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Theorem III.6.2. The Division Algorithm

Theorem III.6.2

Theorem III.6.2. The Division Algorithm.
Let R be a ring with identity and f , g ∈ R[x ] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials q, r ∈ R[x ] such that f = qg + r and deg(r) < deg(g).

Proof. If deg(g) > deg(f ), let q = 0 and r = f .

If deg(g) ≤ deg(f ), then
f =

∑n
i=0 aix

i , g =
∑m

i=0 bix
i with an 6= 0, bm 6= 0, m ≤ n, and bm a unit

in R (by hypothesis, the leading coefficient of g is a unit).
We now apply induction on n = deg(f ). If n = 0, then m = 0, f = a0,
g = b0 and b0 is a unit (by hypothesis). Let q = a0b

−1
0 and r = 0; then

deg(r) < deg(g) (from Note III.6.A, deg(r) = −∞) and
qg + r = (a0b

−1
0 )b0 = a0 = f . So the result holds for n = 0.
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Theorem III.6.2. The Division Algorithm

Theorem III.6.2 (continued 1)

Proof (continued). Assume that the existence part of the theorem is true
for polynomials of degree less than n = deg(f ). Then the polynomial

(anb
−1
m xn−m)g = (anb

−1
m xn−m)

m∑
i=0

bix
i =

m∑
i=0

anb
−1
m bix

n−m+i

= anx
n +

m−1∑
i=0

anb
−1
m bix

n−m+i

has degree n and leading coefficient an. Hence
f − (anb

−1
m xn−m)g = (anx

n + · · · a0)− (anx
n + · · ·+ anb

−1
m b0x

n−m) is a
polynomial of degree less than n. By the induction hypothesis there are
polynomials q′ and r such that f − (anb

−1
m xn−m)g = q′g + r and

deg(r) < deg(g).

Therefore, if q = anb
−1
m xn−m + q′ then

f = (anb
−1
m xn−m)g + q′g + r = qg + r where deg(r) < deg(g). So the

existence claim is justified by induction.
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Theorem III.6.2. The Division Algorithm

Theorem III.6.2 (continued 2)

Theorem III.6.2. The Division Algorithm.
Let R be a ring with identity and f , g ∈ R[x ] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials q, r ∈ R[x ] such that f = qg + r and deg(r) < deg(g).

Proof (continued). Now for the uniqueness. Suppose
f = q1g + r1 = q2g + r2 with deg(r1) < deg(g) and deg(r2) < deg(g).
Then we have (q1 − q2)g = r2 − r1. Since the leading coefficient of g is a
unit (by hypothesis), by Theorem III.6.1(iv) we have
deg(q1 − q2) + deg(g) = deg((q1 − q2)g) = deg(r2 − r1).

Since
deg(r2 − r1) ≤ max(deg(r1), deg(r2)) < deg(g), the above equality is true
only if deg(q1 − q2) = −∞ = deg(r2 − r1) (that is, the equality does not
hold for finite degrees). In other words, q1 − q2 = 0 and r2 − r1 = 0. That
is, q1 = q2 and r1 = r2, so the q and r are unique.
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Corollary III.6.3. Remainder Theorem

Corollary III.6.3

Corollary III.6.3. Remainder Theorem.
Let R be a ring with identity and f (x) =

∑n
i=0 aix

i ∈ R[x ]. For any c ∈ R
there exists a unique q(x) ∈ R[x ] such that f (x) = q(x)(x − c) + f (c).

Proof. The result is trivial if f ≡ 0, so WLOG f 6≡ 0.

With g(x) = x − c ,
Theorem III.6.2 implies that there exist unique polynomials
q(x), r(x) ∈ R[x ] such that f (x) = q(x)(x − c) + r(x) and
deg(r(x)) < deg(x − c) = 1. Thus r(x) = r is a constant polynomial
(possibly 0). If q(x) =

∑n−1
j=0 bjx

j then

f (x) = q(x)(x − c) + r = −b0c +
∑n−1

k=1(−bkc + bk−1)x
k + bn−1x

n + r ,
whence f (c) = −b0c +

∑n−1
k=1(−bkc + bk−1)c

k + bn−1c
n + r =

−
∑n−1

k=0 bkck+1 +
∑n

k=1 bk−1c
k + r = r . So we have

f (x) = q(x)(x − c) + r = q(x)(x − c) + f (c).
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Corollary III.6.4

Corollary III.6.4

Corollary III.6.4. If F is a field, then the polynomial ring F [x ] is a
Euclidean domain, whence F [x ] is a principal ideal domain and a unique
factorization domain. The units in F [x ] are precisely the nonzero constant
polynomials.

