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Theorem 111.6.2. The Division Algorithm

Theorem 111.6.2

Theorem 111.6.2. The Division Algorithm.

Let R be a ring with identity and f, g € R[x] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials g, r € R[x] such that f = gqg + r and deg(r) < deg(g).
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Theorem 111.6.2. The Division Algorithm

Theorem 111.6.2

Theorem 111.6.2. The Division Algorithm.

Let R be a ring with identity and f, g € R[x] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials g, r € R[x] such that f = gqg + r and deg(r) < deg(g).

Proof. If deg(g) > deg(f), let g=0and r =f.
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Theorem 111.6.2

Theorem 111.6.2. The Division Algorithm.

Let R be a ring with identity and f, g € R[x] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials g, r € R[x] such that f = gqg + r and deg(r) < deg(g).

Proof. If deg(g) > deg(f), let ¢ =0 and r = f. If deg(g) < deg(f), then
f=>%m", aix', g = > bix" with a, # 0, by # 0, m < n, and b, a unit
in R (by hypothesis, the leading coefficient of g is a unit).
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Theorem 111.6.2

Theorem 111.6.2. The Division Algorithm.

Let R be a ring with identity and f, g € R[x] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials g, r € R[x] such that f = gqg + r and deg(r) < deg(g).

Proof. If deg(g) > deg(f), let ¢ =0 and r = f. If deg(g) < deg(f), then
f=>%m", aix', g = > bix" with a, # 0, by # 0, m < n, and b, a unit
in R (by hypothesis, the leading coefficient of g is a unit).

We now apply induction on n = deg(f). If n =0, then m =0, f = ao,

g = bo and by is a unit (by hypothesis).
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Theorem 111.6.2

Theorem 111.6.2. The Division Algorithm.

Let R be a ring with identity and f, g € R[x] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials g, r € R[x] such that f = gqg + r and deg(r) < deg(g).

Proof. If deg(g) > deg(f), let ¢ =0 and r = f. If deg(g) < deg(f), then
f=>%m", aix', g = > bix" with a, # 0, by # 0, m < n, and b, a unit
in R (by hypothesis, the leading coefficient of g is a unit).

We now apply induction on n = deg(f). If n =0, then m =0, f = ao,

g = bo and by is a unit (by hypothesis). Let g = aobo_1 and r = 0; then
deg(r) < deg(g) (from Note I11.6.A, deg(r) = —0) and

qg +r = (aobal)bo = a9 = f. So the result holds for n = 0.
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Theorem 111.6.2 (continued 1)

Proof (continued). Assume that the existence part of the theorem is true
for polynomials of degree less than n = deg(f). Then the polynomial

m m
(anb;llxn—m)g — (anb;;lxn_m) Z b,'Xi — Z a,-,b;,lb,'Xn_m—H
i=0 i=0

m—1
= apx" + Z anb tbix"—mti
i=0
has degree n and leading coefficient a,.
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Theorem 111.6.2 (continued 1)

Proof (continued). Assume that the existence part of the theorem is true
for polynomials of degree less than n = deg(f). Then the polynomial

(anblnm) anblnmsz_zan 1bXn m+i

m—1
= apx" + E anb,:,lbixn_m+’
i=0

has degree n and leading coefficient a,. Hence

f— (anb,'x""™)g = (anx" +---ag) — (apx" + - -+ + apb,tbox""™) is a
polynomial of degree less than n. By the induction hypothesis there are
polynomials ¢’ and r such that f — (a,b,,'x"~™)g = q'g + r and
deg(r) < deg(g).
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Theorem 111.6.2 (continued 1)

Proof (continued). Assume that the existence part of the theorem is true
for polynomials of degree less than n = deg(f). Then the polynomial

m m
(anb;llxn—m)g — (anb;rlxn—m) Z b,'Xi — Z a,-,b;,lb,'Xn_mJ'_i
i=0 i=0

m—1
= apx" + Z anb,;lb;x”_m+i

i=0
has degree n and leading coefficient a,. Hence
f— (anb,'x""™)g = (anx" +---ag) — (apx" + - -+ + apb,tbox""™) is a
polynomial of degree less than n. By the induction hypothesis there are
polynomials ¢’ and r such that f — (a,b,,'x"~™)g = q'g + r and
deg(r) < deg(g). Therefore, if g = a,b,,'x"~™ + ¢’ then
f = (anb*x""™)g + q'g + r = qg + r where deg(r) < deg(g). So the
existence claim is justified by induction.
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Theorem 111.6.2. The Division Algorithm

Theorem 111.6.2 (continued 2)

Theorem 111.6.2. The Division Algorithm.

Let R be a ring with identity and f, g € R[x] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials g, r € R[x] such that f = gg + r and deg(r) < deg(g).

Proof (continued). Now for the uniqueness.
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Theorem 111.6.2 (continued 2)

Theorem 111.6.2. The Division Algorithm.

Let R be a ring with identity and f, g € R[x] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials g, r € R[x] such that f = gg + r and deg(r) < deg(g).

Proof (continued). Now for the uniqueness. Suppose
f = qig + n = qg + r2 with deg(r1) < deg(g) and deg(r2) < deg(g).

Then we have (g1 — g2)g = r» — r1. Since the leading coefficient of g is a

unit (by hypothesis), by Theorem I11.6.1(iv) we have
deg(q1 — g2) + deg(g) = deg((q1 — q2)g) = deg(r> — n1).
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Theorem 111.6.2 (continued 2)

Theorem 111.6.2. The Division Algorithm.

Let R be a ring with identity and f, g € R[x] nonzero polynomials such
that the leading coefficient of g is a unit in R. Then there exist unique
polynomials g, r € R[x] such that f = gg + r and deg(r) < deg(g).

Proof (continued). Now for the uniqueness. Suppose

f = qig + n = qg + r2 with deg(r1) < deg(g) and deg(r2) < deg(g).
Then we have (g1 — g2)g = r» — r1. Since the leading coefficient of g is a
unit (by hypothesis), by Theorem I11.6.1(iv) we have

deg(q1 — g2) + deg(g) = deg((q1 — g2)g) = deg(r> — r1). Since

deg(r — ) < max(deg(r1),deg(r2)) < deg(g), the above equality is true
only if deg(q1 — gq2) = —oo = deg(r» — 1) (that is, the equality does not
hold for finite degrees). In other words, g1 — g2 =0 and r» — 1 = 0. That
i, g1 = g2 and r; = rp, so the g and r are unique. O
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Corollary 111.6.3. Remainder Theorem

Corollary 111.6.3

Corollary 111.6.3. Remainder Theorem.

