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Theorem I11.5.5

Theorem 111.5.5

Theorem 111.5.5. Let R and S be commutative rings with identity and
¢ : R — S is a homomorphism of rings such that p(1g) = 1s. If
S1,52,...,5p € S then there is a unique homomorphism of rings

@ : R[x1,x2,...,%5] — S such that |gr = ¢ and B(x;) = s; for
i=1,2,...,n. This property (that is, the mapping properties of ¢ and 7;
Hungerford calls this “a universal mapping property”) completely
determines the polynomial ring R[x1, x2, ..., Xs] up to isomorphism.
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Theorem I111.5.5

Theorem 111.5.5. Let R and S be commutative rings with identity and

¢ : R — S is a homomorphism of rings such that p(1g) = 1s. If
S1,52,...,5p € S then there is a unique homomorphism of rings

@ : R[x1,x2,...,%5] — S such that |gr = ¢ and B(x;) = s; for
i=1,2,...,n. This property (that is, the mapping properties of ¢ and 7;
Hungerford calls this “a universal mapping property”) completely
determines the polynomial ring R[x1, x2, ..., Xs] up to isomorphism.

Proof. If f € R[x1,x2,...,x,] then by Theorem 111.5.4(v)

f =315 aix"xy? - xkin for some a; € R and ki € N (we omit x?
terms). As described above,

P(f) = p(f(s1,52,..-,50) = 2oip go(‘—:a;)sf"lsé("2 -+ - skin is well-defined and
Pr =¥ and p(x;) = s;.
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Theorem I111.5.5

Theorem 111.5.5. Let R and S be commutative rings with identity and
¢ : R — S is a homomorphism of rings such that p(1g) = 1s. If
S1,52,...,5p € S then there is a unique homomorphism of rings

@ : R[x1,x2,...,%5] — S such that |gr = ¢ and B(x;) = s; for
i=1,2,...,n. This property (that is, the mapping properties of ¢ and 7;
Hungerford calls this “a universal mapping property”) completely
determines the polynomial ring R[x1, x2, ..., Xs] up to isomorphism.

Proof. If f € R[x1,x2,...,x,] then by Theorem 111.5.4(v)

f =315 aix"xy? - xkin for some a; € R and ki € N (we omit x?
terms). As described above,

P(f) = p(f(s1,52,..-,50) = 2oip go(‘—:a;)sf"lsé("2 -+ - skin is well-defined and
Pr = ¢ and p(x;) = s;. Now we show that P is a ring homomorphism.
Let f =30 aix g - xkin and g = S 0 bix{xy™ - - - xkin (we include
the x; with 0 exponent here).
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Theorem 111.5.5 (continued 1)

Proof(continued). Then

m m
_ _ ki ki . ki k: .
gp(f —+ g) = © (Z a;x1‘1x2’2 .. _X’l;m + Z biX1'1X2/2 .. .X,’;m>
=0 i=0

m
= ¥ (Z(ai + fD,‘)X{("1X2ki2 - -X,f””) by the definition

i=0
of +in R[x1,x2,...,Xp]
m
= @ (Z(ai + b,')5:f<"1s§"2 o -5,’5‘”) by the definition of
i=0
m
= Z o(a; + b,-)s{(”sé("2 ... skin by the definition of ¢
i=0
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Theorem 111.5.5 (continued 2)

Proof(continued). Then

m

— Zw(a’) ki1 k12_.' m+zs@b)sll kl2._.
i=0
since ¢ is a homomorph|sm

m m
§ :al,s]l-(ilséﬁ? . S,I;"" + ¢ § bl.s{(ilséwz . S,I:in
j i=0

by the definition of ¢

— @(Em:aixf“ kiz >+(p<2bX’lX'2 .. in>

by the definition of
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Theorem 111.5.5 (continued 3)

Proof(continued). Next, “we find" that

m m
o) =7 (ot onte) (St o))
i=0 i=0

= =2(f)7(g)
by the Binomial Theorem (Theorem I11.1.6), the rules of exponents as

given in Theorem I11.5.4(iii,iv) and the fact that ¢ is a homomorphism.