Proof. Since F is a field (and hence an integral domain) then by Theorem
III.5.1(ii) F [x ] is an integral domain. Define ϕ : F [x ] \ {0} → N ∪ {0} by
ϕ(f ) = deg(f ).

Every nonzero element of F is a unit since F is a field, so
first by Theorem III.6.1(iv), ϕ(fg) = ϕ(f ) + ϕ(g), and second by Theorem
III.6.2, f = qg + r for some q, r ∈ F [x ] where deg(r) < deg(g). So by
Definition III.3.8 F [x ] is a Euclidean domain. By Theorem III.3.9 F [x ] is a
principal ideal domain and a unique factorization domain.
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Corollary III.6.4

Corollary III.6.4 (continued)

Corollary III.6.4. If F is a field, then the polynomial ring F [x ] is a
Euclidean domain, whence F [x ] is a principal ideal domain and a unique
factorization domain. The units in F [x ] are precisely the nonzero constant
polynomials.

Proof (continued). If f is a unit in F [x ], then there exists g ∈ F [x ] such
that fg = 1. By Theorem III.6.1(iv),
0 = deg(1) = deg(fg) = deg(f ) + deg(g) and so deg(f ) = 0. Therefore f
is a constant polynomial and it must be nonzero. Conversely, if f is a
nonzero constant polynomial in F [x ] then there is a multiplicative inverse
of f in F [x ] since F is a field (so f ∈ F implies f −1 ∈ F , here we draw no
distinction between a constant polynomial in F [x ] and an element of
F ).
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Theorem III.6.6. Factor Theorem

Theorem III.6.6

Theorem III.6.6. Factor Theorem.
Let R be a commutative ring with identity and f ∈ R[x ]. Then c ∈ R is a
root of f if and only if x − c divides f .

Proof. (1) By Corollary III.6.3, f (x) = q(x)(x − c) + f (c). If x − c
divides f (x) then h(x)(x − c) = f (x) = q(x)(x − c) + f (c) for some
h(x) ∈ R[x ]. Whence (h(x)− q(x))(x − c) = f (c) (in R[x ]).

By applying
the evaluation homomorphism that replaces x with c to give an element of
R (see Corollary III.5.6 and the “Remark” after it), we have that
f (c) = (h(c)− q(c))(c − c) = 0 (in R). So if x − c divides f (x) then
f (c) = 0.
(2) Suppose f (c) = 0. By the Remainder Theorem (Corollary III.6.3),
f (x) = q(x)(x − c) + f (c) = q(x)(x − c) and so x − c divides f (x).
(Notice that the Remainder Theorem does not require commutivity and so
this result holds even for noncommutative rings with identity.)
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Theorem III.6.7

Theorem III.6.7. If D is an integral domain contained in an integral
domain E and f ∈ D[x ] has degree n, then f has at most n distinct roots
in E .

Proof. Let c1, c2, . . . be the distinct roots of f in E .

By Theorem III.6.6,
f (x) = q1(x)(x − c1) for some q1(x) ∈ R[x ]. Whence applying an
evaluation homomorphism 0 = f (c2) = q1(c2)(c2 − c1) (Hungerford says
“by Corollary III.5.6”). Since we are considering distinct ci , then c1 6= c2.
Since E is an integral domain (no divisors of zero) then q1(c2) = 0.
Therefore, x − c2 divides q2 by Theorem III.6.6 and so
f (x) = q2(x)(x − c2)(x − c1). Inductively, for distinct roots c1, c2, . . . , cm

of f in E we have gm = (x − c1)(x − c2) · · · (x − cm) divides f . But
deg(gm) = m by Theorem III.6.1(iv), and by Theorem III.6.1(ii) m ≤ n. So
the total number of distinct roots of f is less than or equal to n.
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Proposition III.6.8

Theorem III.6.8

Proposition III.6.8. Let D be a unique factorization domain with
quotient field F (that is, F is the field of quotients produced from D) and
let f =

∑n
i=0 aix

i ∈ D[x ]. If u = c/d ∈ F with c and d relatively prime
(so u is in “reduced form”), and u is a root of f , then c divides a0 and d
divides an.

