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Theorem III.4.3

Theorem III.4.3

Theorem III.4.3. Let S be a multiplicative subset of a commutative ring
R and let S−1R be the set of equivalence classes of R × S under the
equivalence relation of Theorem III.4.2.

(i) S−1R is a commutative ring with identity, where addition
and multiplication are defined by

r/s + r ′/s ′ = (rs ′ + r ′s)/(ss ′) and (r/s)(r ′/s ′) = (rr ′)/(ss ′).

(ii) If R is a nonzero ring with no zero divisors and 0 6∈ S , then
S−1R is an integral domain.

(iii) If R is a nonzero ring with no zero divisors and S is the set
of all nonzero elements of R, then S−1R is a field.

Proof. (i) First, if 0 ∈ S then by Note III.4.A(iii) we have S−1R is a zero
ring, so we assume without loss of generality that 0 6∈ S . To show that
addition is well defined, let r/s = r1/s1 and r ′/s ′ = r ′1/s ′1. Then by Note
III.4.A(i), there exist s2, s3 ∈ S such that s2(rs1 − r1s) = 0 and
s3(r

′s ′1 − r ′1s
′) = 0.
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Theorem III.4.3

Theorem III.4.3 (continued 1)

Proof (continued). Then by Note III.4.A(i), there exist s2, 32 ∈ S such
that s2(rs1 − r1s) = 0 and s3(r

′s ′1 − r ′1s
′) = 0. Multiplying the first

equation by s3s
′s ′1 and multiplying the second equation by s2ss1 we have

s2s3s
′s ′1(rs1 − r1s) = 0 and s2s3ss1(r

′s ′1 − r ′1s
′) = 0.

Adding these two equations gives

s2s3
(
(rs1 − r1s)s

′s ′1 + (r ′s ′1 − r ′1s
′)ss1

)
= 0

or s2s3(rs1s
′s ′1 + r ′s ′1ss1 − r1ss

′s ′1 − r ′1s
′ss1) = 0

or s2s3
(
(rs ′ + r ′s)s1s

′
1 − (r1s

′
1 + r ′1s1)ss

′) = 0.

Therefore (rs ′ + r ′s)/(ss ′) = (r1s
′
1 + r ′1s1)/(s1s

′
1) since s2s3 ∈ S (because

S is multiplicative), by Note II.4.A(i). Hence

r/s + r ′/s ′ = (rs ′ + r ′s)/(ss ′) = (r1s
′
1 + r ′1s1)/(s1s

′
1) = r1/s1 + r ′1/s ′1

and addition on S−1R is well-defined.
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Theorem III.4.3

Theorem III.4.3 (continued 2)

Proof (continued). To show multiplication is well-defined, again let
r/s = r1/s1 and r ′/s ′ = r ′1/s ′1. Then by Notes II.4.A(i), there exists
s2, s3 ∈ S such that s2(rs1 − r1s) = 0 and s3(r

′s ′1 − r ′1s
′) = 0. Multiplying

the first equation by r ′s ′1s3 and multiplying the second equation by r1ss2,
we get

s2(rs1 − r1s)r
′s ′1s3 = s2s3(rr

′s1s
′
1 − r1r

′ss ′1) = 0

and s3(r
′s ′1 − r ′1s

′)r1ss2 = s2s3(r1r
′ss ′1 − r1r

′
1ss

′) = 0.

Adding these two equations gives

s2s3(rr
′s1s

′
1 − r1r

′ss ′1 + r1r
′ss ′1 − r1r

′
1ss

′) = 0

or s2s3(rr
′s1s

′
1 − r1r

′
1ss

′) = 0.

Therefore (rr ′)/(ss ′) = (r1r
′
1)/(s1s

′
1) since s2s3 ∈ S (because S is

multiplicative), by Note III.4.A(i). Hence

(r/s)(r ′/s ′) = (rr ′)/(ss ′) = (r1r
′
1)/(s1s

′
1) = (r1/s1)(r

′
1/s ′1)

and multiplication in S−1R is well-defined.
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Theorem III.4.3

Theorem III.4.3 (continued 3)

Proof (continued). Next, since R is commutative then

(r/s)(r ′/s ′) = (rr ′)/(ss ′) = (r ′r)/(s ′s) = (r ′/s ′)(r/s)

and so S−1R is commutative. For s, s ′ ∈ S we have 0/s = 0/s ′ in S−1R
and for any r/s ∈ S−1R we have

r/s + 0/s = (rs + 0s)/(ss) = (rs)/(ss) = r/s

(where the last equality holds because (rs)s = (ss)r) so that 0/s is the
additive identity in S−1R (remember, 0/s represents an equivalence class).
For r/s ∈ S−1R we know that (−r)/s ∈ S−1R and
r/s + (−r)/s = (rs + (−r)(s))/s = 0/s so that the additive inverse of
r/s ∈ S−1R is (−r)/s ∈ S−1R. For s, s ′ ∈ S , we have s/s = s ′/s ′ and for
r/s ∈ S−1R we have (r/s)(s/s) = (rs)/(ss) = r/s so that s/s ∈ S−1R is
the multiplicative identity of S−1R. Therefore, S−1R is a commutative
ring with identity with addition and multiplication as given, establishing (i).
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Theorem III.4.3

Theorem III.4.3 (continued 4)

Theorem III.4.3. Let S be a multiplicative subset of a commutative ring
R and let S−1R be the set of equivalence classes of R × S under the
equivalence relation of Theorem III.4.2.

(ii) If R is a nonzero ring with no zero divisors and 0 6∈ S , then
S−1R is an integral domain.

Proof (continued). (ii) If r/s = 0/s then by Note III.4.A(i),
s1(rs − 0s) = s1rs = 0 for some s1 ∈ S . Since we have hypothesized that
R has no zero divisors and 0 6∈ S , then it must be that r = 0 (and
conversely r = 0 implies r/s = 0/s). Consequently,
(r/s)(r ′/s ′) = (rr ′)/(ss ′) = 0/s in S−1R if and only if rr ′ = 0 in R. Since
R has no zero divisors, then either r = 0 or r ′ = 0 and so either r/s = 0/s
or r ′/s ′ = 0/s ′ so that S−1R has no zero divisor and since S−1R is
commutative, then it is an integral domain, as claimed.
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Theorem III.4.3

Theorem III.4.3 (continued 5)

Theorem III.4.3. Let S be a multiplicative subset of a commutative ring
R and let S−1R be the set of equivalence classes of R × S under the
equivalence relation of Theorem III.4.2.