Let R be a ring with identity and f(x) = >_"_;a;x' € R[x]. For any c € R
there exists a unique g(x) € R[x] such that f(x) = g(x)(x — ¢) + f(c).

Modern Algebra April 15, 2024 6 /28



Corollary 111.6.3. Remainder Theorem

Corollary 111.6.3

Corollary 111.6.3. Remainder Theorem.

Let R be a ring with identity and f(x) = >_"_;a;x' € R[x]. For any c € R
there exists a unique g(x) € R[x] such that f(x) = g(x)(x — ¢) + f(c).

Proof. The result is trivial if f =0, so WLOG f # 0.
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Corollary 111.6.3

Corollary 111.6.3. Remainder Theorem.
Let R be a ring with identity and f(x) = >_"_;a;x' € R[x]. For any c € R
there exists a unique g(x) € R[x] such that f(x) = g(x)(x — ¢) + f(c).

Proof. The result is trivial if f =0, so WLOG f # 0. With g(x) = x — ¢,
Theorem 111.6.2 implies that there exist unique polynomials

q(x), r(x) € R[x] such that f(x) = q(x)(x — ¢) + r(x) and

deg(r(x)) < deg(x — ¢) = 1. Thus r(x) = r is a constant polynomial
(possibly 0).

Modern Algebra April 15,2024 6 /28



Corollary 111.6.3

Corollary 111.6.3. Remainder Theorem.
Let R be a ring with identity and f(x) = >_"_;a;x' € R[x]. For any c € R
there exists a unique g(x) € R[x] such that f(x) = g(x)(x — ¢) + f(c).

Proof. The result is trivial if f =0, so WLOG f # 0. With g(x) = x — ¢,
Theorem 111.6.2 implies that there exist unique polynomials

q(x), r(x) € R[x] such that f(x) = q(x)(x — ¢) + r(x) and

deg(r(x)) < deg(x — ¢) = 1. Thus r(x) = r is a constant polynomial
(possibly 0). If g(x) = Zj;ol bjx/ then

f(x) = q(x)(x = c) +r = —boc + 32321 (=bkc + b_1)xK + bp1x" + 1,
whence f(c) = —bgc + Zz;i(—bkc + by_1)ck + bp_1c" +r =

— Zz;é brcktL + 570 _ b1k +r = r. So we have

f(x) = q(x)(x = ¢) + r = q(x)(x — ¢) + f(c). O
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Corollary 111.6.4

Corollary 111.6.4

Corollary 111.6.4. If F is a field, then the polynomial ring F[x] is a
Euclidean domain, whence F[x] is a principal ideal domain and a unique

factorization domain. The units in F[x] are precisely the nonzero constant
polynomials.
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Corollary 111.6.4

Corollary 111.6.4. If F is a field, then the polynomial ring F[x] is a
Euclidean domain, whence F[x] is a principal ideal domain and a unique
factorization domain. The units in F[x] are precisely the nonzero constant
polynomials.

Proof. Since F is a field (and hence an integral domain) then by Theorem
I11.5.1(ii) F[x] is an integral domain. Define ¢ : F[x] \ {0} — NU {0} by
p(f) = deg(f).
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Corollary 111.6.4

Corollary 111.6.4. If F is a field, then the polynomial ring F[x] is a
Euclidean domain, whence F[x] is a principal ideal domain and a unique
factorization domain. The units in F[x] are precisely the nonzero constant
polynomials.

Proof. Since F is a field (and hence an integral domain) then by Theorem
I11.5.1(ii) F[x] is an integral domain. Define ¢ : F[x] \ {0} — NU {0} by

©(f) = deg(f). Every nonzero element of F is a unit since F is a field, so
first by Theorem 111.6.1(iv), ¢(fg) = ¢(f) + ¢(g), and second by Theorem
111.6.2, f = qg + r for some q, r € F[x] where deg(r) < deg(g).
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Corollary 111.6.4

Corollary 111.6.4. If F is a field, then the polynomial ring F[x] is a
Euclidean domain, whence F[x] is a principal ideal domain and a unique
factorization domain. The units in F[x] are precisely the nonzero constant
polynomials.

Proof. Since F is a field (and hence an integral domain) then by Theorem
I11.5.1(ii) F[x] is an integral domain. Define ¢ : F[x] \ {0} — NU {0} by
©(f) = deg(f). Every nonzero element of F is a unit since F is a field, so
first by Theorem 111.6.1(iv), ¢(fg) = ¢(f) + ¢(g), and second by Theorem
111.6.2, f = qg + r for some q, r € F[x] where deg(r) < deg(g). So by
Definition 111.3.8 F[x] is a Euclidean domain. By Theorem 111.3.9 F[x] is a
principal ideal domain and a unique factorization domain.
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Corollary 111.6.4 (continued)

Corollary 111.6.4. If F is a field, then the polynomial ring F[x] is a
Euclidean domain, whence F[x] is a principal ideal domain and a unique
factorization domain. The units in F[x] are precisely the nonzero constant
polynomials.

Proof (continued). If f is a unit in F[x], then there exists g € F[x] such
that fg = 1. By Theorem I11.6.1(iv),

0 = deg(1) = deg(fg) = deg(f) + deg(g) and so deg(f) = 0. Therefore f
is a constant polynomial and it must be nonzero.
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Corollary 111.6.4 (continued)

Corollary 111.6.4. If F is a field, then the polynomial ring F[x] is a
Euclidean domain, whence F[x] is a principal ideal domain and a unique
factorization domain. The units in F[x] are precisely the nonzero constant
polynomials.

Proof (continued). If f is a unit in F[x], then there exists g € F[x] such
that fg = 1. By Theorem I11.6.1(iv),

0 = deg(1) = deg(fg) = deg(f) + deg(g) and so deg(f) = 0. Therefore f
is a constant polynomial and it must be nonzero. Conversely, if f is a
nonzero constant polynomial in F[x] then there is a multiplicative inverse
of f in F[x] since F is a field (so f € F implies f~! € F, here we draw no
distinction between a constant polynomial in F[x] and an element of

F). O
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Theorem 111.6.6

Theorem 111.6.6. Factor Theorem.
Let R be a commutative ring with identity and f € R[x]. Then c € R is a
root of f if and only if x — ¢ divides f.
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Theorem 111.6.6

Theorem 111.6.6. Factor Theorem.
Let R be a commutative ring with identity and f € R[x]. Then c € R is a
root of f if and only if x — ¢ divides f.

