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Theorem III.5.5

Theorem III.5.5

Theorem III.5.5. Let R and S be commutative rings with identity and
ϕ : R → S is a homomorphism of rings such that ϕ(1R) = 1S . If
s1, s2, . . . , sn ∈ S then there is a unique homomorphism of rings
ϕ : R[x1, x2, . . . , xn] → S such that ϕ|R = ϕ and ϕ(xi ) = si for
i = 1, 2, . . . , n. This property (that is, the mapping properties of ϕ and ϕ;
Hungerford calls this “a universal mapping property”) completely
determines the polynomial ring R[x1, x2, . . . , xn] up to isomorphism.

Proof. If f ∈ R[x1, x2, . . . , xn] then by Theorem III.5.4(v)
f =

∑m
i=0 aix

ki1
1 xki2

2 · · · xkin
n for some ai ∈ R and kij ∈ N (we omit x0

j

terms). As described above,
ϕ(f ) = ϕ(f (s1, s2, . . . , sn)) =

∑m
i=0 ϕ(ai )s

ki1
1 ski2

2 · · · skin
n is well-defined and

ϕR = ϕ and ϕ(xi ) = si .

Now we show that ϕ is a ring homomorphism.
Let f =

∑m
i=0 aix

ki1
1 xki2

2 · · · xkin
n and g =

∑m
i=0 bix

ki1
1 xki2

2 · · · xkin
n (we include

the xi with 0 exponent here).
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Theorem III.5.5

Theorem III.5.5 (continued 1)

Proof(continued). Then

ϕ(f + g) = ϕ

(
m∑

i=0

aix
ki1
1 xki2

2 · · · xkin
n +

m∑
i=0

bix
ki1
1 xki2

2 · · · xkin
n

)

= ϕ

(
m∑

i=0

(ai + bi )x
ki1
1 xki2

2 · · · xkin
n

)
by the definition

of + in R[x1, x2, . . . , xn]

= ϕ

(
m∑

i=0

(ai + bi )s
ki1
1 ski2

2 · · · skin
n

)
by the definition of ϕ

=
m∑

i=0

ϕ(ai + bi )s
ki1
1 ski2

2 · · · skin
n by the definition of ϕ
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Theorem III.5.5

Theorem III.5.5 (continued 2)

Proof(continued). Then

=
m∑

i=0

ϕ(ai )s
ki1
1 ski2

2 · · · skin
n +

m∑
i=0

ϕ(bi )s
ki1
1 ski2

2 · · · skin
n

since ϕ is a homomorphism

= ϕ

(
m∑

i=0

ai s
ki1
1 ski2

2 · · · skin
n

)
+ ϕ

(
m∑

i=0

bi s
ki1
1 ski2

2 · · · skin
n

)
by the definition of ϕ

= ϕ

(
m∑

i=0

aix
ki1
1 xki2

2 · · · xkin
n

)
+ ϕ

(
m∑

i=0

bix
ki1
1 xki2

2 · · · xkin
n

)
by the definition of ϕ

= ϕ(f ) + ϕ(g).
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Theorem III.5.5

Theorem III.5.5 (continued 3)

Proof(continued). Next, “we find” that

ϕ(fg) = ϕ

((
m∑

i=0

aix
ki1
1 xki2

2 · · · xkin
n

)(
m∑

i=0

bix
ki1
1 xki2

2 · · · xkin
n

))
= · · · = ϕ(f )ϕ(g)

by the Binomial Theorem (Theorem III.1.6), the rules of exponents as
given in Theorem III.5.4(iii,iv) and the fact that ϕ is a homomorphism. So
ϕ is a ring homomorphism. Suppose that ψ : R[x1, x2, . . . , xn] → S is a
homomorphism such that ψ|R = ϕ and ψ(xi ) = si for all i .

Then

ψ(f ) = ψ

(
m∑

i=0

aix
ki1
1 xki2

2 · · · xkin
n

)

=
m∑

i=0

ψ(ai )ψ(xki1
1 )ψ(xki2

2 ) · · ·ψ(xkin
n )

since ψ is a ring homomorphism
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Theorem III.5.5

Theorem III.5.5 (continued 4)

Proof(continued).

ψ(f ) =
m∑

i=0

ψ(ai )(ψ(x1))
ki1(ψ(x2))

ki2 · · · (ψ(xn))
kin

since ψ is a ring homomorphism

=
m∑

i=0

ϕ(ai )s
ki1
1 ski2

2 · · · skin
n by hypotheses on the ψ values

= ϕ(f (s1, s2, . . . , sn)) by definition of ϕ

= ϕ(f ) by definition of ϕ.

