*⁻¹*P* in *R_P* is the unique maximal ideal of *R_P*.

Proof. (i) The prime ideals of R contained in P are precisely the prime ideals which are disjoint from the complement of P, S = R - P. The one-to-one correspondence is then given by Theorem III.4.10 since $S^{-1}R = R_p$

(ii) If M is a maximal ideal of R_p , then M is prime by Theorem III.2.19 (since R_p has an identity, namely s/s as shown in the proof of Theorem III.4.3(i)). That is, $M \in \mathcal{V}$ where \mathcal{V} is the set of prime ideals in $R_P = S^{-1}R$.

Theorem III.4.11. Let P be a prime ideal in a commutative ring R with identity, and let S = R - P.

(i) There is a one-to-one correspondence between the set of prime ideals of *R* which are contained in *P* and the set of prime ideals of *R_p* = *S*⁻¹*R*, given by *Q* → *Q_P* = *S*⁻¹*Q*;
(ii) the ideal *P_P* = *S*⁻¹*P* in *R_P* is the unique maximal ideal of *R_P*.

Proof. (i) The prime ideals of R contained in P are precisely the prime ideals which are disjoint from the complement of P, S = R - P. The one-to-one correspondence is then given by Theorem III.4.10 since $S^{-1}R = R_p$

(ii) If M is a maximal ideal of R_p , then M is prime by Theorem III.2.19 (since R_P has an identity, namely s/s as shown in the proof of Theorem III.4.3(i)). That is, $M \in \mathcal{V}$ where \mathcal{V} is the set of prime ideals in $R_P = S^{-1}R$.

Theorem III.4.11. Let P be a prime ideal in a commutative ring R with identity, and let S = R - P.

(i) There is a one-to-one correspondence between the set of prime ideals of *R* which are contained in *P* and the set of prime ideals of *R_p* = *S*⁻¹*R*, given by *Q* → *Q_P* = *S*⁻¹*Q*;
(ii) the ideal *P_P* = *S*⁻¹*P* in *R_P* is the unique maximal ideal of *R_P*.

Proof (continued). By Theorem III.4.10, there is a prime ideal Q of R which is disjoint from S = R - P (and so is contained in P) such that $M = S^{-1}Q = Q + P$. But $Q \subset P$ implies $Q_P \subset P_P$. Since $P_P \neq R_p$ by Theorem III.4.8 (because P is a prime ideal of R so that $P \neq R$ and $S \cap P = (S - P) \cap P = \emptyset$), and $M = Q_P$ is maximal (by hypothesis) then $M = Q_P = P_P$. Therefore, P_p is a maximal ideal in R_P and (since M has chosen to be an arbitrary maximal ideal of R_P) is the unique such maximal ideal, as claimed.

- C