Proof. Since we hypothesize that f (u) = 0, we have
f (u) = f (c/d) =

∑n
i=0 ai (c/d)i = 0 or (multiplying both sides by dn)∑n

i=0 aic
idn−i = 0 or a0d

n + c
∑n

i=1 aic
i−1dn−i = 0 or

a0d
n = c(

∑n
i=1(−ai )c

i−1dn−i ). Since c and d are relatively prime then by
Exercise III.3.10 we have that c divides a0.

Also
∑n

i=0 aic
idn−i = 0 or

∑n−1
i=0 aic

idn−i + anc
n = 0 or

−anc
n =

(∑n−1
i=0 aic

idn−i−1
)

d . Since c and d are relatively prime then

by Exercise III.3.10 we have that d divides an.
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Theorem III.6.10

Theorem III.6.10

Theorem III.6.10. Let D be an integral domain which is a subring of an
integral domain E . Let f ∈ D[x ] and c ∈ E .

(i) c is a multiple root of f if and only if f (c) = 0 and f ′(c) = 0.

(ii) If D is a field and f is relatively prime to f ′, then f has no
multiple roots in E .

(iii) If D is a field, f is irreducible in D[x ] and E contains a root
of f , then f has no multiple roots in E if and only if f ′ 6= 0
(here, “f ′ 6= 0” means that f ′ is not the zero polynomial in
D[x ]).

Proof. (i) Let c be a root of f of multiplicity m. Then (by definition)
f (x) = (x − c)mg(x) and g(c) 6= 0.

By Lemma III.6.9(iii)
f ′(x) = m(x − c)m−1g(x) + (x − c)mg ′(x). If c is a multiple root of f
(i.e., m > 1) then we have that f ′(c) = 0.
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Theorem III.6.10

Theorem III.6.10 (continued 1)

Proof (continued). Conversely, let f (c) = f ′(c) = 0. Since f (c) = 0
then m ≥ 1 by the Factor Theorem (Theorem III.6.6). ASSUME m = 1.
Then f ′(x) = g(x) + (x − c)g ′(x). Consequently, since f ′(c) = 0, we have
that 0 = f ′(c) = g(c) (Hungerford quotes Corollary III.5.6 since we are
using the evaluation homomorphism), a CONTRADICTION to the
properties of g . So this contradiction implies the assumption that m = 1 is
incorrect and hence m > 1.

(ii) Let D be a field and f relatively prime to f ′. By Corollary III.6.4, since
D is a field then D[x ] is a principal ideal domain. Since f and f ′ are
relatively prime, gcd(f , f ′) = 1D and so by Theorem III.3.11(ii) there are
k(x), h(x) ∈ D[x ] such that kf + hf ′ = 1D . ASSUME c is a multiple root
of f . Then by Corollary III.5.6 (the use of the evaluation homomorphism)
and part (i), qD = k(c)f (c) + h(c)f ′(c) = 0 (part (i) implies f ′(c) = 0), a
CONTRADICTION (1D 6= 0). So the assumption that c is a multiple root
of f is false and so c is a simple root of f .
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Theorem III.6.10

Theorem III.6.10 (continued 2)

Proof (continued). (iii) Let D be a field, f irreducible in D[x ], and E
contain a root of f . First, let f ′ 6= 0. Since f is irreducible then (by
definition) the only divisors of f are unit multiples of f . Since f ′ 6= 0 then
deg(f ) ≥ 1 and so deg(f ′) < deg(f ).

So the only thing that could divide
both f ′ and f is a unit (i.e., a constant polynomial). So f and f ′ are
relatively prime. By part (ii), f has no multiple roots in E .
Conversely, suppose f has no multiple roots in E . We have hypothesized
that E has a root of f , say b is the root. ASSUME f ′ = 0. Then
f ′(b) = 0 and b is a multiple root of f by part (i), a CONTRADICTION.
So the assumption is false and f ′ 6= 0.
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Lemma III.6.11. (Gauss)

Lemma III.6.11

Lemma III.6.11. (Gauss) If D is a unique factorization domain and
f , g ∈ D[x ], then C (fg) = C (f )C (g). In particular, the product of
primitive polynomials is primitive.