Whence ψ = ϕ and ϕ is unique.
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Theorem III.5.5

Theorem III.5.5 (continued 5)

Proof(continued). Finally, in order to show that R[x1, x2, . . . , xn] is
completely determined by the property ϕ|R = ϕ and ψ(xi ) = si , define
category C whose objects are all (n + 2)-tuples (ψ,K , s1, s2, . . . , sn) where
K is a commutative ring with identity, si ∈ K , and ψ : R → K is a
homomorphism with ψ(1R) = 1K . A morphism in C from
(ψ, J, s1, s2, . . . , sn) to (θ,T , t1, t2, . . . , tn) is a homomorphism of rings
ζ : K → T such that ζ(1K ) = 1T , ζψ = θ, and ζ(si ) = ti . Since these
morphisms are functions then the definition of “category” (Definition
I.7.1) is satisfied (compositions, associativity, identity).

Recall that a
morphism is an equivalence if it has a left and right inverse. So a
morphism is one to one if and only if it has a left inverse by Theorem
0.3.1(i); a morphism is onto if and only it it has a right inverse by
Theorem 0.3.1(ii). Hence, a morphism is an equivalence if and only if it is
one to one and onto; that is, if and only if it is a ring isomorphism. Let
ι : R → R[x1, x2, . . . , xn] be the inclusion map which maps each r ∈ R to
the “constant polynomial” r ∈ R[x1, x2, . . . , xn].
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Theorem III.5.5

Theorem III.5.5 (continued 6)

Proof(continued). Consider (ι,R[x1, x2, . . . , xn], x1, x2, . . . , xn) in C. For
any (ψ,K , s1, s2, . . . , sn) ∈ C we know by the first paragraph of the proof,
since ψ : R → K is a ring homomorphism (ϕ of the first paragraph) then
there is a unique ψ : R[x1, x2, . . . , xn] → K a ring homomorphism with
ψ|R = ψ and ψ(xi ) = si .

Notice that ψ(1R[x1,x2,...,xn]) = ψ(1R) = 1K and

ψι = ψ (since ψι is literally ψ restricted to R). So ψ is a morphism from
(ι,R[x1, x2, . . . , xn], x1, x2, . . . , xn) to (ψ,K , s1, s2, . . . , sn) and ψ is a
unique such morphism. So (ι,R[x1, x2, . . . , xn], x1, x2, . . . , xn) is a universal
object in C (by definition, since the morphism ψ exists for any object in C
and is unique). By Theorem I.7.10, any two universal objects in C are
equivalent (and equivalence here corresponds to a ring isomorphism, as
explained above). “This property” (that is, the mapping properties of ϕ
and ϕ) therefore determine R[x1, x2, . . . , xn] up to isomorphism.
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Corollary III.5.6

Corollary III.5.6

Corollary III.5.6. If ϕ : R → S is a homomorphism of commutative rings
and s1, s2, . . . , sn ∈ S , then the map R[x1, x2, . . . , xn] → S , where
f =

∑m
i=0 aix

ki1
1 xki2

2 · · · xkin
n is mapped to

ϕ(f ) = ϕ(f (s1, s2, . . . , sn)) =
∑m

i=0 ϕ(ai )s
ki1
1 ski2

2 · · · skin
n , is a

homomorphism of rings.

Proof. This is just the first paragraph of the proof of Theorem III.5.5
(without the uniqueness part; we may not have rings with identity here,
but the presence of an identity is not used in this part of the proof of
Theorem III.5.5).
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Corollary III.5.7

Corollary III.5.7

Corollary III.5.7. Let R be a commutative ring with identity and n a
positive integer. For each k (with 1 ≤ k < n) there are isomorphic rings

R[x1, x2, . . . , xk ][xk+1, xk+2, . . . , xn] ∼= R[x1, x2, . . . , xn]

∼= R[xk+1, xk+2, . . . , xn][x1, x2, . . . , xk ].

Proof. Let S be a commutative ring with identity and ϕ : R → S a ring
homomorphism. Let s1, s2, . . . , sn ∈ S .

By Theorem III.5.5 there exists a
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Corollary III.5.7

Corollary III.5.7 (continued)

Corollary III.5.7. Let R be a commutative ring with identity and n a
positive integer. For each k (with 1 ≤ k < n) there are isomorphic rings
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Proposition III.5.9

Proposition III.5.9

Proposition III.5.9. Let R be a ring with identity and
f =

∑∞
i=0 aix

i ∈ R[[x ]].

(i) f is a unit in R[[x ]] if and only if its constant term a0 is a
unit in R.

(ii) If a0 is irreducible in R, then f is irreducible in R[[x ]].

Proof. (i) Suppose f is a unit.