(iii) If R is a nonzero ring with no zero divisors and S is the set
of all nonzero elements of R, then S−1R is a field.

Proof (continued). (iii) By part (ii), we have that S−1R is an integral
domain. We only need to show that every nonzero element of S−1R has a
multiplicative inverse. If r/s ∈ S−1R and r/s 6= 0/s then r 6= 0 (as shown
in part (ii)). So s/r ∈ S−1R and we have (r/s)(s/r) = (rs)/(rs) and this
is the multiplicative identity, as shown in (i). Hence S−1R is a field, as
claimed.
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Theorem III.4.4

Theorem III.4.4

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring
R.

(i) The map ϕS : R → S−1R given by r 7→ rs/s (for any s ∈ S)
is a well-defined homomorphism of rings such that ϕS(s) is a
unit in S−1R for every s ∈ S .

(ii) If 0 6∈ S and S contains no zero divisors, then ϕS is a
monomorphism. In particular, any integral domain may be
embedded in its quotient field.

(iii) If R has an identity and S consists of units, then ϕS is an
isomorphism. In particular, the complete ring of quotients of
a field F is isomorphic to F .

Proof. (i) To show ϕS is well-defined, we need to show that the value, for
a given input r ∈ R, is independent of the element s ∈ S used. If s, s ′ ∈ S
then we need to show that rs/s = rs ′/s ′. That is, we need
s1(rss

′ − rs ′s) = 0 for some s1 ∈ S .
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Theorem III.4.4

Theorem III.4.4 (continued 1)

Proof (continued). But since R is commutative, then
rss ′ − rs ′s = rss ′ − rss ′ = 0 so that this holds for all s1 ∈ S and hence
rs/s = rs ′/s ′, as needed. Let r , r ′ ∈ R and s ∈ S . Then

ϕS(r + r ′) = (r + r ′)s/s

= rs/s + r ′s/s by Theorem III.4.3(i)

= ϕS(r) + ϕS(r ′)

and

ϕS(rr ′) = (rr ′(s2))/(s2) where s2 ∈ S since S is multiplicative

= ((rsr ′s))/s2 since R is commutative

= (rs/s)(r ′s/s) by Theorem III.4.3(i)

= ϕS(r)ϕS(r ′).

So ϕS is a ring homomorphism, as claimed.
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Theorem III.4.4

Theorem III.4.4 (continued 2)

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring
R.

(ii) If 0 6∈ S and S contains no zero divisors, then ϕS is a
monomorphism. In particular, any integral domain may be
embedded in its quotient field.

Proof (continued). Next, for s ∈ S we have ϕS(s) = s2/s, using s itself
as the element of R. We have s/s2 ∈ S−1R since s ∈ S so that s2 ∈ S
(because S is multiplicative, and hence (s, s2) ∈ R × S). Now
ϕS(s)(s/s2) = (s2/s)(s/s2) = s3/s3 = s/s and s/s is a multiplicative
identity of S−1R, as shown in the proof of Theorem II.4.3(i). That is,
ϕS(s) is a unit in S−1R, as claimed.

(ii) Let r ∈ Ker(ϕS). Then ϕS(r) = rs/s = 0 in S−1R. Now the additive
identity in S−1R is 0/s as shown in the proof of Theorem III.4.3(i), so we
have rs/s = 0/s or s1(rs

2 − 0s) = 0 for some s1 ∈ S , or s1rs
2 = rs1s

2 = 0.
Now s1s

2 6= 0 since s, s1 ∈ S , S is multiplicative, and 0 6∈ S .
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Theorem III.4.4

Theorem III.4.4 (continued 3)

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring
R.

(ii) If 0 6∈ S and S contains no zero divisors, then ϕS is a
monomorphism. In particular, any integral domain may be
embedded in its quotient field.

Proof (continued). Since S has no zero divisors and r(s1s
2) = 0 then we

must have r = 0. That is, Ker(ϕS) = {0} and by Theorem I.2.3(i) (to
apply Theorem I.2.3, we technically need to consider ϕS restricted to the
additive group in R, since Theorem I.2.3 applies to homomorphisms of
groups), ϕS is an injective homomorphism; that is, ϕS is a monomorphism,
as claimed. If R is an integral domain (i.e., a commutative ring with
identity and no zero divisors) and S is the set of all nonzero elements of R
(including 1) then S−1R is the field of quotients of R and, since ϕS is
injective, ϕS embeds R in S−1R (notice 1 ∈ S in this case), as claimed.
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Theorem III.4.4

Theorem III.4.4 (continued 4)

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring
R.

(iii) If R has an identity and S consists of units, then ϕS is an
isomorphism. In particular, the complete ring of quotients of
a field F is isomorphic to F .

Proof (continued). (iii) First, since S consists of units then 0 6∈ S and S
contains no zero divisors (since s is a unit and sr = 0 implies
0 = s−10 = s−1(sr) = (s−1s)(r) = r), so by part (ii), ϕS is a
monomorphism. For any r/s ∈ S−1R we have rs−1 ∈ R and
ϕS(rs−1) = ((rs−1)s)/s = r/s so that ϕS is surjective and hence ϕS is an
isomorphism, as claimed. For field F , the complete ring of quotients has
S = F \ {0}, so that 0 6∈ S and S consists of units, and hence
ϕS : S−1F → F is an isomorphism. That is, the complete ring of quotients
(or, equivalently, “quotient field”) is isomorphic to F , as claimed.
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Theorem III.4.5

Theorem III.4.5

Theorem III.4.5. Let S be a multiplicative subset of a commutative ring
R and let T be any commutative ring with identity. If f : R → T is a
homomorphism of rings such that f (s) is a unit in T for all s ∈ S , then
there exists a unique homomorphism of rings f : S−1R → T such that
f ϕS = f . The ring S−1R is completely determined (up to isomorphism)
by this property.