Proof. If a ∈ D and f ∈ D[x ], then C (af ) = aC (f ) by Exercise II.6.4.
Now f = F (f )f1 and g = C (g)g1 where f1 and g1 are primitive.
Consequently C (fg) = C (C (f )f1C (g)g1) = C (f )C (g)C (f1g1).

Hence it
suffices to prove that f1g1 is primitive (that is, C (f1g1) is a unit). If
f1g1 =

∑n
i=0 aix

i and g1 =
∑m

j=0 bjx
j , then f1g1 =

∑m+n
k=0 ckxk where

ck =
∑

i+j=k aibj . ASSUME f1g1 is not primitive, then C (f1g1) is not a
unit (by the definition of “primitive”) and so by the definition of unique
factorization domain (Definition III.3.5(i)) C (f1g1) can be written as a
product of irreducibles. Since C (f1g1) is a greatest common divisor of the
ck , then one of these irreducibles, say p, must be a divisor of each ck :
p | ck for all k.

() Modern Algebra April 15, 2024 15 / 28



Lemma III.6.11. (Gauss)

Lemma III.6.11

Lemma III.6.11. (Gauss) If D is a unique factorization domain and
f , g ∈ D[x ], then C (fg) = C (f )C (g). In particular, the product of
primitive polynomials is primitive.

Proof. If a ∈ D and f ∈ D[x ], then C (af ) = aC (f ) by Exercise II.6.4.
Now f = F (f )f1 and g = C (g)g1 where f1 and g1 are primitive.
Consequently C (fg) = C (C (f )f1C (g)g1) = C (f )C (g)C (f1g1). Hence it
suffices to prove that f1g1 is primitive (that is, C (f1g1) is a unit). If
f1g1 =

∑n
i=0 aix

i and g1 =
∑m

j=0 bjx
j , then f1g1 =

∑m+n
k=0 ckxk where

ck =
∑

i+j=k aibj .

ASSUME f1g1 is not primitive, then C (f1g1) is not a
unit (by the definition of “primitive”) and so by the definition of unique
factorization domain (Definition III.3.5(i)) C (f1g1) can be written as a
product of irreducibles. Since C (f1g1) is a greatest common divisor of the
ck , then one of these irreducibles, say p, must be a divisor of each ck :
p | ck for all k.

() Modern Algebra April 15, 2024 15 / 28



Lemma III.6.11. (Gauss)

Lemma III.6.11

Lemma III.6.11. (Gauss) If D is a unique factorization domain and
f , g ∈ D[x ], then C (fg) = C (f )C (g). In particular, the product of
primitive polynomials is primitive.

Proof. If a ∈ D and f ∈ D[x ], then C (af ) = aC (f ) by Exercise II.6.4.
Now f = F (f )f1 and g = C (g)g1 where f1 and g1 are primitive.
Consequently C (fg) = C (C (f )f1C (g)g1) = C (f )C (g)C (f1g1). Hence it
suffices to prove that f1g1 is primitive (that is, C (f1g1) is a unit). If
f1g1 =

∑n
i=0 aix

i and g1 =
∑m

j=0 bjx
j , then f1g1 =

∑m+n
k=0 ckxk where

ck =
∑

i+j=k aibj . ASSUME f1g1 is not primitive, then C (f1g1) is not a
unit (by the definition of “primitive”) and so by the definition of unique
factorization domain (Definition III.3.5(i)) C (f1g1) can be written as a
product of irreducibles. Since C (f1g1) is a greatest common divisor of the
ck , then one of these irreducibles, say p, must be a divisor of each ck :
p | ck for all k.

() Modern Algebra April 15, 2024 15 / 28



Lemma III.6.11. (Gauss)

Lemma III.6.11

Lemma III.6.11. (Gauss) If D is a unique factorization domain and
f , g ∈ D[x ], then C (fg) = C (f )C (g). In particular, the product of
primitive polynomials is primitive.