Modern Algebra April 18, 2024

6 /17



Theorem 111.5.5 (continued 3)

Proof(continued). Next, “we find" that

m m
o) =7 (ot onte) (St o))
i=0 i=0

= =2(f)7(g)
by the Binomial Theorem (Theorem I11.1.6), the rules of exponents as
given in Theorem I11.5.4(iii,iv) and the fact that ¢ is a homomorphism. So
@ is a ring homomorphism. Suppose that ¢ : R[x1,x2,...,%,] — S'is a
homomorphism such that 1|g = ¢ and ¥(x;) = s; for all i.
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Theorem 111.5.5 (continued 3)

Proof(continued). Next, “we find" that

m m
o) =7 (ot onte) (St o))
i=0 i=0

= =2(f)7(g)
by the Binomial Theorem (Theorem I11.1.6), the rules of exponents as
given in Theorem I11.5.4(iii,iv) and the fact that ¢ is a homomorphism. So
@ is a ring homomorphism. Suppose that ¢ : R[x1,x2,...,%,] — S'is a
homomorphism such that 1|g = ¢ and 9(x;) = s; for all i. Then

v(f) = ¢ (Z ainilxé(iZ .. .erin)
i=0

= D @8R - ()
i=0

since v is a ring homomorphism
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Theorem 111.5.5 (continued 4)

Proof(continued).

W) = D (@) (0a)) () ()
i=0
since ¥ is a ring homomorphism

= Z gp(a,-)sf"lsé(’2 e s,’,"’” by hypotheses on the v values

= o(f(s1,82,--.,5n)) by definition of ¢
@(f) by definition of .
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Theorem 111.5.5 (continued 4)

Proof(continued).

W) = D (@) (0a)) () ()
i=0
since ¥ is a ring homomorphism

= Z gp(a,-)sf"lsé(’2 e s,’,"’” by hypotheses on the v values

= o(f(s1,82,--.,5n)) by definition of ¢
@(f) by definition of .

Whence ¥ = @ and p is unique.
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Theorem 111.5.5 (continued 5)

Proof(continued). Finally, in order to show that R[xi,x2,...,Xs] is
completely determined by the property P|gr = ¢ and ¥(x;) = s;, define
category C whose objects are all (n + 2)-tuples (¢, K, s1, %2, ..., sn) where

K is a commutative ring with identity, s; € K, and ¢ : R — K is a
homomorphism with ¢)(1g) = 1.
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Theorem 111.5.5 (continued 5)

Proof(continued). Finally, in order to show that R[xi,x2,...,Xs] is
completely determined by the property P|gr = ¢ and ¥(x;) = s;, define
category C whose objects are all (n + 2)-tuples (¢, K, s1, %2, ..., sn) where

K is a commutative ring with identity, s; € K, and ¢ : R — K is a
homomorphism with ¥(1g) = 1x. A morphism in C from
(¥,J,s1,%,...,8,) to (0, T, t1, ta,...,ty) is a homomorphism of rings
¢ : K — T such that ((1x) = 17, (¥ =6, and {(s;) = t;. Since these
morphisms are functions then the definition of “category” (Definition
1.7.1) is satisfied (compositions, associativity, identity).

Modern Algebra April 18, 2024 8 /17



Theorem 111.5.5 (continued 5)

Proof(continued). Finally, in order to show that R[xi,x2,...,Xs] is
completely determined by the property P|gr = ¢ and ¥(x;) = s;, define
category C whose objects are all (n + 2)-tuples (¢, K, s1, %2, ..., sn) where

K is a commutative ring with identity, s; € K, and ¢ : R — K is a
homomorphism with ¥(1g) = 1x. A morphism in C from
(¥,J,s1,%,...,8,) to (0, T, t1, ta,...,ty) is a homomorphism of rings
¢ : K — T such that ((1x) = 17, (¥ =6, and {(s;) = t;. Since these
morphisms are functions then the definition of “category” (Definition
1.7.1) is satisfied (compositions, associativity, identity). Recall that a
morphism is an equivalence if it has a left and right inverse. So a
morphism is one to one if and only if it has a left inverse by Theorem
0.3.1(i); a morphism is onto if and only it it has a right inverse by
Theorem 0.3.1(ii).
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Theorem 111.5.5 (continued 5)