Proof. First, let f : R → T be a homomorphism such that f (s) is a unit
in T for all s ∈ S . Define mapping f : S−1R → T as
f (r/s) = f (r)(f (s))−1.

We need to show f is well-defined. Let
r/s = r ′/s ′. Then s1(rs

′ − r ′s) = 0 for some s1 ∈ S . Now
f (r/s) = f (r)(f (s))−1 and f (r ′/s ′) = f (r ′)(f (s ′))−1 since f is a
homomorphism. Next f (s1(rs

′ − r ′s)) = f (0) or
f (s1)(f (r)f (s ′)− f (r ′)f (s)) = 0. Since f (s1) is a unit in T by hypothesis,
then f (r)r(s ′)− f (r ′)f (s) = 0 or f (r)f (s ′) = f (r ′)f (s) or
f (r)(f (s))−1 = f (r ′)(f (s ′))−1 (since f (s) and f (s ′) are units) or
f (r/s) = f (r ′/s ′) as needed, and f is well defined, as claimed.

() Modern Algebra April 15, 2024 14 / 38



Theorem III.4.5

Theorem III.4.5
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Theorem III.4.5

Theorem III.4.5 (continued 1)

Proof (continued). To see that f : S−1R → T is a ring homomorphism,
consider

f (r/s + r ′/s ′) = f ((rs ′ + r ′s)/(ss ′)) by Theorem III.4.3(i)

= f (rs ′ + r ′s)(f (ss ′))−1 = f (rs ′ + r ′s)(f (s))−1(f (s ′))−1

= f (r)f (s ′)(f (s))−1(f (s ′))−1 + f (r)f (s)(f (s))−1(f (s ′))−1

= f (r)(f (s))−1 + f (r ′)(f (s ′))−1

= f (r/s) + f (r ′/s ′) since f is a homomorphism

and R is commutative,

and

f ((r/s)(r ′/s ′)) = f (rr ′/(ss ′)) by Theorem III.4.3(i)

= f (rr ′)(r(ss ′))−1 = f (r)(f (s))−1f (r ′)(f (s ′))−1
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Theorem III.4.5

Theorem III.4.5 (continued 2)

Proof (continued). Also, for r ∈ R we have

f ϕS(r) = f (rs/s) = f (rs)(f (s))−1 = f (r)f (s)(f (s))−1 = f (r)

so that f ϕS = f on R, as claimed.

Now suppose g : S−1R → T is another homomorphism such that
gϕS = f . Then for all x ∈ S we have g(ϕS(s)) = f (s) is a unit in T .
Consequently g((ϕS(s))−1) = (f (ϕS(s)))−1 for every s ∈ S by Exercise
III.1.15(c) (since ϕS(s) is a unit in S−1R by Theorem III.4.4(i), and
g(ϕS(s)) is a unit, the hypotheses of Exercise III.1.15(c) are satisfied).
Since ϕS(s) = s2/s then (ϕS(s))−1 = s/s2 ∈ S−1R. Thus for each
r/s ∈ S−1R:

g(r/s=f ((rs/s)(s/s2) = g(ϕS(r)(ϕS(s))−1) = g(ϕS(r))g((ϕS(s))−1)

= f (ϕS(r))(g(ϕS(s))−1 = f (r)(f (s))−1 = f (r/s).

Therefore, g = f , so that homomorphism f is unique.
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Theorem III.4.5

Theorem III.4.5 (continued 3)

Proof (continued). Now we show that S−1R is completely determined
(up to isomorphism) by R, S , and the stated properties. Let C be the
category whose objects are all (f ,T ), where T is a commutative ring with
identity and f : R → T is a homomorphism of rings such that f (s) is a
unit in T for every s ∈ S . Define a morphism in C from (f1,T1) to (f2,T2)
to be a homomorphism of rings g : T1 → T2 such that gf1 = f2. To verify
that C is a category (by Definition I.7.1), we need to verify that
g = hom(T1,T2) is a morphism. Let (f1,T1), (f2,T2), (f3,T3) be objects
in C. Suppose gT1 → T2 and h : T2 → T3, where gf1 = f2 and hf2 = f3,
are ring homomorphisms. Then h ◦ g : T1 → T3 is a ring homomorphism
and (h ◦ g)f1 = f (g(f1) = hf2 = f3. Because function composition is
associative, then we have associativity of morphisms. For the identity on
(f ,T ), we simply take the identity homomorphism 1T : T → T .

If
g : T1 → T2 is an isomorphism and gf1 = f2, then g−1 : T2 → T1 is an
isomorphism and g−1(gf1) = g−1f2 or g−1f2 = f1. Also, g ◦ g−1 = 1T2

and g−1 ◦ g = 1T1 . That is, a ring isomorphism is an equivalence.
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Theorem III.4.5

Theorem III.4.5 (continued 4)

Proof (continued). If g : T1 → T2 is not an isomorphism (but still is a
homomorphism), then g is not a bijection and no inverse mapping
T2 → T1 exists. That is, if g is not an isomorphism then it is not an
equivalence. For given object (ϕS ,S−1T ) in category C there is, for every
object (fI ,TI ) in C, by Theorem III.4.5 a unique mapping
(ϕS ,S−1R) → (fI ,TI ) such that f : S−1R → T is a homomorphism and
f ϕS = f ; that is, there is a unique morphism mapping
(ϕS ,S−1R) → (fI ,TI ) for every object (fI ,TI ) in C. Therefore, by
Definition I.7.9, (ϕS ,S−1R) is a universal object in category C.

By
Theorem I.710, we now have that nay two universal objects in C are
equivalent. That is, ring S1R is completely determined (up to
isomorphism; i.e., equivalence) by the properties of this theorem (namely,
for given ring R and given homomorphism f : R → T , where T is any
commutative ring with unity, such that f (s) is a unit in T for all s in given
set D, there exists unique ring homomorphism f : S−1R → T such that
f ϕS = f ).
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Corollary III.4.6

Corollary III.4.6

Corollary III.4.6. Let R be an integral domain considered as a subring of
its quotient field F (see Theorem III.4.4(ii)). If E is a field and f : R → E
is a monomorphism of rings, then there is a unique monomorphism of
rings, then there is a unique monomorphism of fields f : F → E , such that
f |R = f . In particular, any field E1 containing R contains an isomorphic
copy F1 of F with R ⊂ F1 ⊂ E1.