Proof. (1) By Corollary 111.6.3, f(x) = q(x)(x —c) + f(c). f x— ¢
divides f(x) then h(x)(x — c¢) = f(x) = q(x)(x — ¢) + f(c) for some
h(x) € R[x]. Whence (h(x) — q(x))(x — ¢) = f(c) (in R[x]).
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Theorem 111.6.6

Theorem 111.6.6. Factor Theorem.
Let R be a commutative ring with identity and f € R[x]. Then c € R is a
root of f if and only if x — ¢ divides f.

Proof. (1) By Corollary 111.6.3, f(x) = q(x)(x —c) + f(c). f x— ¢
divides f(x) then h(x)(x — ¢) = f(x) = q(x)(x — ¢) + f(c) for some

h(x) € R[x]. Whence (h(x) — q(x))(x — ¢) = f(c) (in R[x]). By applying
the evaluation homomorphism that replaces x with ¢ to give an element of
R (see Corollary 111.5.6 and the “Remark” after it), we have that

f(c) = (h(c) —q(c))(c—c) =0 (in R). So if x — ¢ divides f(x) then
f(c)=0.
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Theorem 111.6.6

Theorem 111.6.6. Factor Theorem.
Let R be a commutative ring with identity and f € R[x]. Then c € R is a
root of f if and only if x — ¢ divides f.

Proof. (1) By Corollary 111.6.3, f(x) = q(x)(x —c) + f(c). f x— ¢
divides f(x) then h(x)(x — ¢) = f(x) = q(x)(x — ¢) + f(c) for some

h(x) € R[x]. Whence (h(x) — q(x))(x — ¢) = f(c) (in R[x]). By applying
the evaluation homomorphism that replaces x with ¢ to give an element of
R (see Corollary 111.5.6 and the “Remark” after it), we have that

f(c) = (h(c) —q(c))(c —c) =0 (in R). So if x — ¢ divides f(x) then
f(c)=0.

(2) Suppose f(c) = 0. By the Remainder Theorem (Corollary 111.6.3),
f(x) =q(x)(x —c) + f(c) = g(x)(x — ¢) and so x — c divides f(x).
(Notice that the Remainder Theorem does not require commutivity and so
this result holds even for noncommutative rings with identity.) O
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Theorem 111.6.7

Theorem 111.6.7. If D is an integral domain contained in an integral
domain E and f € D[x] has degree n, then f has at most n distinct roots
in E.
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Theorem 111.6.7

Theorem 111.6.7

Theorem 111.6.7. If D is an integral domain contained in an integral

domain E and f € D[x] has degree n, then f has at most n distinct roots
in E.

Proof. Let ¢, cp, ... be the distinct roots of f in E.
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Theorem 111.6.7

Theorem 111.6.7

Theorem 111.6.7. If D is an integral domain contained in an integral
domain E and f € D[x] has degree n, then f has at most n distinct roots
in E.

Proof. Let ¢, ¢, ... be the distinct roots of f in E. By Theorem 111.6.6,
f(x) = g1(x)(x — c1) for some qi1(x) € R[x]. Whence applying an
evaluation homomorphism 0 = () = g1(c2)(c2 — c1) (Hungerford says
“by Corollary 111.5.6"). Since we are considering distinct ¢;, then ¢; # .
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Theorem 111.6.7

Theorem 111.6.7. If D is an integral domain contained in an integral
domain E and f € D[x] has degree n, then f has at most n distinct roots
in E.

Proof. Let ¢, ¢, ... be the distinct roots of f in E. By Theorem 111.6.6,
f(x) = g1(x)(x — c1) for some qi1(x) € R[x]. Whence applying an
evaluation homomorphism 0 = () = g1(c2)(c2 — c1) (Hungerford says
“by Corollary 111.5.6"). Since we are considering distinct ¢;, then ¢; # .
Since E is an integral domain (no divisors of zero) then gi1(cz) = 0.
Therefore, x — ¢ divides go by Theorem 111.6.6 and so

f(x) = g2(x)(x — &2)(x — c1). Inductively, for distinct roots ci, ¢2, ..., Cm
of fin E we have gy, = (x — c1)(x — &) - - - (x — ¢m) divides f.
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Theorem 111.6.7

Theorem 111.6.7. If D is an integral domain contained in an integral
domain E and f € D[x] has degree n, then f has at most n distinct roots
in E.

Proof. Let ¢, ¢, ... be the distinct roots of f in E. By Theorem 111.6.6,
f(x) = g1(x)(x — c1) for some qi1(x) € R[x]. Whence applying an
evaluation homomorphism 0 = () = g1(c2)(c2 — c1) (Hungerford says
“by Corollary 111.5.6"). Since we are considering distinct ¢;, then ¢; # .
Since E is an integral domain (no divisors of zero) then gi1(cz) = 0.
Therefore, x — ¢ divides go by Theorem 111.6.6 and so

f(x) = g2(x)(x — &2)(x — c1). Inductively, for distinct roots ci, ¢2, ..., Cm
of f in E we have gy, = (x — c1)(x — @) - - - (x — ¢m) divides f. But
deg(gm) = m by Theorem I11.6.1(iv), and by Theorem 111.6.1(ii) m < n. So
the total number of distinct roots of f is less than or equal to n. O
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Theorem 111.6.8

Proposition 111.6.8. Let D be a unique factorization domain with
quotient field F (that is, F is the field of quotients produced from D) and
let f =" a;x' € D[x]. If u=c/d € F with c and d relatively prime
(so uis in “reduced form™”), and u is a root of f, then ¢ divides ap and d
divides a,.
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Theorem 111.6.8

Proposition 111.6.8. Let D be a unique factorization domain with
quotient field F (that is, F is the field of quotients produced from D) and
let f =" a;x' € D[x]. If u=c/d € F with c and d relatively prime
(so uis in “reduced form™”), and u is a root of f, then ¢ divides ap and d
divides a,.

Proof. Since we hypothesize that f(u) = 0, we have
f(u) =f(c/d)=>_"_gai(c/d)" =0 or (multiplying both sides by d")

S paic’d"™ =0or ad"+c> " aic’td"™ = 0or
aod” = c¢(>°"_;(—a;)c’1d"""). Since ¢ and d are relatively prime then by
Exercise 111.3.10 we have that ¢ divides ag.
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Theorem 111.6.8

Proposition 111.6.8. Let D be a unique factorization domain with
quotient field F (that is, F is the field of quotients produced from D) and
let f =" a;x' € D[x]. If u=c/d € F with c and d relatively prime
(so uis in “reduced form™”), and u is a root of f, then ¢ divides ap and d
divides a,.