Proof(continued). Finally, in order to show that R[xi,x2,...,Xs] is
completely determined by the property P|gr = ¢ and ¥(x;) = s;, define
category C whose objects are all (n + 2)-tuples (¢, K, s1, %2, ..., sn) where

K is a commutative ring with identity, s; € K, and ¢ : R — K is a
homomorphism with ¥(1g) = 1x. A morphism in C from
(¥,J,s1,%,...,8,) to (0, T, t1, ta,...,ty) is a homomorphism of rings

¢ : K — T such that ((1x) = 17, (¥ =6, and {(s;) = t;. Since these
morphisms are functions then the definition of “category” (Definition
1.7.1) is satisfied (compositions, associativity, identity). Recall that a
morphism is an equivalence if it has a left and right inverse. So a
morphism is one to one if and only if it has a left inverse by Theorem
0.3.1(i); a morphism is onto if and only it it has a right inverse by
Theorem 0.3.1(ii). Hence, a morphism is an equivalence if and only if it is
one to one and onto; that is, if and only if it is a ring isomorphism. Let
t: R — R[x1,x2,...,xn] be the inclusion map which maps each r € R to
the “constant polynomial” r € R[xi, x2, ..., Xn].
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Theorem 111.5.5 (continued 6)

Proof(continued). Consider (¢, R[x1, X2, ..., Xn], X1, X2, ..., Xp) in C.
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Theorem 111.5.5 (continued 6)

Proof(continued). Consider (¢, R[x1, X2, ..., Xp|, X1, X2, ..., Xp) in C. For
any (¢, K, s1,%,...,5,) € C we know by the first paragraph of the proof,
since 1 : R — K is a ring homomorphism (¢ of the first paragraph) then
there is a unique ¢ : R[x1,x2, . ..,x,] — K a ring homomorphism with

P|r =1 and P(x;) = s;.

9/17
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Theorem 111.5.5 (continued 6)

Proof(continued). Consider (¢, R[x1, X2, ..., Xp|, X1, X2, ..., Xp) in C. For
any (¢, K, s1,%,...,5,) € C we know by the first paragraph of the proof,
since 1 : R — K is a ring homomorphism (¢ of the first paragraph) then
there is a unique ¢ : R[x1,x2, . ..,x,] — K a ring homomorphism with
Y|r =1 and P(x;) = s;. Notice that ¥(1gr x,,...x,]) = Y(1r) = 1k and
i = (since 1 is literally 9 restricted to R). So v is a morphism from
(t, R[X1, X2, - -, Xn]s X1, X2, - - - s Xn) to (¥, K, 51,5,...,5,) and ¢ is a
unique such morphism.
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Theorem 111.5.5 (continued 6)

Proof(continued). Consider (¢, R[x1, X2, ..., Xp|, X1, X2, ..., Xp) in C. For
any (¢, K, s1,%,...,5,) € C we know by the first paragraph of the proof,
since 1 : R — K is a ring homomorphism (¢ of the first paragraph) then
there is a unique ¢ : R[x1,x2, . ..,x,] — K a ring homomorphism with
Y|r =1 and (x;) = s;. Notice that Y (1R s,...x]) = ¥(1r) = 1k and
i = (since 1 is literally 9 restricted to R). So v is a morphism from
(t, R[X1, X2, - -, Xn]s X1, X2, - - - s Xn) to (¥, K, 51,5,...,5,) and ¢ is a
unique such morphism. So (¢, R[x1, X2, ..., Xn], X1, X2, ..., Xp) is a universal
object in C (by definition, since the morphism %) exists for any object in C
and is unique). By Theorem 1.7.10, any two universal objects in C are
equivalent (and equivalence here corresponds to a ring isomorphism, as
explained above).
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Theorem 111.5.5 (continued 6)