Proof. If a ∈ D and f ∈ D[x ], then C (af ) = aC (f ) by Exercise II.6.4.
Now f = F (f )f1 and g = C (g)g1 where f1 and g1 are primitive.
Consequently C (fg) = C (C (f )f1C (g)g1) = C (f )C (g)C (f1g1). Hence it
suffices to prove that f1g1 is primitive (that is, C (f1g1) is a unit). If
f1g1 =

∑n
i=0 aix

i and g1 =
∑m

j=0 bjx
j , then f1g1 =

∑m+n
k=0 ckxk where

ck =
∑

i+j=k aibj . ASSUME f1g1 is not primitive, then C (f1g1) is not a
unit (by the definition of “primitive”) and so by the definition of unique
factorization domain (Definition III.3.5(i)) C (f1g1) can be written as a
product of irreducibles. Since C (f1g1) is a greatest common divisor of the
ck , then one of these irreducibles, say p, must be a divisor of each ck :
p | ck for all k.

() Modern Algebra April 15, 2024 15 / 28



Lemma III.6.11. (Gauss)

Lemma III.6.11 (continued)

Proof (continued). Since C (f1) is a unit then p - C (f1) (for if p | C (f1)
then we have also that C (f1) | p by Theorem III.3.2(iii) and so, by
definition of the fact that p and C (f1) are associates—but then by
Theorem III.3.4(v), C (f1) is irreducible which contradicts the fact that
C (f1) is a unit and hence, by definition, is irreducible). Whence there is a
least nonnegative integer s such that p | ai for i < s and p - as . Similarly
there is a least integer t such that p | bj for j < t and p - bt . Since p
divides cs+t = a0bs+t + · · ·+ as−1bt+1 + asbt + as+1bt−1 + · · · as+1b0

then, since p divides a0, a1, . . . , as−1 and b0, b1, . . . , bt−1 then p must
divide asbt .

Since every irreducible element in D is prime (this follows
from Definition III.3.5(ii); see the “Remark” after the definition on page
137), then p | asbt implies that either p | as or p | bt . But this
CONTRADICTS the choice of s or t. This contradiction shows that the
assumption that f1g1 is not primitive is false. Therefore f1g1 is primitive.
So C (f1g1) is a unit and since C (fg) = C (f )C (g)C (f1g1) as shown above,
then C (fg) ≈ C (f )C (g).
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Lemma III.6.12

Lemma III.6.12

Lemma III.6.12. Let D be a unique factorization domain with quotient
field F and let f and g be primitive polynomials in D[x ]. Then f and g
are associates in D[x ] if and only if they are associates in F [x ].

Proof. Let f and g be associates in the integral domain F [x ] (since F is a
field, F [x ] is commutative and has no zero divisors) then f = gu for some
unit u ∈ F [x ] by Theorem III.3.2(vi).

By Corollary III.6.4, u is a nonzero
constant polynomial and so u ∈ F , whence u = b/c for some b, c ∈ D and
c 6= 0. Therefore f = gb/c and cf = bg . Since C (f ) and C (g) are units
in D (because f , g are primitive) then

c ≈ cC (f ) since C (f ) is a unit

≈ C (cf ) by Exercise III.6.4

= C (bg)

≈ bC (g) by Exercise II.6.4

≈ b since C (g) is a unit.
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Lemma III.6.12

Lemma III.6.12 (continued)

Lemma III.6.12. Let D be a unique factorization domain with quotient
field F and let f and g be primitive polynomials in D[x ]. Then f and g
are associates in D[x ] if and only if they are associates in F [x ].

Proof (continued). Therefore b = cv for some unit v ∈ D and
cf = bg = cvg . Consequently f = vg (since c 6= 0) whence f and g are
associates.

Let f and g be associates in D[x ]. The by Theorem III.3.2(vi) f = gu for
some unit u ∈ D[x ].

But F is a quotient field of D so D[x ] ⊂ F [x ] (as
rings, say) so f = gu where u is a unit in F [x ] and so f and g are
associates in F [x ].
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Lemma III.6.13

Lemma III.6.13

Lemma III.6.13. Let D be a unique factorization domain with quotient
field F and f a primitive polynomial of positive degree in D[x ]. Then f is
irreducible in D[x ] if and only if f is irreducible in F [x ].
Proof. Let f be irreducible in D[x ] and ASSUME that f = gh with
g , h ∈ F [x ] where deg(g) ≥ 1, deg(h) ≥ 1 (that is, assume f is not
irreducible in F [x ]).

