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Modern Algebra

, Theorem 111.5.5. Let R and S be commutative rings with identity and
Chapter lll. Rings ¢ : R — S is a homomorphism of rings such that ¢(1g) = 1s. If

I11.5. Rings of Polynomials and Formal Power Series—Proofs of Theorems S1,82,...,5, € S then there is a unique homomorphism of rings

D : R[x1,x2,...,%,] — S such that P|g = ¢ and p(x;) = s; for

i=1,2,...,n. This property (that is, the mapping properties of ¢ and 7;

Hungerford calls this “a universal mapping property” ) completely

determines the polynomial ring R[x1, X2, ..., xn] up to isomorphism.

Thomes W. Hungerord Proof. If f € R[x1,x2,...,xn| then by Theorem I11.5.4(v)

Algebra f=>", a,-xf”gé“2 .-+ xkin for some a; € R and k;; € N (we omit XJQ

terms). As described above,

B(f) = o(f(s1,92,---,50)) =>.p go(a,-)sf"lsg"2 -+ - skin is well-defined and

Pr = ¢ and B(x;) = s;. Now we show that P is a ring homomorphism.

B Let f =37, apqxs? - - xkin and g = S 0 bixtx)™ - - - xkin (we include
o the x; with 0 exponent here).
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Proof(continued). Then Proof(continued). Then
~ ~ . kin K . kin K
ke ) ok ) — A 2-) kit ki Kin kit ki Kin
@(f—’—g) = (TQ(Zaix]{(llxzkd_,.X,I;In_i_ZbiX]l-(llXé(Q,,_X’l;m) — Zﬁp(al)sl 1522,..5n +Z@(b/)51 1522‘__5’7
i—0 i=0 i=0 i=0
m since ¢ is a homomorphism
— k: k; ki .
= P (ai + bi)x; " xy% - - - x| by the definition m L _ m o _
(; — (P al.sll-(rlsng . 5,/7<m _|_ 90 Z bl,sll-(rlsng . Sll;ln
of + in R[x1,x2, ..., Xn] i=0 _ i=0
m by the definition of ¢
= o Z(a,- + b,-)sf"lsé("2 ... skin | by the definition of (& P K (& 1 ke N
=0 — (P Z al_X1/1X212 .. ,ann _|_ SD Z b’,X111X2/2 - Xnm
m i=0 i=0
= Z o(ai + b,-)s{(":‘sé("2 ..+ skin by the definition of ¢ by the definition of ®
i=0 = p(f) +2(g).



Theorem 111.5.5 (continued 4)

Theorem 111.5.5 (continued 3)

Proof(continued). Next, “we find" that

m m
w15 (St o) (St )
i=0 i=0

— - = B((e) G = D @) () @)k - (1 (x))or
i=0

by the Binomial Theorem (Theorem 111.1.6), the rules of exponents as

given in Theorem I11.5.4(iii,iv) and the fact that ¢ is a homomorphism. So
@ is a ring homomorphism. Suppose that ¢ : R[x1,x2,...,%x,] — Sis a _
homomorphism such that ¢)|gr = ¢ and ¥(x;) = s; for all i. Then

Proof(continued).

since v is a ring homomorphism

<,o(a,-)sf"1s§"2 .-~ skin by hypotheses on the 1) values

|
NE

o

"o L " = o(f(s1,S2,...,5n)) by definition of ¢
v(f) = ¢ z; XXXy — 3(f) by definition of P.
=
m p— —_— .
_ 'z/)(a,-)'z/J(xf"l)'z,ZJ(xg’Q) - "éb(in") Whence ¥ = p and @ is unique.
n
i=0
since v is a ring homomorphism
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Theorem 111.5.5 (continued 5)

Proof(continued). Finally, in order to show that R[x1, x2,...,X,] is
completely determined by the property P|gr = ¢ and ¢(x;) = s;, define
category C whose objects are all (n + 2)-tuples (¢, K, s1, %2, ..., 5n) where
K is a commutative ring with identity, s; € K, and ¢y : R — K is a
homomorphism with ¢(1g) = 1x. A morphism in C from
(¥,J,s1,8,...,8,) to (0, T, t1, to,...,ty) is a homomorphism of rings