Proof(continued). Consider (¢, R[x1, X2, ..., Xp|, X1, X2, ..., Xp) in C. For
any (¢, K, s1,%,...,5,) € C we know by the first paragraph of the proof,
since 1 : R — K is a ring homomorphism (¢ of the first paragraph) then
there is a unique ¢ : R[x1,x2, . ..,x,] — K a ring homomorphism with
Y|r =1 and (x;) = s;. Notice that Y (1R s,...x]) = ¥(1r) = 1k and
i = (since 1 is literally 9 restricted to R). So v is a morphism from
(t, R[X1, X2, - -, Xn]s X1, X2, - - - s Xn) to (¥, K, 51,5,...,5,) and ¢ is a
unique such morphism. So (¢, R[x1, X2, ..., Xn], X1, X2, ..., Xp) is a universal
object in C (by definition, since the morphism %) exists for any object in C
and is unique). By Theorem 1.7.10, any two universal objects in C are
equivalent (and equivalence here corresponds to a ring isomorphism, as
explained above). “This property” (that is, the mapping properties of ¢
and ) therefore determine R[xi, x2, ..., Xs] up to isomorphism. O]
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Corollary 111.5.6

Corollary 111.5.6

Corollary 111.5.6. If o : R — S is a homomorphism of commutative rings

and s1,8p,...,5, €S, then the map R[x1, x2, ..

f=S"",aixitxs2 ... xkn is mapped to

B(F) = o(f(s1,52,- - 50)) = g (ai)sy 5"

homomorphism of rings.

Modern Algebra

.y Xn] — S, where

k:

..Snm’ iS a
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Corollary 111.5.6

Corollary 111.5.6. If o : R — S is a homomorphism of commutative rings
and s1,8p,...,5, €S, then the map R[xi,x2,...,x,] — S, where
f=S"",aixitxs2 ... xkn is mapped to

_ ki

P(F) = (F(s1,92,- -1 50) = Lo plai)sis3™ - sy, is a
homomorphism of rings.

Proof. This is just the first paragraph of the proof of Theorem Il1.5.5
(without the uniqueness part; we may not have rings with identity here,
but the presence of an identity is not used in this part of the proof of
Theorem 111.5.5). O

Modern Algebra April 18,2024 10 / 17



Corollary 111.5.7

Corollary 111.5.7. Let R be a commutative ring with identity and n a
positive integer. For each k (with 1 < k < n) there are isomorphic rings

Rlx1,x2, oy Xi] [Xk15 Xk425 - - -5 Xn] = R[x1, %2, - -+, X

S R[Xkt1s Xkt2s -« - Xn)[X1, X245« -+ Xk]-

Modern Algebra April 18,2024 11 /17



Corollary 111.5.7

Corollary 111.5.7

Corollary 111.5.7. Let R be a commutative ring with identity and n a
positive integer. For each k (with 1 < k < n) there are isomorphic rings

Rlx1,x2, oy Xi] [Xk15 Xk425 - - -5 Xn] = R[x1, %2, - -+, X
= R[Xk+1,Xk+2,...,Xn][X]_,XQ,...,Xk].

Proof. Let S be a commutative ring with identity and ¢ : R — S a ring
homomorphism. Let s1,,...,s, € S.
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Corollary 111.5.7

Corollary 111.5.7. Let R be a commutative ring with identity and n a
positive integer. For each k (with 1 < k < n) there are isomorphic rings

Rlx1,x2, oy Xi] [Xk15 Xk425 - - -5 Xn] = R[x1, %2, - -+, X

S R[Xkt1s Xkt2s -« - Xn)[X1, X245« -+ Xk]-

Proof. Let S be a commutative ring with identity and ¢ : R — S a ring
homomorphism. Let s1,55,...,5, € S. By Theorem I11.5.5 there exists a
ring homomorphism @ : R[x1, x2, ..., xk] — S such that p|g = ¢ and
©(x;) = s;. Applying Theorem I11.5.5 to ring R[x1, x2, ..., xk] and
homomorphism @ : R[x1, x2,...,xk] — S, there is a homomorphism

i : (E[X]_,X2, ooy Xk [Xk£15 Xka2, - - - Xn] — S such that $|R[x1,><2,...,xk] =p
and @(X,‘) = S;.
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Corollary 111.5.7