Proof. Since we hypothesize that f(u) = 0, we have

f(u) =f(c/d)= > yai(c/d) =0or (multiplying both sides by d”)

S paicid™ ’—Ooraod”—i—czl Jaic~1d™ =0 or

aod” = c¢(>°"_;(—a;)c’1d"""). Since ¢ and d are relatively prime then by
Exercise 111.3.10 we have that ¢ divides ag.

Also Y7 s aic'd"" =0 or Z, o aic'd"" +apc" =0 or
—apc” = (Z, o aic cldn—i- 1) d. Since ¢ and d are relatively prime then
by Exercise 111.3.10 we have that d divides a,,. ]
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Theorem 111.6.10

Theorem 111.6.10. Let D be an integral domain which is a subring of an
integral domain E. Let f € D[x] and c € E.
(i) cis a multiple root of f if and only if f(c) = 0 and f'(c) = 0.
(ii) If D is a field and f is relatively prime to f’, then f has no
multiple roots in E.

(iii) If D is a field, f is irreducible in D[x] and E contains a root
of f, then f has no multiple roots in E if and only if f/ #0
(here, “f’ #£ 0" means that f’ is not the zero polynomial in
DIx]).
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Theorem 111.6.10

Theorem 111.6.10. Let D be an integral domain which is a subring of an
integral domain E. Let f € D[x] and c € E.

(i) cis a multiple root of f if and only if f(c) = 0 and f'(c) = 0.
(ii) If D is a field and f is relatively prime to f’, then f has no
multiple roots in E.

(iii) If D is a field, f is irreducible in D[x] and E contains a root
of f, then f has no multiple roots in E if and only if f/ #0

(here, “f’ #£ 0" means that f’ is not the zero polynomial in
DIx]).

Proof. (i) Let ¢ be a root of f of multiplicity m. Then (by definition)
f(x) = (x — c)"g(x) and g(c) # 0.
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Theorem 111.6.10

Theorem 111.6.10. Let D be an integral domain which is a subring of an
integral domain E. Let f € D[x] and c € E.

(i) cis a multiple root of f if and only if f(c) = 0 and f'(c) = 0.
(ii) If D is a field and f is relatively prime to f’, then f has no
multiple roots in E.
(iii) If D is a field, f is irreducible in D[x] and E contains a root

of f, then f has no multiple roots in E if and only if f/ #0

(here, “f’ #£ 0" means that f’ is not the zero polynomial in
DIx]).

Proof. (i) Let ¢ be a root of f of multiplicity m. Then (by definition)
f(x) = (x—c)™g(x) and g(c) # 0. By Lemma I11.6.9(iii)

f'(x) = m(x — )™ 1g(x) + (x — c)™g’(x). If c is a multiple root of f
(i.e., m > 1) then we have that ’(c) = 0.
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Theorem 111.6.10 (continued 1)

Proof (continued). Conversely, let f(c) = f’(c¢) = 0. Since f(c) =0
then m > 1 by the Factor Theorem (Theorem 111.6.6). ASSUME m = 1.
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Theorem 111.6.10 (continued 1)

Proof (continued). Conversely, let f(c) = f’(c¢) = 0. Since f(c) =0
then m > 1 by the Factor Theorem (Theorem 111.6.6). ASSUME m = 1.
Then f'(x) = g(x) + (x — ¢)g’(x). Consequently, since f'(c) = 0, we have
that 0 = f/(c) = g(c) (Hungerford quotes Corollary I11.5.6 since we are
using the evaluation homomorphism), a CONTRADICTION to the
properties of g. So this contradiction implies the assumption that m =1 is
incorrect and hence m > 1.
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Theorem 111.6.10

Theorem 111.6.10 (continued 1)

Proof (continued). Conversely, let f(c) = f’(c¢) = 0. Since f(c) =0
then m > 1 by the Factor Theorem (Theorem 111.6.6). ASSUME m = 1.
Then f'(x) = g(x) + (x — ¢)g’(x). Consequently, since f'(c) = 0, we have
that 0 = f/(c) = g(c) (Hungerford quotes Corollary I11.5.6 since we are
using the evaluation homomorphism), a CONTRADICTION to the
properties of g. So this contradiction implies the assumption that m =1 is
incorrect and hence m > 1.

(i) Let D be a field and f relatively prime to f'.
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Theorem 111.6.10 (continued 1)

Proof (continued). Conversely, let f(c) = f’(c¢) = 0. Since f(c) =0
then m > 1 by the Factor Theorem (Theorem 111.6.6). ASSUME m = 1.
Then f'(x) = g(x) + (x — ¢)g’(x). Consequently, since f'(c) = 0, we have
that 0 = f/(c) = g(c) (Hungerford quotes Corollary I11.5.6 since we are
using the evaluation homomorphism), a CONTRADICTION to the
properties of g. So this contradiction implies the assumption that m =1 is
incorrect and hence m > 1.

(ii) Let D be a field and f relatively prime to f’. By Corollary 111.6.4, since
D is a field then D[x] is a principal ideal domain. Since f and f’ are
relatively prime, ged(f, f') = 1p and so by Theorem I11.3.11(ii) there are
k(x), h(x) € D[x] such that kf + hf’ = 1p.
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Theorem 111.6.10 (continued 1)

Proof (continued). Conversely, let f(c) = f’(c¢) = 0. Since f(c) =0
then m > 1 by the Factor Theorem (Theorem 111.6.6). ASSUME m = 1.
Then f'(x) = g(x) + (x — ¢)g’(x). Consequently, since f'(c) = 0, we have
that 0 = f/(c) = g(c) (Hungerford quotes Corollary I11.5.6 since we are
using the evaluation homomorphism), a CONTRADICTION to the
properties of g. So this contradiction implies the assumption that m =1 is
incorrect and hence m > 1.