Proof. Let S be the set of all nonzero elements of R. With f : R → E as
a monomorphism (and so a homomorphism) of rings, and R as an integral
domain (so that S contains no zero divisors; recall be Definition III.1.5
that an integral domain has no zero divisors), then by Theorem III.4.5
(with T = E and S−1R = F ) there is a unique homomorphism f : F → E
such that f ϕS = f .

Suppose for f1, f2 ∈ F = S−1R we have f (f1) = f (f2).
Notice that

f (f1) = f (f1ϕS(s)(ϕS(s))−1) = f (f1(s
2/s)(s/s2)) = f (f1(s/s)(s2/s2))

= f (f1s/s)f (s2/s2) = f ϕS(f1)f (s2/s2) = f (f1)f (s2/s2).
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Corollary III.4.6

Corollary III.4.6 (continued)

Proof (continued). Similarly f (f2) = f (f2)f (s2/s2). So f (f1) = f (f2)
implies f (f1)f (s2/s2) = f (f2)f (s2/s2) and, since f (s2/s2) ∈ E then
f (s2/s2) has an inverse (since s2/s2 6= 0 in F − S−1R and f is a
monomorphism, then f (s2/s2) 6= 0 in E ). Therefore f (f1) = f (f2) and,
since f is a monomorphism by hypothesis, then f1 = f2. Therefore, f is a
monomorphism. Since R is identified with ϕS(R) in F = S−1R then
f |R = f , as claimed (though, strictly speaking, we have f ϕS |R = f ).

If E1 is any field containing R, then with f : R → E1 as the inclusion map
(namely, f = 1E1 |R), we have f : F → E1 such that f |R = f = 1E1 |R
(more appropriately, f ϕS |R = f = 1E1 |R). Then the image of f is an
isomorphic copy F1 of F (since monomorphism f is a surjection onto its
image). That is, R ⊂ F1 ⊂ E1 where F1

∼= F , as claimed.
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Theorem III.4.13

Theorem III.4.13

Theorem III.4.13. If R is a commutative ring with identity then the
following conditions are equivalent:

(i) R is a local ring;

(ii) all nonunits of R are contained in some ideal M 6= R;

(iii) the nonunits of R form an ideal.

Proof. If I is an ideal of R, then by Theorem III.2.2 I is closed under
“subtraction,” left multiplication by elements of R, and right
multiplication by elements of R. By Theorem III.2.5(i), principal ideal (a)
consists of integer multiples of a, left multiples of a by elements of by
elements of R, right multiples of a by elements of R, left and right
multiples of a by elements of R, and sums of these. Therefore (a) ⊂ I . By
Theorem III.3.2(iv), u is a unit if and only if (u) = R. So I 6= R if and
only if I consists only of nonunits.

If (ii) holds and all nonunits are in ideal
M 6= R, then M contains all nonunites (and not unites, since M 6= R) so
that (iii) holds.
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Theorem III.4.13

Theorem III.4.13 (continued)

Theorem III.4.13.

(i) R is a local ring;
(ii) all nonunits of R are contained in some ideal M 6= R;
(iii) the nonunits of R form an ideal.

Proof (continued). If (iii) holds and the nonunits of R form an ideal M,
then this ideal is maximal (or else there would be an ideal containing all
the nonunits and a unit, but then this ideal would be R itself). Any ideal
not equal to R similarly cannot contain any units and so can consist only
of nonunits. Therefore, any ideal not equal to R is a subset of M. Hence,
M is maximal. That is, R is a local ring and (i) holds.

Suppose (i) holds.
Then R is a local ring, so that it has a unique maximal ideal. If a ∈ R is a
nonunit, then (a) 6= R. But by Note III.4.E, the maximal ideal contains
every ideal in R (except R itself), and so contains every principal ideal (a)
where a is a nonunit. That is, all nonunits are contained in some ideal
M 6= R (namely, the unique maximal one in R), and (ii) holds. Hence (ii)
⇒ (iii) ⇒ (i) ⇒ (ii), as claimed.
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Theorem III.4.13

Theorem III.4.13 (continued)

Theorem III.4.13.
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Theorem III.4.7

Theorem III.4.7

Theorem III.4.7. Let S be a multiplicative subset of a commutative ring
R.

(i) If I is an ideal in R, then S−1I = {a/s | a ∈ I , x ∈ S} is an
ideal in S−1R.

(ii) If J is another ideal in R, then S−1(I + J) = S−1I + S−1J,
S−1(IJ) = (S−1I )(S−1J), and S−1(I ∩ J) = (S−1I )(S−1J).

Proof. We start with three identities in S−1R which can be proved by
induction. We give the base case and the general case follows similarly.
Since c1/s + c2/s = (c1s + c2s)/s2 by Theorem II.4.3(i), then
c1/s + c2/s = (c1 + c2)/s by Theorem II.4.2 because
s(c1s + c2s) = s2(c1 + c2). By induction we then have

n∑
i=1

(ci/s) =

(
n∑

i=1

ci

)/
s. (1)
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Theorem III.4.7

Theorem III.4.7 (continued 1)

Proof (continued). Now (a1/s)(b1s/s) = (a1b1s)/a2 = a1b1/s by Note
III.4.A(ii), so by substitution

m∑
j=1

(ajbj/s) =
m∑

j=1

(aj/s)(bjs/s). (2)

Since c1/s1 + c2/s2 = (c1s2 + c2s1)/(s1s2) by Theorem III.4.3(i), then by
induction

t∑
k=1

(ck/sk) =
t∑

k=1

(cks1ss2 · · · sk−1sk+1 · · · st)/(s1s2 · · · st). (3)

(i) Let r/s ∈ S−1R and a/s ′ ∈ S−1I . Then (r/s)(a/s ′) = (ra)/(ss ′) by
Theorem III.4.3(i). Since I is an ideal of R then ra ∈ I and since S is
multiplicative then ss ′ ∈ S . Therefore (ra)/(ss ′) ∈ S−1I so that S−1I is a
left and (since R is commutative) right deal of S−1R, as claimed.
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Theorem III.4.7