Corollary 111.5.7. Let R be a commutative ring with identity and n a
positive integer. For each k (with 1 < k < n) there are isomorphic rings

Rlx1,x2, oy Xi] [Xk15 Xk425 - - -5 Xn] = R[x1, %2, - -+, X
= R[Xk+1,Xk+2,...,Xn][X]_,XQ,...,Xk].

Proof. Let S be a commutative ring with identity and ¢ : R — S a ring
homomorphism. Let s1,55,...,5, € S. By Theorem I11.5.5 there exists a
ring homomorphism @ : R[x1, x2, ..., xk] — S such that p|g = ¢ and
©(x;) = s;. Applying Theorem I11.5.5 to ring R[x1, x2, ..., xk] and
homomorphism @ : R[x1, x2,...,xk] — S, there is a homomorphism

i : (E[X]_,X2, ooy Xk [Xk£15 Xka2, - - - Xn] — S such that $|R[x1,><2,...,xk] =p
and @(X,‘) = s;. Suppose that ¥ : R[X17X2, - ,Xk][Xk+1,Xk+27 ce ;Xn] — S
is a homomorphism such that |g = ¢ and 1(x;) = s;. Then the
uniqueness argument of Theorem I11.5.5 (paragraph 1 of the proof) holds

to show that ¥|rp x,...x0] = P
Modern Algebra April 18,2024 11 /17



Corollary 111.5.7 (continued)

Corollary 111.5.7. Let R be a commutative ring with identity and n a
positive integer. For each k (with 1 < k < n) there are isomorphic rings

Rx1, X2, « oy Xk [Xkt1s Xkt2y - - 5 Xn] = R[X1, %2, ..., Xn]
> R[Xkt1y Xkt2s - - - Xn][X1, X2, -« s Xk]-
Proof (continued). Consequently, R[x1,x2, ..., Xk][Xk+1, Xk+25 - - -  Xn]

has the desired “universal mapping property” (i.e., the mapping properties
of ¢ and @), so by Theorem I11.5.5,

R[x1, X2, .« oy Xk [Xkt15 Xk425 - - - Xn] = R[X1, %2, ..., %n]. The other
isomorphism is similar. []
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Proposition 111.5.9

Proposition 111.5.9. Let R be a ring with identity and
F =Yg a € RIlx]
(i) fis a unit in R[[x]] if and only if its constant term ag is a
unit in R.
(ii) If ag is irreducible in R, then f is irreducible in R[[x]].
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Proposition 111.5.9

Proposition 111.5.9

Proposition 111.5.9. Let R be a ring with identity and
f =Y 2paix' € R[]

(i) fis a unit in R[[x]] if and only if its constant term ag is a
unit in R.

(ii) If ag is irreducible in R, then f is irreducible in R[[x]].
Proof. (i) Suppose f is a unit.
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Proposition 111.5.9

Proposition 111.5.9

Proposition I'II.5.9. Let R be a ring with identity and
f =Y 2paix' € R[]

(i) fis a unit in R[[x]] if and only if its constant term ag is a
unit in R.

(ii) If ag is irreducible in R, then f is irreducible in R[[x]].
Proof. (i) Suppose f is a unit. Then there exists g = > oo, bix' € R[[x]]
such that fg = gf = 1g € R[[x]]. Then apby = bpap = 1g, and so ap is a
unit in R. Conversely, suppose ag is a unit in R.
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Proposition 111.5.9

Proposition 111.5.9. Let R be a ring with identity and
F =% axt € R

(i) fis a unit in R[[x]] if and only if its constant term ag is a

unit in R.