(ii) Let D be a field and f relatively prime to f’. By Corollary 111.6.4, since
D is a field then D[x] is a principal ideal domain. Since f and f’ are
relatively prime, ged(f, f') = 1p and so by Theorem I11.3.11(ii) there are
k(x), h(x) € D[x] such that kf + hf’ = 1p. ASSUME c is a multiple root
of f. Then by Corollary 111.5.6 (the use of the evaluation homomorphism)
and part (i), gp = k(c)f(c)+ h(c)f’(c) =0 (part (i) implies f'(c) = 0), a
CONTRADICTION (1p # 0). So the assumption that c is a multiple root
of f is false and so c is a simple root of f.
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Theorem 111.6.10 (continued 2)

Proof (continued). (iii) Let D be a field, f irreducible in D[x], and E
contain a root of f.
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Theorem 111.6.10 (continued 2)

Proof (continued). (iii) Let D be a field, f irreducible in D[x], and E
contain a root of f. First, let f/ # 0. Since f is irreducible then (by
definition) the only divisors of f are unit multiples of f. Since f’ £ 0 then
deg(f) > 1 and so deg(f’) < deg(f).
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Theorem 111.6.10 (continued 2)

Proof (continued). (iii) Let D be a field, f irreducible in D[x], and E
contain a root of f. First, let f/ # 0. Since f is irreducible then (by
definition) the only divisors of f are unit multiples of f. Since f’ £ 0 then
deg(f) > 1 and so deg(f’) < deg(f). So the only thing that could divide
both f" and f is a unit (i.e., a constant polynomial). So f and f’ are
relatively prime. By part (ii), f has no multiple roots in E.
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Theorem 111.6.10 (continued 2)

Proof (continued). (iii) Let D be a field, f irreducible in D[x], and E
contain a root of f. First, let f/ # 0. Since f is irreducible then (by
definition) the only divisors of f are unit multiples of f. Since f’ £ 0 then
deg(f) > 1 and so deg(f’) < deg(f). So the only thing that could divide
both f" and f is a unit (i.e., a constant polynomial). So f and f’ are
relatively prime. By part (ii), f has no multiple roots in E.

Conversely, suppose f has no multiple roots in E. We have hypothesized
that E has a root of f, say b is the root. ASSUME ' = 0.
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Theorem 111.6.10 (continued 2)

Proof (continued). (iii) Let D be a field, f irreducible in D[x], and E
contain a root of f. First, let f/ # 0. Since f is irreducible then (by
definition) the only divisors of f are unit multiples of f. Since f’ £ 0 then
deg(f) > 1 and so deg(f’) < deg(f). So the only thing that could divide
both f" and f is a unit (i.e., a constant polynomial). So f and f’ are
relatively prime. By part (ii), f has no multiple roots in E.

Conversely, suppose f has no multiple roots in E. We have hypothesized
that E has a root of f, say b is the root. ASSUME ' = 0. Then

f’'(b) = 0 and b is a multiple root of f by part (i), a CONTRADICTION.
So the assumption is false and ' # 0. O
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Lemma I11.6.11. (Gauss)

Lemma [11.6.11

Lemma 111.6.11. (Gauss) If D is a unique factorization domain and

f,g € D[x], then C(fg) = C(f)C(g). In particular, the product of
primitive polynomials is primitive.
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Lemma I11.6.11. (Gauss)

Lemma [11.6.11

Lemma 111.6.11. (Gauss) If D is a unique factorization domain and

f,g € D[x], then C(fg) = C(f)C(g). In particular, the product of
primitive polynomials is primitive.

Proof. If a€ D and f € D[x], then C(af) = aC(f) by Exercise 11.6.4.
Now f = F(f)fi and g = C(g)g1 where f; and g are primitive.
Consequently C(fg) = C(C(f)hC(g)er) = C(f)C(g)C(fig1).
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Lemma I11.6.11. (Gauss)

Lemma [11.6.11

Lemma 111.6.11. (Gauss) If D is a unique factorization domain and
f,g € D[x], then C(fg) = C(f)C(g). In particular, the product of
primitive polynomials is primitive.

Proof. If a€ D and f € D[x], then C(af) = aC(f) by Exercise 11.6.4.
Now f = F(f)fi and g = C(g)g1 where f; and g are primitive.
Consequently C(fg) = C(C(f)1C(g)g1) = C(f)C(g)C(fig1). Hence it
suffices to prove that fig; is primitive (that is, C(f1g1) is a unit). If
figt =i aix" and g1 = ij:O bjxj, then fig1 = ZZ’;O" cex® where
Ck = Qi jk 3ibj.
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Lemma I11.6.11. (Gauss)

Lemma [11.6.11

Lemma 111.6.11. (Gauss) If D is a unique factorization domain and
f,g € D[x], then C(fg) = C(f)C(g). In particular, the product of
primitive polynomials is primitive.

Proof. If a€ D and f € D[x], then C(af) = aC(f) by Exercise 11.6.4.
Now f = F(f)fi and g = C(g)g1 where f; and g are primitive.
Consequently C(fg) = C(C(f)1C(g)g1) = C(f)C(g)C(fig1). Hence it
suffices to prove that fig; is primitive (that is, C(f1g1) is a unit). If

figt =i aix" and g1 = ij:O bjxj, then fig1 = TIO" cex® where

Ck = Ziﬂ-:k ajbj. ASSUME f; g is not primitive, then C(f1g1) is not a
unit (by the definition of “primitive”) and so by the definition of unique
factorization domain (Definition 111.3.5(i)) C(fig1) can be written as a
product of irreducibles. Since C(f1g1) is a greatest common divisor of the
Ck, then one of these irreducibles, say p, must be a divisor of each c¢:

p | ck for all k.
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Lemma I11.6.11. (Gauss)

Lemma [11.6.11 (continued)

Proof (continued). Since C(f1) is a unit then pt C(f1) (for if p | C(f1)
then we have also that C(f1) | p by Theorem I11.3.2(iii) and so, by
definition of the fact that p and C(f1) are associates—but then by
Theorem 111.3.4(v), C(f1) is irreducible which contradicts the fact that
C(f1) is a unit and hence, by definition, is irreducible).
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Lemma I11.6.11. (Gauss)

Lemma [11.6.11 (continued)

Proof (continued). Since C(f1) is a unit then pt C(f1) (for if p | C(f1)
then we have also that C(f1) | p by Theorem I11.3.2(iii) and so, by
definition of the fact that p and C(f1) are associates—but then by
Theorem 111.3.4(v), C(f1) is irreducible which contradicts the fact that
C(f1) is a unit and hence, by definition, is irreducible). Whence there is a
least nonnegative integer s such that p | a; for i < s and p{ as. Similarly
there is a least integer t such that p | b; for j < t and p { b;. Since p
divides st = aobstt + -+ + as—1br+1 + asbr + asy1be—1 + - ast1bo
then, since p divides ag, a1,...,as_1 and bg, b1, ..., b;_1 then p must
divide asbs.
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Lemma I11.6.11. (Gauss)

Lemma [11.6.11 (continued)