Theorem III.4.7 (continued 2)

Proof (continued). (ii) Notice that I + J = {a + b | a ∈ I , b ∈ J} is an
ideal of R by Theorem III.2.6(i). Now an element of S−1(I + J) is of the
form (a + b)/s where a ∈ I , b ∈ J, and s ∈ S . By (1) with n = 2 we have
(a + b)/s = a/s + b/s where a/s ∈ S−1I and b/s ∈ S−1J. Therefore
S−1(I + J) ⊂ S−1I + S−1J. An element of S−1I + S−1J is of the form
a/s + b/s ′. By (3) with t = 2 we have a/s + b/s ′ = (as ′ + bs)/(ss ′).
Since I and J are ideals of R then as ′ ∈ I and bs ∈ J. Since S is
multiplicative then ss ′ ∈ S . Therefore, (as ′ + bs)/(ss ′) is an element of
S−1(I + J). That is, S−1I + S−1J ∈ S−1(I + J). Hence
S−1(I + J) = S−1I + S−1J, as claimed.

Notice that IJ is an ideal of R by Theorem II.2.6(i). By definition (see
Section III.2. Ideals)

IJ = {a1b1 + a2b2 + · · ·+ anbn | n ∈ N, ai ∈ I , bi ∈ J}.

So (with the same notation) an element of S−1(IJ) is of the form
(a1b1 + a2b2 + · · ·+ anbn)/s for some s ∈ S .
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Theorem III.4.7

Theorem III.4.7 (continued 3)

Proof (continued). By (1) (with ci = aibi ) and (2) we have(
n∑

i=1

aibi

)/
s =

n∑
i=1

(aibi )/s =
n∑

i=1

(ai/s)(bi s/s).

For each i we have ai/s ∈ S−1I , since J is an ideal then bi sinJ, and so
(bi s)/s ∈ S−1J. Therefore, by the definition of the product of ideals
(S−1I )(S−1J), we have (

∑n
i=1 aibi )/ s ∈ (S−1I )(S−1J). Therefore

S−1(IJ) ⊂ (S−1I )(S−1J). An element of (S−1I )(S−1J) is of the form∑t
k=1(a

′
k/s ′k)(bk/s ′′) =

∑t
k=1(akbk)/(s ′ks ′′k ) by Theorem III.4.3(i). By (3)

with ck = akbk and sk = s ′ks ′′k we have that this is of the form
t∑

k=1

(ck/sk) =
t∑

k=1

(cks1s2 · · · sk−1sk+1 · · · st)/(s1s2 · · · st) =
t∑

k=1

(akbks ′′′k )/s

where s ′′′k = s1s2 · · · sk−1sk+1 · · · st and s = s1s2 . . . st . Since J is an ideal
then bks ′′′k ∈ J, say bks ′′′k = b′k ∈ J, and since S is multiplicative then
s ∈ S .

() Modern Algebra April 15, 2024 26 / 38



Theorem III.4.7

Theorem III.4.7 (continued 3)

Proof (continued). By (1) (with ci = aibi ) and (2) we have(
n∑

i=1

aibi

)/
s =

n∑
i=1

(aibi )/s =
n∑

i=1

(ai/s)(bi s/s).

For each i we have ai/s ∈ S−1I , since J is an ideal then bi sinJ, and so
(bi s)/s ∈ S−1J. Therefore, by the definition of the product of ideals
(S−1I )(S−1J), we have (

∑n
i=1 aibi )/ s ∈ (S−1I )(S−1J). Therefore

S−1(IJ) ⊂ (S−1I )(S−1J). An element of (S−1I )(S−1J) is of the form∑t
k=1(a

′
k/s ′k)(bk/s ′′) =

∑t
k=1(akbk)/(s ′ks ′′k ) by Theorem III.4.3(i). By (3)

with ck = akbk and sk = s ′ks ′′k we have that this is of the form
t∑

k=1

(ck/sk) =
t∑

k=1

(cks1s2 · · · sk−1sk+1 · · · st)/(s1s2 · · · st) =
t∑

k=1

(akbks ′′′k )/s

where s ′′′k = s1s2 · · · sk−1sk+1 · · · st and s = s1s2 . . . st . Since J is an ideal
then bks ′′′k ∈ J, say bks ′′′k = b′k ∈ J, and since S is multiplicative then
s ∈ S .

() Modern Algebra April 15, 2024 26 / 38



Theorem III.4.7

Theorem III.4.7 (continued 4)

Theorem III.4.7. Let S be a multiplicative subset of a commutative ring
R.

(i) If I is an ideal in R, then S−1I = {a/s | a ∈ I , x ∈ S} is an
ideal in S−1R.

(ii) If J is another ideal in R, then S−1(I + J) = S−1I + S−1J,
S−1(IJ) = (S−1I )(S−1J), and S−1(I ∩ J) = (S−1I )(S−1J).

Proof (continued). So an element of (S−1I )(S−1J) is of the form∑t
k=1(akb′k)/s where, by (1), equals

(∑t
k=1 abb

′
k

)/
s. since∑t

k=1 akb′k ∈ IJ, then we have that an arbitrary element of (S−1I )(S−1J)
is an element of S−1(IJ). That is, (S−1I )(S−1J) ⊂ S−1(IJ). Hence
S−1(IJ) = (S−1I )(S−1J), as claimed.
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Theorem III.4.7

Theorem III.4.7 (continued 5)

Proof (continued). Notice that I ∩ J is an ideal of R by Corollary III.2.3
An element of S−1(I ∩ J) is of the form r/s where r ∈ I ∩ J. Notice that
r ∈ I so r/s ∈ S−1I , and r ∈ J so r/s ∈ S−1J. Therefore
r/s ∈ (S−1I ) ∩ (S−1J) and hence S−1(I ∩ J) ⊂ (S−1I )(S−1J). An
element of (S−1I ) ∩ (S−1J) is of forms a/s and s/b′ where a ∈ I , b ∈ J,
and s, s ′ ∈ S . So a/s = b/s ′ and s1(as

′ − bs) = 0 for some s1 ∈ S by
Theorem III.4.2. That is, s1as

′ = s1bs. Since I and J are ideals then
s1as

′ ∈ I and s1bs ∈ J. Say c = s1as
′ = s1bs and then c ∈ I ∩ J. Now

ss1s
′ ∈ S since S is multiplicative, so

c/(ss1s
′) = (s1s

′a)/(ss1s
′) = a/s ∈ S−1(I ∩ J). So any element of

(S−1I ) ∩ (S−1J) is an element of S−1(I ∩ J). That is,
(S−1I )∩ (S−1J) ⊂ S−1(I ∩ J). Therefore, S−1(I ∩ J) = (S−1I )(S−1J), as
claimed.
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Theorem III.4.8

Theorem III.4.8

Theorem III.4.8. Let S be a multiplicative subset of a commutative ring
R with identity and let I be an ideal of R. Then S−1I = S−1R if and only
if S ∩ I 6= ∅.