Then g =
∑n

i=0(ai/bi )x
i and h =

∑m
j=0(cj/dj)x

j with
ai , bi ,j , dj ∈ D and bi 6= 0, dj 6= 0 for all i and j . Let b = b0b1 · · · bn and
for each i let b∗i = b0b1 · · · bi−1bi+1 · · · bn. If g1 =

∑n
i=1 aib

∗
i x

i ∈ D[x ]
then g1 = ag2 with a = C (g1) for g2 ∈ D[x ] and g2 primitive. Now

g =
n∑

i=0

(ai/bi )x
i = (b/b)

∑
i=0

(ai/bi )x
i = (1D/b)

n∑
i=0

(aib/bi )x
i

= (1D/b)
n∑

i=0

aib
∗
i x

i = (aD/b)g1 = (a/b)g2

and deg(g) = deg(g2) = n.
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Lemma III.6.13

Lemma III.6.13 (continued 1)

Proof (continued). Similarly, h = (c/d)h2 with c , d ∈ D, h2 ∈ D[x ], h2

primitive, and deg(h) = deg(h2) = m. Consequently,
f = gh = (a/b)g2(c/d)h2 whence bdf = acg2h2. Since f is primitive by
hypothesis of the lemma, and g2h2 is primitive by Lemma III.6.11, then

bd ≈ bdC (f ) since C (f ) is a unit

≈ C (bdf ) by Exercise III.6.4

= C (acg2h2)

≈ acC (g2h2) by Exercise III.6.4

≈ ac since C (g2g2) is a unit.

Therefore ac = bdv for some unit v ∈ D and so bdf = acg2h2 = bdvg2h2

or f = vg2h2 where v is a unit in D[x ]. So f and g2h2 are associates in
D[x ]. But by Theorem III.3.4(v), every associate of an irreducible is
irreducible (here, in integral domain D[x ]) so vg2h2 is irreducible in D[x ],
a CONTRADICTION (since neither g2 nor h2 is a unit in D ⊂ F since. . .
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Therefore ac = bdv for some unit v ∈ D and so bdf = acg2h2 = bdvg2h2

or f = vg2h2 where v is a unit in D[x ]. So f and g2h2 are associates in
D[x ]. But by Theorem III.3.4(v), every associate of an irreducible is
irreducible (here, in integral domain D[x ]) so vg2h2 is irreducible in D[x ],
a CONTRADICTION (since neither g2 nor h2 is a unit in D ⊂ F since. . .
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Lemma III.6.13

Lemma III.6.13 (continued 2)

Lemma III.6.13. Let D be a unique factorization domain with quotient
field F and f a primitive polynomial of positive degree in D[x ]. Then f is
irreducible in D[x ] if and only if f is irreducible in F [x ].

Proof (continued). . . . the only units in F [and hence in D] are the
nonzero constant polynomials by Corollary III.6.4). So the assumption that
f is not irreducible in F [x ] is false and we have shown that f is irreducible
in D[x ] implies that f is irreducible in F [x ] and f = gh for some
g , h ∈ D[x ].

Then by Corollary III.6.4, one of g , h (say g) is a constant
polynomial. Thus C (f ) = C (gh) ≈ gC (h) by Exercise III.6.4. Since f is
hypothesized to be primitive then C (f ) is a unit in D and has an inverse
C (f )−1 in D. Since C (f ) ≈ gC (h) then C (f ) = gC (h)u for some unit
u ∈ D. But then 1D = gC (h)uC (f )−1 and so g is a unit in D and hence
in D[x ]. So f = gh in D[x ] implies that g (or h) is a unit in D[x ] and so f
is irreducible in D[x ].
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Theorem III.6.14

Theorem III.6.14

Theorem III.6.14. If D is a unique factorization domain, then so is the
polynomial ring D[x1, x2, . . . , xn].

Proof. We shall prove that D[x ] is a unique factorization domain. Since
D[x1, x2, . . . , xn] = D[x1, x2, . . . , xn−1][xn] by Corollary III.5.7, a routine
inductive argument completes the proof. Now we show that D[x ] satisfies
both parts of the definition of a unique factorization domain (Definition
III.3.5).