Then there exists g =
∑∞

i=0 bix
i ∈ R[[x ]]

such that fg = gf = 1R ∈ R[[x ]]. Then a0b0 = b0a0 = 1R , and so a0 is a
unit in R. Conversely, suppose a0 is a unit in R. With
g =

∑∞
i=0 bix

i ∈ R[[x ]] where fg = 1R we have the following equations
satisfied:

a0b0 = 1R

a0b1 + a1b0 = 0
...

a0bn + a1bn−1 + · · ·+ anb0 = 0
...
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Proposition III.5.9

Proposition III.5.9 (continued 1)

Proposition III.5.9. Let R be a ring with identity and
f =

∑∞
i=0 aix

i ∈ R[[x ]].

(i) f is a unit in R[[x ]] if and only if its constant term a0 is a
unit in R.

Proof (continued). (i) Conversely, if the system of equations is satisfied
by (b0, b1, . . .) then g =

∑∞
i=0 bix

i ∈ R[[x ]] satisfies fg = 1R in R[[x ]].
Now we show there is a solution and hence g is a right inverse of f . Since
a0 is a unit there is a solution to the first equation, namely b0 = a−1

0 .
Then we can solve the second equation to get
b1 = a−1

0 (−a1b0) = −a−1
0 (a1a

−1
0 ).

Inductively, we can find each
bn = a0(−a1bn−1 − a2bn−2 − · · · − anb0) (in terms of a−1

0 , a1, a2, . . . , an

and b0, b1, . . . , bn−1). We can then (inductively) express each bn in terms
of the ai ’s above. Therefore, there exists g ∈ R[[x ]] such that fg = 1R .
Similarly, there exists h ∈ R[[x ]] such that hf = 1R . But then
h = h1R = h(fg) = (hf )g = 1Rg = g . So (i) follows.
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Proposition III.5.9

Proposition III.5.9 (continued 2)

Proposition III.5.9. Let R be a ring with identity and
f =

∑∞
i=0 aix

i ∈ R[[x ]].

(ii) If a0 is irreducible in R, then f is irreducible in R[[x ]].

Proof. (ii) Recall that f a nonzero nonunit in a ring is irreducible if
f = gh implies that either g or h is a unit. With f =

∑∞
i=0 aix

i ,
g =

∑∞
i=0 bix

i , h =
∑∞

i=0 cix
i , f = gh implies a0 = b0c0.

If a0 is
irreducible then either b0 or c0 is a unit. So by (i), either g or h is a unit.
Therefore, f is irreducible.
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Corollary III.5.10

Corollary III.5.10

Corollary III.5.10. If R is a division ring, then the units in R[[x ]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x ]] and is the unique
maximal ideal of R[[x ]]. Thus if R is a field, R[[x ]] is a local ring.

Proof. First, if R is a division ring then each nonzero element of R is a
unit. So by Proposition III.5.9(i), a formal power series is a unit if and
only if the constant term is nonzero.

Now x = (0, 1R , 0, . . .) commutes with every element of R[[x ]], so x is in
the center of R[[x ]] and (x) = {xf | f ∈ R[[x ]]} (by Theorem III.2.5(iii)).
Consequently, every nonzero element xf of (x) has zero constant term,
whence by Proposition III.5.9(i), xf is a nonunit. Conversely, for every
nonunit f ∈ R[[x ]], by Theorem III.5.9(i), we have f =

∑∞
i=0 aix

i with
a0 = 0. Let g =

∑∞
i=0 bix

i where bi = ai+1. Then xg = f whence
f ∈ (x). So (x) consists precisely of the nonunits in R[[x ]].
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Corollary III.5.10

Corollary III.5.10 (continued)

Corollary III.5.10. If R is a division ring, then the units in R[[x ]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x ]] and is the unique
maximal ideal of R[[x ]]. Thus if R is a field, R[[x ]] is a local ring.

Proof (continued). Finally, since 1R 6∈ (x) by the first claim of this result
then (x) 6= R[[x ]].

Furthermore, every ideal I of R[[x ]] with I 6= R[[x ]]
must contain no units (see “Remark” on page 123 or the “Note” on page
2 of the class notes for Section II.2). So I consists only of nonunits. Since
(x) is the set of all nonunits by the previous paragraph, then I ⊂ (x).
Thus every ideal of R[[x ]] (except R[[x ]] itself) is contained in (x) and so
(x) is the only maximal ideal of F [[x ]].
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Corollary III.5.10 (continued)
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then (x) 6= R[[x ]]. Furthermore, every ideal I of R[[x ]] with I 6= R[[x ]]
must contain no units (see “Remark” on page 123 or the “Note” on page
2 of the class notes for Section II.2). So I consists only of nonunits. Since
(x) is the set of all nonunits by the previous paragraph, then I ⊂ (x).
Thus every ideal of R[[x ]] (except R[[x ]] itself) is contained in (x) and so
(x) is the only maximal ideal of F [[x ]].
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