Proof. If s ∈ S ∩ I , then s/s ∈ S−1I and s/s is the identity in S−1I as
shown in the proof of Theorem III.4.3(i). We denote the identity in S−1R
as 1S−1R = s/s. Now S−1I is an ideal of S−1R by Theorem III.4.7(i), and
by definition of an ideal (r/s)(S−1I ) sinS−1I for all r/s ∈ S−1R. With
1S−1R ∈ S−1I we then have all elements of S−1R in S−1I . Therefore,
S−1I = S−1R (of course, S−1I is always a subset of S−1R), as claimed.

Now suppose S−1I = S−1R. The homomorphism ϕS : R → S−1R given in
Theorem III.4.4(i) gives the inverse image ϕS(S−1R) = R. Since
S−1I = S−1R then ϕ−1

S (S−1I ) = R. Whence because 1R ∈ R then
ϕS(1R) ∈ S−1I , so ϕS(1R) = a/s for some a ∈ I and s ∈ S .
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Theorem III.4.8

Theorem III.4.8 (continued)

Theorem III.4.8. Let S be a multiplicative subset of a commutative ring
R with identity and let I be an ideal of R. Then S−1I = S−1R if and only
if S ∩ I 6= ∅.

Proof (continued). Also, ϕS(1R) = 1Rs/s, so we must have
a/s = 1Rs/s or s1(as − 1Rs2) = 0 for some s1 ∈ S by Theorem III.4.2.
That is, ass1 = s2s1. But since S is multiplicative then s2s1 ∈ S , and since
I is an ideal then ass1 ∈ I . Therefore ass1 = s2s1 ∈ S ∩ I and S ∩ I 6= ∅,
as claimed.
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Lemma III.4.9

Lemma III.4.9

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R
with identity and let I be an ideal in R.

(i) I ⊂ ϕ−1
S (S−1I ).

(ii) If I = ϕ−1
S (J) for some ideal J in S−1R, then S−1I = J.

That is, every ideal in S−1R is of the form S−1I for some
ideal I in R.

(iii) If P is a prime ideal in R and S ∩ P = ∅, then S−1P is a
prime ideal in S−1R and ϕ−1

S (S−1P) = P.

Proof. (i) Since I is an ideal, then for any a ∈ I we have as ∈ I for all
s ∈ S . So ϕS(a) = (as)/s ∈ S−1I , and hence a ∈ ϕ−1

2 (S−1I ). That is,
I ⊂ ϕ−1

S (S−1I ), as claimed.

(ii) Since I = ϕ−1
S (J) by hypothesis, then every element of S−1I is of the

form r/s where r ∈ I = ϕ−1
S (J); that is, ϕS(r) ∈ J. Therefore,

r/s = (1 + Rrs)/s2 = (1R/s = rs/s) = (1R/s)ϕS(r) and this is in J since
ϕS(r) ∈ J and J is an ideal in S−1R.
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with identity and let I be an ideal in R.

(i) I ⊂ ϕ−1
S (S−1I ).

(ii) If I = ϕ−1
S (J) for some ideal J in S−1R, then S−1I = J.

That is, every ideal in S−1R is of the form S−1I for some
ideal I in R.

(iii) If P is a prime ideal in R and S ∩ P = ∅, then S−1P is a
prime ideal in S−1R and ϕ−1

S (S−1P) = P.

Proof. (i) Since I is an ideal, then for any a ∈ I we have as ∈ I for all
s ∈ S . So ϕS(a) = (as)/s ∈ S−1I , and hence a ∈ ϕ−1

2 (S−1I ). That is,
I ⊂ ϕ−1

S (S−1I ), as claimed.

(ii) Since I = ϕ−1
S (J) by hypothesis, then every element of S−1I is of the

form r/s where r ∈ I = ϕ−1
S (J); that is, ϕS(r) ∈ J. Therefore,

r/s = (1 + Rrs)/s2 = (1R/s = rs/s) = (1R/s)ϕS(r) and this is in J since
ϕS(r) ∈ J and J is an ideal in S−1R.
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Lemma III.4.9

Lemma III.4.9 (continued 1)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R
with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and S ∩ P = ∅, then S−1P is a
prime ideal in S−1R and ϕ−1

S (S−1P) = P.

Proof (continued). So every element of S−1I is an element of J and
S−1I ⊂ J. Conversely, if r/s ∈ J, then
ϕS(r) = rs/s = rs2/s2 = (r/s)(s2/s) and this is in J since r/s ∈ J,
s2/s ∈ S−1R, and J is an ideal in S−1R. Since ϕS(r) ∈ J then
r ∈ ϕ−1

S (J) = I . Thus r/s ∈ S−1I , and hence J ⊂ S−1I . Therefore, we
have S−1I = J, as claimed.

(iii) Suppose P is a prime ideal in R and S ∩ P = ∅. First, S−1P is an
ideal of S−1R by Theorem III.4.7. Since S ∩ P = ∅ then by Theorem
III.4.7 S−1P 6= S−1R (this is one requirement for S−1P to be a prime
ideal in S−1R). To show S−1P is a prime ideal, we consider a product of
two elements of S−1P, say (r/s)(r ′/s ′) ∈ S−1P.
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Lemma III.4.9

Lemma III.4.9 (continued 1)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R
with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and S ∩ P = ∅, then S−1P is a
prime ideal in S−1R and ϕ−1

S (S−1P) = P.
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S−1I ⊂ J. Conversely, if r/s ∈ J, then
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s2/s ∈ S−1R, and J is an ideal in S−1R. Since ϕS(r) ∈ J then
r ∈ ϕ−1

S (J) = I . Thus r/s ∈ S−1I , and hence J ⊂ S−1I . Therefore, we
have S−1I = J, as claimed.