(i) Factorization. If f ∈ D[x ] has positive degree, then f = C (f )f1 with
f1 a primitive polynomial in D[x ] of positive degree. Since D is a unique
factorization domain then either C (f ) is a unit or C (f ) = c1c2 · · · cm with
each ci irreducible in D and hence in D[x ] (by part (i) of the definition of
unique factorization domain). Let F be the field of quotients of D. Since
F [x ] is a unique factorization domain by Corollary III.6.4 which contains
D[x ], then f1 = p∗1p

∗
2 · · · p∗n with each p∗i an irreducible polynomial in F [x ]

(by part (i) of the definition of unique factorization domain).
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Theorem III.6.14

Theorem III.6.14 (continued 1)

Proof (continued). As shown in the proof of Lemma III.6.13 (take it
from the “Similarly h = (c/d)h2. . . ” part), for each i we have
p∗i = (ai/bi )pi with ai , bi ∈ D, bi 6= 0, ai/bi ∈ F , pi ∈ D[x ] and pi

primitive. Since each p∗i is irreducible in F [x ] then each pi = (bi/ai )p
∗
i is

irreducible in F [x ] (from the definition of irreducible). Whence by Lemma
III.6.13 each pi is irreducible in D[x ]. If we define a = a1a2 · · · an and
b = b1b2 · · · bn then f1 = p∗1p

∗
2 · · · p∗n = (a/b)p1p2 · · · pn. Consequently,

bf1 = ap1p2 · · · pn.

Since f1 is primitive by the choice of it above and
p1p2 · · · pn is primitive by Lemma III.6.11, it follows as in the proof of
Lemma III.6.12 that a and b are associates in D
(b ≈ bC (f1) ≈ C (bf1) = C (ap1p2 · · · pn) ≈ aC (p1p2 · · · pn) ≈ a). Thus
a = bu or a/b = u with u a unit in D by Theorem III.3.2(iv). Therefore, if
C (f ) is a nonunit, say C (f ) = c1c2 · · · cm where each ci is irreducible in D
(since D is a unique factorization domain).
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Theorem III.6.14

Theorem III.6.14 (continued 2)

Proof (continued). Then f = C (f )f1 = c1c2 · · · cm(up1)p2 · · · pn (with
n = a/b) where each ci and pi are irreducible in D[x ] as described above
(and underlined) and up1 is irreducible in D[x ] since p1 is irreducible and u
is a unit. So f is a product of irreducibles.

Similarly, if C (f ) is a unit then
f = C (f )f1 = C (f )(up1)p2 · · · pn where p2, p3, . . . , pn are irreducible in
D[x ] as described above (and underlined) and C (f )up1 is irreducible in
D[x ] since p1 is irreducible and C (f )u is a unit. So f is a product of
irreducibles.
(ii) Uniqueness. Let f ∈ D[x ] have positive degree. Then, as argued in
part (i), f = c1c2 · · · cmp1p2 · · · pn with each ci irreducible in D,
C (f ) = c1c2 · · · cm, and each pi is irreducible in D[x ] (this is established in
(i) for both C (f ) a nonunit and C (f ) a unit [in which case m = 0]—when
C (f ) is a nonunit we replace up1 of (i) with p1 = up1 since up1 is
irreducible as well where u is a unit; when C (f ) is a unit we replace
C (f )up1 with p1 = C (f )up1 since C (f )up1 is irreducible as well where
C (f )u is a unit).
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Theorem III.6.14

Theorem III.6.14 (continued 3)

Proof (continued). Suppose f = c1c2 · · · cmp1p2 · · · pn with each ci

irreducible in D, C (f ) = c1c2 · · · cm, and pi irreducible in D[x ] and
f = d1d2 · · · drq1q2 · · · qs with each di irreducible in D, C (f ) = d1d2 · · · dr

and each qi is irreducible in D[x ]. Since each pi and qi is irreducible then
each pi and qi is primitive (or wlse we could factor out nonunit C (pi ) or
C (qi ) from pi or qi respectively and pi or qi would not be irreducible).
Since C (f ) = c1c2 · · · cm and C (f ) = d1d2 · · · dr then c1c2 · · · cm and
d1d2 · · · dr are associates in D[x ] and hence in F [x ].