Proof (continued). Since C(f1) is a unit then pt C(f1) (for if p | C(f1)
then we have also that C(f1) | p by Theorem I11.3.2(iii) and so, by
definition of the fact that p and C(f1) are associates—but then by
Theorem 111.3.4(v), C(f1) is irreducible which contradicts the fact that
C(f1) is a unit and hence, by definition, is irreducible). Whence there is a
least nonnegative integer s such that p | a; for i < s and p{ as. Similarly
there is a least integer t such that p | b; for j < t and p { b;. Since p
divides st = aobstt + -+ + as—1br+1 + asbr + asy1be—1 + - ast1bo
then, since p divides ag, a1,...,as_1 and bg, b1, ..., b;_1 then p must
divide asb;. Since every irreducible element in D is prime (this follows
from Definition [11.3.5(ii); see the “Remark” after the definition on page
137), then p | asb; implies that either p | a5 or p | by. But this
CONTRADICTS the choice of s or t. This contradiction shows that the
assumption that fig; is not primitive is false. Therefore figy is primitive.
So C(figi1) is a unit and since C(fg) = C(f)C(g)C(fig1) as shown above,
then C(fg) ~ C(f)C(g). O
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Lemma 111.6.12

Lemma 111.6.12

Lemma 111.6.12. Let D be a unique factorization domain with quotient
field F and let f and g be primitive polynomials in D[x]. Then f and g
are associates in D[x] if and only if they are associates in F[x].
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Lemma 111.6.12

Lemma 111.6.12

Lemma 111.6.12. Let D be a unique factorization domain with quotient
field F and let f and g be primitive polynomials in D[x]. Then f and g
are associates in D[x] if and only if they are associates in F[x].

Proof. Let f and g be associates in the integral domain F[x] (since F is a

field, F[x] is commutative and has no zero divisors) then f = gu for some
unit u € F[x] by Theorem 111.3.2(vi).
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Lemma I11.6.12

Lemma 111.6.12. Let D be a unique factorization domain with quotient
field F and let f and g be primitive polynomials in D[x]. Then f and g
are associates in D[x] if and only if they are associates in F[x].

Proof. Let f and g be associates in the integral domain F[x] (since F is a
field, F[x] is commutative and has no zero divisors) then f = gu for some
unit u € F[x] by Theorem 111.3.2(vi). By Corollary I11.6.4, u is a nonzero
constant polynomial and so u € F, whence u = b/c for some b,c € D and
¢ # 0. Therefore f = gb/c and cf = bg. Since C(f) and C(g) are units
in D (because f, g are primitive) then

¢ ~ cC(f)since C(f) is a unit
C(cf) by Exercise 111.6.4
C(bg)
bC(g) by Exercise 11.6.4
b since C(g) is a unit.
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Lemma 111.6.12 (continued)

Lemma 111.6.12. Let D be a unique factorization domain with quotient
field F and let f and g be primitive polynomials in D[x]. Then f and g
are associates in D[x] if and only if they are associates in F[x].

Proof (continued). Therefore b = cv for some unit v € D and

cf = bg = cvg. Consequently f = vg (since ¢ # 0) whence f and g are
associates.
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Lemma 111.6.12 (continued)

Lemma 111.6.12. Let D be a unique factorization domain with quotient
field F and let f and g be primitive polynomials in D[x]. Then f and g
are associates in D[x] if and only if they are associates in F[x].

Proof (continued). Therefore b = cv for some unit v € D and
cf = bg = cvg. Consequently f = vg (since ¢ # 0) whence f and g are
associates.

Let f and g be associates in D[x]. The by Theorem 111.3.2(vi) f = gu for
some unit u € D[x].
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Lemma 111.6.12 (continued)

Lemma 111.6.12. Let D be a unique factorization domain with quotient
field F and let f and g be primitive polynomials in D[x]. Then f and g
are associates in D[x] if and only if they are associates in F[x].

Proof (continued). Therefore b = cv for some unit v € D and
cf = bg = cvg. Consequently f = vg (since ¢ # 0) whence f and g are
associates.

Let f and g be associates in D[x]. The by Theorem 111.3.2(vi) f = gu for
some unit u € D[x]|. But F is a quotient field of D so D[x] C F[x] (as
rings, say) so f = gu where u is a unit in F[x] and so f and g are
associates in F[x]. O
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Lemma 111.6.13

Lemma 111.6.13

Lemma 111.6.13. Let D be a unique factorization domain with quotient

field F and f a primitive polynomial of positive degree in D[x]. Then f is
irreducible in D[x] if and only if  is irreducible in F[x].
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Lemma 111.6.13

Lemma 111.6.13

Lemma 111.6.13. Let D be a unique factorization domain with quotient
field F and f a primitive polynomial of positive degree in D[x]. Then f is
irreducible in D[x] if and only if  is irreducible in F[x].

Proof. Let f be irreducible in D[x] and ASSUME that f = gh with

g, h € F[x] where deg(g) > 1, deg(h) > 1 (that is, assume f is not
irreducible in F[x]).
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Lemma I11.6.13

Lemma 111.6.13. Let D be a unique factorization domain with quotient
field F and f a primitive polynomial of positive degree in D[x]. Then f is
irreducible in D[x] if and only if  is irreducible in F[x].

Proof. Let f be irreducible in D[x] and ASSUME that f = gh with

g, h € F[x] where deg(g) > 1, deg(h) > 1 (that is, assume f is not
irreducible in F[x]). Then g = >""_ (a;/bi)x' and h = ZJ-'":O(CJ-/dj)Xj with
aj, bj,j,di € D and b; #0,d; # 0 for all i and j. Let b= bgb; --- b, and
for each i let bf = boby - bj_1bjt1---bp. If g1 =>4 a,-b;-kx" € D[x]
then g1 = ag» with a = C(g1) for g» € D[x] and g» primitive.
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Lemma I11.6.13

Lemma 111.6.13. Let D be a unique factorization domain with quotient
field F and f a primitive polynomial of positive degree in D[x]. Then f is
irreducible in D[x] if and only if  is irreducible in F[x].
Proof. Let f be irreducible in D[x] and ASSUME that f = gh with
g, h € F[x] where deg(g) > 1, deg(h) > 1 (that is, assume f is not
irreducible in F[x]). Then g = >""_ (a;/bi)x' and h = ZJ-'":O(CJ-/dj)Xj with
aj, bj,j,di € D and b; #0,d; # 0 for all i and j. Let b= bgb; --- b, and
for each i let bf = boby - bj_1bjt1---bp. If g1 =>4 a,-b;-kx" € D[x]
then g1 = ags» with a = C(g1) for g» € D[x] and g» primitive. Now

g= Z ai/bi)x' = (b/b) Y (ai/bij)x" = (1p/b) > (aib/bi)x’

i=0 i=0
= (1p/b) Zaib}kxi = (ap/b)g1 = (a/b)g2
i=0

and deg(g) = deg(g2) = n
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Lemma 111.6.13

Lemma [11.6.13 (continued 1)

Proof (continued). Similarly, h = (c¢/d)hs with ¢,d € D, hy € D[x], h>
primitive, and deg(h) = deg(h2) = m. Consequently,
f = gh = (a/b)gx(c/d)ha whence bdf = acgxhs.
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Lemma [11.6.13 (continued 1)

Proof (continued). Similarly, h = (c¢/d)hs with ¢,d € D, hy € D[x], h>

primitive, and deg(h) = deg(h2) = m. Consequently,

f = gh=(a/b)ga(c/d)h> whence bdf = acgrhy. Since f is primitive by

hypothesis of the lemma, and grhs is primitive by Lemma I11.6.11, then
bd =~ bdC(f) since C(f) is a unit

C(bdf) by Exercise I11.6.4

= C(acg2h2)

acC(goh2) by Exercise 111.6.4

ac since C(g2g2) is a unit.