(iii) Suppose P is a prime ideal in R and S ∩ P = ∅. First, S−1P is an
ideal of S−1R by Theorem III.4.7. Since S ∩ P = ∅ then by Theorem
III.4.7 S−1P 6= S−1R (this is one requirement for S−1P to be a prime
ideal in S−1R). To show S−1P is a prime ideal, we consider a product of
two elements of S−1P, say (r/s)(r ′/s ′) ∈ S−1P.
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Lemma III.4.9

Lemma III.4.9 (continued 2)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R
with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and S ∩ P = ∅, then S−1P is a
prime ideal in S−1R and ϕ−1

S (S−1P) = P.

Proof (continued). We then have (rr ′)/(ss ′) = a/t for some a ∈ P and
some t ∈ S . Then by Theorem III.4.2, s1(trr

′ − ss ′a) = 0 for some s1 ∈ S ,
or s1trr

′ = s1ss
′a. Since a ∈ P and P is an ideal of R then

s1trr
′ = s1ss

′a ∈ P. Now s1t ∈ S (since S is multiplicative and
S ∩ P = ∅, so by Theorem III.2.15 (with a = s1t and b = rr ′ with a and b
as the parameters of Theorem III.2.15), we have either s1t ∈ P or rr ′ ∈ P.
But s1t ∈ S and s1t 6∈ P (since S ∩ P = ∅), so we must have rr ′ ∈ P
(Theorem III.2.15 requires the fact that P is prime). Again based on the
fact that P is prime, either r ∈ P or r ′ ∈ P. Thus either r/s ∈ S−1P or
r ′/s ′ ∈ S−1P. Since we considered arbitrary (r/s)(r ′/s ′) ∈ S−1P, then we
now have that S−1P is a prime ideal in S−1R by Theorem III.2.15 (applied
to S−1P), as claimed.
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Lemma III.4.9

Lemma III.4.9 (continued 2)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R
with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and S ∩ P = ∅, then S−1P is a
prime ideal in S−1R and ϕ−1

S (S−1P) = P.

Proof (continued). We then have (rr ′)/(ss ′) = a/t for some a ∈ P and
some t ∈ S . Then by Theorem III.4.2, s1(trr

′ − ss ′a) = 0 for some s1 ∈ S ,
or s1trr

′ = s1ss
′a. Since a ∈ P and P is an ideal of R then

s1trr
′ = s1ss

′a ∈ P. Now s1t ∈ S (since S is multiplicative and
S ∩ P = ∅, so by Theorem III.2.15 (with a = s1t and b = rr ′ with a and b
as the parameters of Theorem III.2.15), we have either s1t ∈ P or rr ′ ∈ P.
But s1t ∈ S and s1t 6∈ P (since S ∩ P = ∅), so we must have rr ′ ∈ P
(Theorem III.2.15 requires the fact that P is prime). Again based on the
fact that P is prime, either r ∈ P or r ′ ∈ P. Thus either r/s ∈ S−1P or
r ′/s ′ ∈ S−1P. Since we considered arbitrary (r/s)(r ′/s ′) ∈ S−1P, then we
now have that S−1P is a prime ideal in S−1R by Theorem III.2.15 (applied
to S−1P), as claimed.
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Lemma III.4.9

Lemma III.4.9 (continued 3)

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R
with identity and let I be an ideal in R.

(iii) If P is a prime ideal in R and S ∩ P = ∅, then S−1P is a
prime ideal in S−1R and ϕ−1

S (S−1P) = P.

Proof (continued). By part (i), P ⊂ ϕ−1
S (S−1P). If r ∈ ϕ−1

S (S−1P) then
ϕS(r) ∈ S−1P so that ϕS(r) = rs/s = at with a ∈ P and s, t ∈ S . Again
by Theorem III.4.2, s1(str − sa) = 0 or s1str = s1sa. Since P is an ideal
then s1sa ∈ P and so (s1st)r ∈ P. By Theorem III.2.15 (because P is
prime), either s1st ∈ P or r ∈ P. But s1st ∈ S and S ∩ P = ∅ so we have
s1st 6∈ P and hence we must have r ∈ P. Since r is an arbitrary element of
ϕ−1

S (S−1P), then we now have ϕ−1
S (S−1P) ⊂ P. That is,

ϕ−1
S (S−1P) = P, as claimed.
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Theorem III.4.10

Theorem III.4.10

Theorem III.4.10. Let S be a multiplicative subset of a commutative ring
R with identity. Then there is a one-to-one correspondence between the
set U of prime ideals of R which are disjoint from S and the set V of
prime ideals of S−1R, given by P 7→ S−1P.

Proof. Let S be a given multiplicative set. Symbolically,
U = {P | is a prime ideal of R and S ∩ P = ∅}. By Lemma III.4.9(iii),
the assignment of P to S−1P is one to one since for S−1P1 6= S−1P2 we
have ϕ−1

S (S−1P1) = P1 6= P2 = ϕ−1
S (S−1P2).

To show the mapping is surjective, let J be an element of V (i.e., J is a
prime ideal of S−1R), and let P = ϕ−1

S (J). By Lemma III.4.9(ii), if we
show P is prime then we have P 7→ S−1P = J, so that the mapping is
surjective (“onto”). Suppose ab ∈ P. Then, since ϕS is a homomorphism
by Theorem III.4.4(i), ϕS(ab) = ϕS(a)ϕS(b) ∈ J since P = ϕ−1

S (J).
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Theorem III.4.10

Theorem III.4.10

Theorem III.4.10. Let S be a multiplicative subset of a commutative ring
R with identity. Then there is a one-to-one correspondence between the
set U of prime ideals of R which are disjoint from S and the set V of
prime ideals of S−1R, given by P 7→ S−1P.