(ii) If ag is irreducible in R, then f is irreducible in R[[x]].
Proof. (i) Suppose f is a unit. Then there exists g = > oo, bix' € R[[x]]
such that fg = gf = 1g € R[[x]]. Then apby = bpap = 1g, and so ap is a
unit in R. Conversely, suppose ag is a unit in R. With
g = > 2o bix" € R[[x]] where fg = 1g we have the following equations

satisfied: abe = 1p

aobi +aibp = 0
aobp +aibp—1+---+anbp = 0

Modern Algebra April 18,2024 13 / 17



Proposition 111.5.9

Proposition 111.5.9 (continued 1)

Proposition I.II.5.9. Let R be a ring with identity and
f=5%2paix € R[]

(i) fis a unit in R[[x]] if and only if its constant term ag is a
unit in R.

Proof (continued). (i) Conversely, if the system of equations is satisfied
by (bo, b1, ...) then g = > 72, bix' € R[[x]] satisfies fg = 1g in R[[x]].
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Proposition 111.5.9 (continued 1)

Proposition I.II.5.9. Let R be a ring with identity and
f =Y pax' € Rl
(i) fis a unit in R[[x]] if and only if its constant term ag is a
unit in R.

Proof (continued). (i) Conversely, if the system of equations is satisfied
by (bo, b1, ...) then g = > 72, bix' € R[[x]] satisfies fg = 1g in R[[x]].
Now we show there is a solution and hence g is a right inverse of f. Since
ap is a unit there is a solution to the first equation, namely by = aal.
Then we can solve the second equation to get

by = agt(—a1bo) = —ap (a1, 1)

Modern Algebra April 18,2024 14 / 17



Proposition 111.5.9 (continued 1)

Proposition I.II.5.9. Let R be a ring with identity and
f =Y pax' € Rl
(i) fis a unit in R[[x]] if and only if its constant term ag is a
unit in R.

Proof (continued). (i) Conversely, if the system of equations is satisfied
by (bo, b1, ...) then g = > 72, bix' € R[[x]] satisfies fg = 1g in R[[x]].
Now we show there is a solution and hence g is a right inverse of f. Since
ap is a unit there is a solution to the first equation, namely by = aal.
Then we can solve the second equation to get

by = ag'(—a1bo) = —ap'(a1ay ). Inductively, we can find each
b, = ao(—ai1bp—1 — azbp—2 — -+ - — apbg) (in terms of ao_l, ai,as,...,an
and by, by, ..., bp—1). We can then (inductively) express each b, in terms

of the a;'s above.
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Proposition 111.5.9 (continued 1)

Proposition I.II.5.9. Let R be a ring with identity and
f =Y pax' € Rl
(i) fis a unit in R[[x]] if and only if its constant term ag is a
unit in R.

Proof (continued). (i) Conversely, if the system of equations is satisfied
by (bo, b1, ...) then g = > 72, bix' € R[[x]] satisfies fg = 1g in R[[x]].
Now we show there is a solution and hence g is a right inverse of f. Since
ap is a unit there is a solution to the first equation, namely by = aal.
Then we can solve the second equation to get

by = ag'(—a1bo) = —ap'(a1ay ). Inductively, we can find each
b, = ao(—ai1bp—1 — azbp—2 — -+ - — apbg) (in terms of ao_l, ai,as,...,an
and by, by, ..., bp—1). We can then (inductively) express each b, in terms

of the a;'s above. Therefore, there exists g € R[[x]] such that fg = 1g.
Similarly, there exists h € R[[x]] such that hf = 1g. But then
h= hlg = h(fg) = (hf)g = 1grg = g. So (i) follows.
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Proposition 111.5.9 (continued 2)

Proposition I_II.5.9. Let R be a ring with identity and
f=5%2paix € R[]
(ii) If ag is irreducible in R, then f is irreducible in R[[x]].
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Proposition 111.5.9

Proposition 111.5.9 (continued 2)

Proposition I_II.5.9. Let R be a ring with identity and
f=5%2paix € R[]
(ii) If ag is irreducible in R, then f is irreducible in R[[x]].