%

Q
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Lemma [11.6.13 (continued 1)

Proof (continued). Similarly, h = (c¢/d)hs with ¢,d € D, hy € D[x], h>

primitive, and deg(h) = deg(h2) = m. Consequently,

f = gh=(a/b)ga(c/d)h> whence bdf = acgrhy. Since f is primitive by

hypothesis of the lemma, and grhs is primitive by Lemma I11.6.11, then
bd =~ bdC(f) since C(f) is a unit

C(bdf) by Exercise I11.6.4

= C(acg2h2)

acC(goh2) by Exercise 111.6.4

ac since C(g2g2) is a unit.

%

Q

Therefore ac = bdv for some unit v € D and so bdf = acgrhy, = bdvgrhy

or f = vgahy where v is a unit in D[x]. So f and gxhy are associates in
D[x].
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Lemma [11.6.13 (continued 1)

Proof (continued). Similarly, h = (c¢/d)hs with ¢,d € D, hy € D[x], h>

primitive, and deg(h) = deg(h2) = m. Consequently,

f = gh=(a/b)ga(c/d)h> whence bdf = acgrhy. Since f is primitive by

hypothesis of the lemma, and grhs is primitive by Lemma I11.6.11, then
bd =~ bdC(f) since C(f) is a unit

C(bdf) by Exercise I11.6.4

= C(acg2h2)

acC(goh2) by Exercise 111.6.4

ac since C(g2g2) is a unit.

%

Q

Therefore ac = bdv for some unit v € D and so bdf = acgrhy, = bdvgrhy

or f = vgahy where v is a unit in D[x]. So f and gxhy are associates in

D[x]. But by Theorem I11.3.4(v), every associate of an irreducible is

irreducible (here, in integral domain D[x]) so vgyhy is irreducible in D[x],

a CONTRADICTION (since neither g» nor hy is a unit in D C F since. ..
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Lemma 111.6.13

Lemma [11.6.13 (continued 2)

Lemma 111.6.13. Let D be a unique factorization domain with quotient

field F and f a primitive polynomial of positive degree in D[x]. Then f is
irreducible in D[x] if and only if  is irreducible in F[x].
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Lemma 111.6.13

Lemma [11.6.13 (continued 2)

Lemma 111.6.13. Let D be a unique factorization domain with quotient
field F and f a primitive polynomial of positive degree in D[x]. Then f is
irreducible in D[x] if and only if  is irreducible in F[x].

Proof (continued). ...the only units in F [and hence in D] are the
nonzero constant polynomials by Corollary 111.6.4). So the assumption that
f is not irreducible in F[x] is false and we have shown that f is irreducible

in D[x] implies that f is irreducible in F[x] and f = gh for some
g, h e D[x].
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Lemma [11.6.13 (continued 2)

Lemma 111.6.13. Let D be a unique factorization domain with quotient
field F and f a primitive polynomial of positive degree in D[x]. Then f is
irreducible in D[x] if and only if  is irreducible in F[x].

Proof (continued). ...the only units in F [and hence in D] are the
nonzero constant polynomials by Corollary 111.6.4). So the assumption that
f is not irreducible in F[x] is false and we have shown that f is irreducible
in D[x] implies that f is irreducible in F[x] and f = gh for some

g, h € D[x]. Then by Corollary 111.6.4, one of g, h (say g) is a constant
polynomial. Thus C(f) = C(gh) ~ gC(h) by Exercise 111.6.4. Since f is
hypothesized to be primitive then C(f) is a unit in D and has an inverse
C(f)~tin D.

Modern Algebra TR



Lemma [11.6.13 (continued 2)

Lemma 111.6.13. Let D be a unique factorization domain with quotient
field F and f a primitive polynomial of positive degree in D[x]. Then f is
irreducible in D[x] if and only if  is irreducible in F[x].

Proof (continued). ...the only units in F [and hence in D] are the
nonzero constant polynomials by Corollary 111.6.4). So the assumption that
f is not irreducible in F[x] is false and we have shown that f is irreducible
in D[x] implies that f is irreducible in F[x] and f = gh for some

g, h € D[x]. Then by Corollary 111.6.4, one of g, h (say g) is a constant
polynomial. Thus C(f) = C(gh) ~ gC(h) by Exercise 111.6.4. Since f is
hypothesized to be primitive then C(f) is a unit in D and has an inverse
C(f)~Yin D. Since C(f) ~ gC(h) then C(f) = gC(h)u for some unit

u € D. But then 1p = gC(h)uC(f)~! and so g is a unit in D and hence
in D[x]. So f = gh in D[x] implies that g (or h) is a unit in D[x] and so f
is irreducible in D[x]. O
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Theorem 111.6.14

Theorem 111.6.14. If D is a unique factorization domain, then so is the
polynomial ring D[x1, x2, . .., X].
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Theorem 111.6.14

Theorem 111.6.14. If D is a unique factorization domain, then so is the
polynomial ring D[x1, x2, . .., X].

Proof. We shall prove that D[x] is a unique factorization domain. Since
D[x1,x2,...,%n] = D[x1, X2, ..., xn—1][xn] by Corollary I11.5.7, a routine
inductive argument completes the proof. Now we show that D[x] satisfies

both parts of the definition of a unique factorization domain (Definition
111.3.5).
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Theorem 111.6.14

Theorem 111.6.14. If D is a unique factorization domain, then so is the
polynomial ring D[x1, x2, . .., X].

Proof. We shall prove that D[x] is a unique factorization domain. Since
D[x1,x2,...,%n] = D[x1, X2, ..., xn—1][xn] by Corollary I11.5.7, a routine
inductive argument completes the proof. Now we show that D[x] satisfies
both parts of the definition of a unique factorization domain (Definition
111.3.5).