Proof. Let S be a given multiplicative set. Symbolically,
U = {P | is a prime ideal of R and S ∩ P = ∅}. By Lemma III.4.9(iii),
the assignment of P to S−1P is one to one since for S−1P1 6= S−1P2 we
have ϕ−1

S (S−1P1) = P1 6= P2 = ϕ−1
S (S−1P2).

To show the mapping is surjective, let J be an element of V (i.e., J is a
prime ideal of S−1R), and let P = ϕ−1

S (J). By Lemma III.4.9(ii), if we
show P is prime then we have P 7→ S−1P = J, so that the mapping is
surjective (“onto”). Suppose ab ∈ P. Then, since ϕS is a homomorphism
by Theorem III.4.4(i), ϕS(ab) = ϕS(a)ϕS(b) ∈ J since P = ϕ−1

S (J).
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Theorem III.4.10

Theorem III.4.10

Theorem III.4.10. Let S be a multiplicative subset of a commutative ring
R with identity. Then there is a one-to-one correspondence between the
set U of prime ideals of R which are disjoint from S and the set V of
prime ideals of S−1R, given by P 7→ S−1P.

Proof. Let S be a given multiplicative set. Symbolically,
U = {P | is a prime ideal of R and S ∩ P = ∅}. By Lemma III.4.9(iii),
the assignment of P to S−1P is one to one since for S−1P1 6= S−1P2 we
have ϕ−1

S (S−1P1) = P1 6= P2 = ϕ−1
S (S−1P2).

To show the mapping is surjective, let J be an element of V (i.e., J is a
prime ideal of S−1R), and let P = ϕ−1

S (J). By Lemma III.4.9(ii), if we
show P is prime then we have P 7→ S−1P = J, so that the mapping is
surjective (“onto”). Suppose ab ∈ P. Then, since ϕS is a homomorphism
by Theorem III.4.4(i), ϕS(ab) = ϕS(a)ϕS(b) ∈ J since P = ϕ−1

S (J).
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Theorem III.4.10

Theorem III.4.10 (continued)

Theorem III.4.10. Let S be a multiplicative subset of a commutative ring
R with identity. Then there is a one-to-one correspondence between the
set U of prime ideals of R which are disjoint from S and the set V of
prime ideals of S−1R, given by P 7→ S−1P.

Proof (continued). Since J is prime in S−1R, then by Theorem III.2.15
(notice that P is a prime ideal of S−1R, so J 6= S−1R) either ϕS(a) ∈ J or
ϕS(b) ∈ J. That is, either a ∈ ϕ−1

S (J) = P or b ∈ ϕ−1
S (J) = P and hence

P is prime (again, by Theorem III.2.25). Therefore the mapping
P 7→ S−1P is also surjective and, hence, is a bijection. We now have that
this mapping is a one-to-one correspondence from U to V, as claimed.
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Theorem III.4.11

Theorem III.4.11

Theorem III.4.11. Let P be a prime ideal in a commutative ring R with
identity, and let S = R − P.

(i) There is a one-to-one correspondence between the set of
prime ideals of R which are contained in P and the set of
prime ideals of Rp = S−1R, given by Q 7→ QP = S−1Q;

(ii) the ideal PP = S−1P in RP is the unique maximal ideal of
RP .

Proof. (i) The prime ideals of R contained in P are precisely the prime
ideals which are disjoint from the complement of P, S = R − P. The
one-to-one correspondence is then given by Theorem III.4.10 since
S−1R = Rp

(ii) If M is a maximal ideal of Rp, then M is prime by Theorem III.2.19
(since RP has an identity, namely s/s as shown in the proof of Theorem
III.4.3(i)). That is, M ∈ V where V is the set of prime ideals in
RP = S−1R.
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Theorem III.4.11

Theorem III.4.11. Let P be a prime ideal in a commutative ring R with
identity, and let S = R − P.

(i) There is a one-to-one correspondence between the set of
prime ideals of R which are contained in P and the set of
prime ideals of Rp = S−1R, given by Q 7→ QP = S−1Q;

(ii) the ideal PP = S−1P in RP is the unique maximal ideal of
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(since RP has an identity, namely s/s as shown in the proof of Theorem
III.4.3(i)). That is, M ∈ V where V is the set of prime ideals in
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Theorem III.4.11

Theorem III.4.11

Theorem III.4.11. Let P be a prime ideal in a commutative ring R with
identity, and let S = R − P.

(i) There is a one-to-one correspondence between the set of
prime ideals of R which are contained in P and the set of
prime ideals of Rp = S−1R, given by Q 7→ QP = S−1Q;

(ii) the ideal PP = S−1P in RP is the unique maximal ideal of
RP .

Proof. (i) The prime ideals of R contained in P are precisely the prime
ideals which are disjoint from the complement of P, S = R − P. The
one-to-one correspondence is then given by Theorem III.4.10 since
S−1R = Rp

(ii) If M is a maximal ideal of Rp, then M is prime by Theorem III.2.19
(since RP has an identity, namely s/s as shown in the proof of Theorem
III.4.3(i)). That is, M ∈ V where V is the set of prime ideals in
RP = S−1R.
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Theorem III.4.11

Theorem III.4.11 (continued)

Theorem III.4.11. Let P be a prime ideal in a commutative ring R with
identity, and let S = R − P.

(i) There is a one-to-one correspondence between the set of
prime ideals of R which are contained in P and the set of
prime ideals of Rp = S−1R, given by Q 7→ QP = S−1Q;

(ii) the ideal PP = S−1P in RP is the unique maximal ideal of
RP .

Proof (continued). By Theorem III.4.10, there is a prime ideal Q of R
which is disjoint from S = R − P (and so is contained in P) such that
M = S−1Q = Q + P. But Q ⊂ P implies QP ⊂ PP . Since PP 6= Rp by
Theorem III.4.8 (because P is a prime ideal of R so that P 6= R and
S ∩ P = (S − P) ∩ P = ∅), and M = QP is maximal (by hypothesis) then
M = QP = PP . Therefore, Pp is a maximal ideal in RP and (since M has
chosen to be an arbitrary maximal ideal of RP) is the unique such maximal
ideal, as claimed.
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