¢ : K — T such that (1) = 17, {¢¥» =0, and ((s;) = t;. Since these
morphisms are functions then the definition of “category” (Definition
1.7.1) is satisfied (compositions, associativity, identity). Recall that a
morphism is an equivalence if it has a left and right inverse. So a
morphism is one to one if and only if it has a left inverse by Theorem
0.3.1(i); a morphism is onto if and only it it has a right inverse by
Theorem 0.3.1(ii). Hence, a morphism is an equivalence if and only if it is
one to one and onto; that is, if and only if it is a ring isomorphism. Let
t: R — R[x1,x2,...,X,] be the inclusion map which maps each r € R to
the “constant polynomial” r € R[x1, x2, ..., Xn].
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Theorem 111.5.5 (continued 6)

Proof(continued). Consider (¢, R[x1, X2, ..., Xn], x1,X2,...,Xn) in C. For
any (¢, K, s1,%,...,5,) € C we know by the first paragraph of the proof,
since ¢ : R — K is a ring homomorphism (¢ of the first paragraph) then
there is a unique ¥ : R[x1, x2, ..., x,] — K a ring homomorphism with
Y|r =+ and ¢(x;) = s;. Notice that (1R s,...x]) = ¥(1r) = 1k and
11 = 1) (since 1 is literally 4 restricted to R). So 1 is a morphism from
(¢, R[x1, X2, ..y Xn], X1, X2, - - ., Xn) t0 (0, K, 51,90, ...,5,) and ¢ is a
unique such morphism. So (¢, R[x1, X2, ..., Xn], X1, X2, - .., Xp) is a universal
object in C (by definition, since the morphism 1) exists for any object in C
and is unique). By Theorem 1.7.10, any two universal objects in C are
equivalent (and equivalence here corresponds to a ring isomorphism, as
explained above). “This property” (that is, the mapping properties of ¢
and ) therefore determine R[x1, X2, ..., Xs] up to isomorphism. O
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Corollary 111.5.6

Corollary 111.5.6

Corollary 111.5.6. If o : R — S is a homomorphism of commutative rings
and s1,8,...,5, €S, then the map R[xi,x2,...,x,] — S, where
f=>", a,-x{("lxé("2 -~ xkin is mapped to

_ kv _k; .

2(f) = p(f(s1,52,---,5n)) = Do p(ai)s; sy - - - skin, is a
homomorphism of rings.

Proof. This is just the first paragraph of the proof of Theorem I11.5.5
(without the uniqueness part; we may not have rings with identity here,
but the presence of an identity is not used in this part of the proof of
Theorem 111.5.5). O
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Corollary 111.5.7

Corollary 111.5.7 (continued)

Corollary 111.5.7. Let R be a commutative ring with identity and n a
positive integer. For each k (with 1 < k < n) there are isomorphic rings

R[x1, %2, « oy Xk [Xkt15 Xkt2, -« 5 Xn] = R[X1, X2, -+, Xn]
= R[Xk+1axk+2a s aXn][X]-aX27 s 7Xk]'
Proof (continued). Consequently, R[x1,x2, ..., Xk|[Xk+1, Xk425 - - « » Xn]

has the desired “universal mapping property” (i.e., the mapping properties
of p and B), so by Theorem I11.5.5,

R[x1,x2, .« oy Xk)[Xkt1s Xkt2, - - - s Xn] = R[x1, X2, ..., %n]. The other
isomorphism is similar. O
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Corollary 111.5.7

Corollary 111.5.7

Corollary 111.5.7. Let R be a commutative ring with identity and n a
positive integer. For each k (with 1 < k < n) there are isomorphic rings

R[X17X27 e 7Xk][Xk+17Xk+27 cee 7XI7] = R[X17X27 e 7Xn]

= R[Xk+1,Xk+2, e ,X,,][Xl,XQ, Ce 7Xk].