Proof. (ii) Recall that f a nonzero nonunit in a ring is irreducible if

f=gh implies that either g or h is a unit. With f=>57gaix
g=> i2gbix', h=>"7,cix', f = gh implies ag = byco.
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Proposition 111.5.9 (continued 2)

Proposition I_II.5.9. Let R be a ring with identity and
f=5%2paix € R[]
(ii) If ag is irreducible in R, then f is irreducible in R[[x]].

Proof. (ii) Recall that f a nonzero nonunit in a ring is irreducible if

f = gh implies that either g or his a unit. With f =2, aix',
g=>0 bix', h= >0 cix', f = gh implies ag = bgcp. If ag is
irreducible then either by or ¢p is a unit. So by (i), either g or h is a unit.
Therefore, f is irreducible. O
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Corollary 111.5.10

Corollary 111.5.10

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.
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Corollary 111.5.10

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.

Proof. First, if R is a division ring then each nonzero element of R is a
unit. So by Proposition 111.5.9(i), a formal power series is a unit if and
only if the constant term is nonzero.
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Corollary 111.5.10

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal

ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.

Proof. First, if R is a division ring then each nonzero element of R is a
unit. So by Proposition 111.5.9(i), a formal power series is a unit if and
only if the constant term is nonzero.

Now x = (0,1g,0,...) commutes with every element of R[[x]], so x is in
the center of R[[x]] and (x) = {xf | f € R|[[x]]} (by Theorem I11.2.5(iii)).
Consequently, every nonzero element xf of (x) has zero constant term,
whence by Proposition 111.5.9(i), xf is a nonunit. Conversely, for every
nonunit f € R[[x]], by Theorem 111.5.9(i), we have f = 32 a;x’ with
ap = 0.
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Corollary 111.5.10

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.

Proof. First, if R is a division ring then each nonzero element of R is a
unit. So by Proposition 111.5.9(i), a formal power series is a unit if and
only if the constant term is nonzero.

Now x = (0,1g,0,...) commutes with every element of R[[x]], so x is in
the center of R[[x]] and (x) = {xf | f € R|[[x]]} (by Theorem I11.2.5(iii)).
Consequently, every nonzero element xf of (x) has zero constant term,
whence by Proposition 111.5.9(i), xf is a nonunit. Conversely, for every
nonunit f € R[[x]], by Theorem 111.5.9(i), we have f = 32 a;x’ with
ap=0. Let g = Z?io b;x'" where b; = ajiy1. Then xg = f whence

f € (x). So (x) consists precisely of the nonunits in R[[x]].
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Corollary 111.5.10

Corollary 111.5.10 (continued)

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.
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Corollary 111.5.10

Corollary 111.5.10 (continued)

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.

Proof (continued). Finally, since 1g ¢ (x) by the first claim of this result

then (x) # R[[x]].
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Corollary 111.5.10 (continued)

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.

Proof (continued). Finally, since 1g ¢ (x) by the first claim of this result
then (x) # R[[x]]. Furthermore, every ideal | of R[[x]] with | # R[[x]]
must contain no units (see “Remark” on page 123 or the “Note” on page
2 of the class notes for Section 11.2). So / consists only of nonunits. Since
(x) is the set of all nonunits by the previous paragraph, then | C (x).
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Corollary 111.5.10 (continued)

Corollary 111.5.10. If R is a division ring, then the units in R[[x]] are
precisely those power series with nonzero constant terms. The principal
ideal (x) consists precisely of the nonunits in R[[x]] and is the unique
maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.

Proof (continued). Finally, since 1g ¢ (x) by the first claim of this result
then (x) # R[[x]]. Furthermore, every ideal | of R[[x]] with | # R[[x]]
must contain no units (see “Remark” on page 123 or the “Note” on page
2 of the class notes for Section 11.2). So / consists only of nonunits. Since
(x) is the set of all nonunits by the previous paragraph, then | C (x).
Thus every ideal of R[[x]] (except R[[x]] itself) is contained in (x) and so
(x) is the only maximal ideal of F[[x]]. O
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