Since each pi and qi

is irreducible in D[x ], then by Lemma III.6.13, each pi and qi is irreducible
in F [x ]. Now by Corollary.6.4, since F is a field (of quotients of D) then
F [x ] is a unique factorization domain and so n = s and (after reindexing;
“permuting” as the definition of unique factorization domain says) each pi

is an associate of qi in F [x ]. By Lemma III.6.12 each pi is an associate of
qi in D[x ]. Hence, part (ii) of the definition of unique factorization domain
is satisfied in D[x ] and so D[x ] is a unique factorization domain.
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Theorem III.6.15. Eisenstein’s Criterion

Theorem III.6.15

Theorem III.6.15. (Eisenstein’s Criterion) Let D be a unique
factorization domain with quotient field F . If f =

∑n
i=0 aix

i ∈ D[x ],
deg(f ) ≥ 1 and p is an irreducible element of D such that

p - an; p|ai for i = 0, 1, . . . , n − 1; p2 - a0,

then f is irreducible in F [x ]. If f is primitive, then f is irreducible in D[x ].

Proof. Let f = C (f )f1 where f1 is primitive in D[x ] and C (f ) ∈ D (in
particular, f1 = f if f is primitive). Since C (f ) is a unit in F (F is a field;
Corollary III.6.4 technically), it suffices to show that f1 is irreducible in
F [x ].

By Lemma III.6.13, f1 is irreducible in F [x ] if and only if it is
irreducible in D[x ] so it suffices to prove that F1 is irreducible in D[x ].
ASSUME that f1 is not irreducible in D[x ] and that f1 = gh with
g = brx

r + · · ·+ b1x + b0 ∈ D[x ], deg(g) = r ≥ 1, and
h = c2x

2 + · · ·+ c1c + c0 ∈ D[x ], deg(h) = s ≥ 1.
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Theorem III.6.15. Eisenstein’s Criterion

Theorem III.6.15 (continued 1)

Proof (continued). Now p does not divide C (f ) (the greatest common
divisor of the coefficients of f ) since p - an (and p is irreducible), whence
the coefficients of f1 =

∑n
i=0 a∗i x

i satisfy the same divisibility conditions
with respect to p as do the coefficients of f . Since p divides a∗0 = b0c0

and every irreducible in D is prime (by part (ii) of the definition of unique
factorization domain, Definition III.3.5; see the “Remark” on page 137)
then either p | b0 or p | c0. Say p | b0. Since p2 - a∗0 then p - c0.

Now some coefficient bk of g is not divisible by p (otherwise p would
divide every coefficient of g and hence every coefficient of f1 = gh which is
a contradiction to the fact that f1 is primitive and so C (f1) is a unit, not a
multiple of an irreducible). Let k be the least positive integer such that
p | bi for i < k and p - bk . Then 1 ≤ k ≤ r < n (since p | b0 as described
above, since deg(f1) = deg(g) + deg(h), by Theorem III.6.1(iv), and since
deg(h) ≥ 1 by the choice of h, then deg(g) ≤ n − 1 and so r ≤ n − 1).
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Theorem III.6.15. Eisenstein’s Criterion

Theorem III.6.15 (continued 2)

Theorem III.6.15. (Eisenstein’s Criterion) Let D be a unique
factorization domain with quotient field F . If f =

∑n
i=0 aix

i ∈ D[x ],
deg(f ) ≥ 1 and p is an irreducible element of D such that

p - an; p|ai for i = 0, 1, . . . , n − 1; p2 - a0,

then f is irreducible in F [x ]. If f is primitive, then f is irreducible in D[x ].

Proof (continued). Since a∗k = b0ck + b1ck−1 + · · ·+ bk−1c1 + bkc0 and
p | a∗k (since p | ak because k ≤ n − 1). Since p | bi for i < k then p must
divide bkc0. As above, p is prime so this implies that p | bk or p | c0, both
a CONTRADICTION. So the assumption that f1 is not irreducible is false
and hence f1 is irreducible in D[x ]. Whence f is irreducible in D[x ] and so
is irreducible in F [x ].

Also, if f is primitive, then say f = f1 and we have
seen that f1 is irreducible in D[x ].
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