Proof. Let S be a commutative ring with identity and ¢ : R — S a ring
homomorphism. Let s1,5,...,s, € S. By Theorem 111.5.5 there exists a
ring homomorphism @ : R[x1, X2, ..., xx] — S such that B|g = ¢ and
©(x;) = s;. Applying Theorem I11.5.5 to ring R[xy, x2, ..., xk] and
homomorphism % : R[x1, x2,...,xk] — S, there is a homomorphism

@ (Rbxa, X2, -+ xk]) X1, Xet2, - -, Xn] — S such that DRy x,,.x] = P
and P(x;) = s;. Suppose that 1 : R[x1, X2, . . ., Xk)[Xkt1, Xkt2, - - -y Xn] — S
is a homomorphism such that ¢|g = ¢ and ¥(x;) = s;. Then the
uniqueness argument of Theorem |11.5.5 (paragraph 1 of the proof) holds
to show that 9|g[x x,..x,] = P-
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Proposition 111.5.9

Proposition 111.5.9

Proposition 111.5.9. Let R be a ring with identity and
f=>32aix" € R[]

(i) fis a unit in R[[x]] if and only if its constant term ag is a

unit in R.

(ii) If ag is irreducible in R, then f is irreducible in R[[x]].
Proof. (i) Suppose f is a unit. Then there exists g = Y oo, bix' € R[[x]]
such that fg = gf = 1g € R|[x]]. Then agby = bpap = 1g, and so ag is a
unit in R. Conversely, suppose ag is a unit in R. With
g =Y .20 bix" € R[[x]] where fg = 1g we have the following equations
satisfied:

acbp = 1gr
agby +aibp = 0
agb, + aibp—1+---+anbp = 0
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Proposition 111.5.9 (continued 2)

Proposition 111.5.9 (continued 1)
Proposition 111.5.9. Let R be a ring with identity and
f=32,ax" € R[[x]].

(i) fis a unit in R[[x]] if and only if its constant term ag is a
unit in R.

Proposition 111.5.9. Let R be a ring with identity and
f=Y2axt € R

Proof (continued). (i) Conversely, if the system of equations is satisfied (i) If ag is irreducible in R, then f is irreducible in R[[x]].
by (bo, b1,...) then g =32, bix' € R[[x]] satisfies fg = 1g in R[[x]].
Now we show there is a solution and hence g is a right inverse of f. Since
ap is a unit there is a solution to the first equation, namely by = ao_l.
Then we can solve the second equation to get

by = ag(—a1bo) = —ag (a1, ). Inductively, we can find each

b, = ag(—ai1bp—1 — azbp—2 — -+ — apbp) (in terms of aal, ai, as,...,an
and by, by, ..., bp—1). We can then (inductively) express each b, in terms
of the a;'s above. Therefore, there exists g € R[[x]] such that fg = 1g.
Similarly, there exists h € R[[x]] such that hf = 1g. But then

h = hlg = h(fg) = (hf)g = 1grg = g. So (i) follows.

Proof. (ii) Recall that  a nonzero nonunit in a ring is irreducible if
f=gh impIieg that either g or his a unit. With f ="/ ajx',
g=>gbix', h=>2,cx', f = ghimplies ag = bycp. If ap is
irreducible then either by or ¢p is a unit. So by (i), either g or h is a unit.
Therefore, f is irreducible. O
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Corollary 111.5.10 Corollary 111.5.10

Corollary 111.5.10

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.

Proof. First, if R is a division ring then each nonzero element of R is a
unit. So by Proposition I11.5.9(i), a formal power series is a unit if and
only if the constant term is nonzero.

Now x = (0, 1g,0,...) commutes with every element of R[[x]], so x is in
the center of R[[x]] and (x) = {xf | f € R[[x]]} (by Theorem I11.2.5(iii)).
Consequently, every nonzero element xf of (x) has zero constant term,
whence by Proposition 111.5.9(i), xf is a nonunit. Conversely, for every
nonunit f € R[[x]], by Theorem 111.5.9(i), we have f = >"%°, a;x" with
ag=0. Letg=3>7", bix" where b; = aj1. Then xg = f whence

f € (x). So (x) consists precisely of the nonunits in R[[x]].
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Corollary 111.5.10 (continued)

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.

Proof (continued). Finally, since 1z & (x) by the first claim of this result
then (x) # R[[x]]. Furthermore, every ideal / of R[[x]] with / # R[[x]]

must contain no units (see “Remark” on page 123 or the “Note” on page
2 of the class notes for Section 11.2). So / consists only of nonunits. Since
(x) is the set of all nonunits by the previous paragraph, then | C (x).

Thus every ideal of R[[x]] (except R[[x]] itself) is contained in (x) and so
(x) is the only maximal ideal of F[[x]]. O
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