(i) Factorization. If f € D[x] has positive degree, then f = C(f)f; with
fi a primitive polynomial in D[x] of positive degree. Since D is a unique
factorization domain then either C(f) is a unit or C(f) = c1c2 -« - ¢, With
each ¢; irreducible in D and hence in D[x] (by part (i) of the definition of
unique factorization domain).
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Theorem 111.6.14

Theorem 111.6.14. If D is a unique factorization domain, then so is the
polynomial ring D[x1, x2, . .., X].

Proof. We shall prove that D[x] is a unique factorization domain. Since
D[x1,x2,...,%n] = D[x1, X2, ..., xn—1][xn] by Corollary I11.5.7, a routine
inductive argument completes the proof. Now we show that D[x] satisfies
both parts of the definition of a unique factorization domain (Definition
111.3.5).

(i) Factorization. If f € D[x] has positive degree, then f = C(f)f; with
fi a primitive polynomial in D[x] of positive degree. Since D is a unique
factorization domain then either C(f) is a unit or C(f) = c1c2 -« - ¢, With
each ¢; irreducible in D and hence in D[x] (by part (i) of the definition of
unique factorization domain). Let F be the field of quotients of D. Since
F[x] is a unique factorization domain by Corollary I11.6.4 which contains
D[x], then f; = pip5 - - - pj; with each p! an irreducible polynomial in F[x]
(by part (i) of the definition of unique factorization domain).
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Theorem 111.6.14 (continued 1)

Proof (continued). As shown in the proof of Lemma I11.6.13 (take it
from the “Similarly h = (c¢/d)ho..." part), for each i we have

pF = (ai/bi)pi with a;, bj € D, bj #0, a;/b; € F, p; € D[x] and p;
primitive.
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Theorem 111.6.14 (continued 1)

Proof (continued). As shown in the proof of Lemma I11.6.13 (take it
from the “Similarly h = (c¢/d)ho..." part), for each i we have

= (a,-/b,-)p,- with a;, b; € D, b; # 0, a,-/b,- eF, pe D[X] and p;
primitive. Since each p? is irreducible in F[x] then each p; = (b;/a;)p; is
irreducible in F[x] (from the definition of irreducible). Whence by Lemma
[11.6.13 each p; is irreducible in D[x] If we define a = ajas---a, and
b= biby--- b, then f; = pip5- = (a/b)pip2 - - - pn. Consequently,
bfi = apip2- - pn.
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Theorem 111.6.14 (continued 1)

Proof (continued). As shown in the proof of Lemma I11.6.13 (take it
from the “Similarly h = (c¢/d)ho..." part), for each i we have

= (a,-/b,-)p,- with a;, b; € D, b; # 0, a,-/b,- eF, pe D[X] and p;
primitive. Since each p? is irreducible in F[x] then each p; = (b;/a;)p; is
irreducible in F[x] (from the definition of irreducible). Whence by Lemma
[11.6.13 each p; is irreducible in D[x] If we define a = ajas---a, and
b= biby--- b, then f; = pip5- = (a/b)pip2 - - - pn. Consequently,
bfi = ap1pa- - pp. Since fi is pr|m|t|ve by the choice of it above and
p1p2 - Pn is primitive by Lemma I11.6.11, it follows as in the proof of
Lemma 111.6.12 that a and b are associates in D
(b= bC(fi) = C(bA) = C(apip2---pn) ~ aC(p1p2---pn) = a). Thus
a= buor a/b= u with u a unit in D by Theorem 111.3.2(iv).
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Theorem 111.6.14 (continued 1)

Proof (continued). As shown in the proof of Lemma I11.6.13 (take it
from the “Similarly h = (c¢/d)ho..." part), for each i we have

= (a,-/b,-)p,- with a;, b; € D, b; # 0, a,-/b,- eF, pe D[X] and p;
primitive. Since each p? is irreducible in F[x] then each p; = (b;/a;)p; is
irreducible in F[x] (from the definition of irreducible). Whence by Lemma
[11.6.13 each p; is irreducible in D[x] If we define a = ajas---a, and
b= biby--- b, then f; = pip5- = (a/b)pip2 - - - pn. Consequently,
bfi = ap1pa- - pp. Since fi is pr|m|t|ve by the choice of it above and
p1p2 - Pn is primitive by Lemma I11.6.11, it follows as in the proof of
Lemma 111.6.12 that a and b are associates in D
(b= bC(fi) = C(bA) = C(apip2---pn) ~ aC(p1p2---pn) = a). Thus
a= bu or a/b= u with u a unit in D by Theorem 111.3.2(iv). Therefore, if
C(f) is a nonunit, say C(f) = c1¢2 - - - cm Where each ¢; is irreducible in D
(since D is a unique factorization domain).
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Theorem 111.6.14 (continued 2)
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Theorem 111.6.14

Theorem 111.6.14 (continued 2)
Proof (continued). Then f = C(f)fi = cico -+ - cm(up1)p2 - - - pn (with
n = a/b) where each ¢; and p; are irreducible in D[x] as described above

(and underlined) and up; is irreducible in D[x] since p; is irreducible and u
is a unit. So f is a product of irreducibles.
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Theorem 111.6.14 (continued 2)

Proof (continued). Then f = C(f)fi = cico -+ - cm(up1)p2 - - - pn (with

n = a/b) where each ¢; and p; are irreducible in D[x] as described above
(and underlined) and up; is irreducible in D[x] since p; is irreducible and u
is a unit. So f is a product of irreducibles. Similarly, if C(f) is a unit then
f=C(f)f = C(f)(up1)p2- - pn where pa, p3, ..., pp are irreducible in
D[x] as described above (and underlined) and C(f)up; is irreducible in
D[x] since py is irreducible and C(f)u is a unit. So f is a product of
irreducibles.
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Theorem 111.6.14 (continued 2)

Proof (continued). Then f = C(f)fi = cico -+ - cm(up1)p2 - - - pn (with

n = a/b) where each ¢; and p; are irreducible in D[x] as described above
(and underlined) and up; is irreducible in D[x] since p; is irreducible and u
is a unit. So f is a product of irreducibles. Similarly, if C(f) is a unit then
f=C(f)f = C(f)(up1)p2- - pn where pa, p3, ..., pp are irreducible in
D[x] as described above (and underlined) and C(f)up; is irreducible in
D[x] since py is irreducible and C(f)u is a unit. So f is a product of
irreducibles.

(ii) Uniqueness. Let f € D[x] have positive degree.
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Theorem 111.6.14 (continued 2)

Proof (continued). Then f = C(f)fi = cico -+ - cm(up1)p2 - - - pn (with
n = a/b) where each ¢; and p; are irreducible in D[x] as described above
(and underlined) and up; is irreducible in D[x] since p; is irreducible and u
is a unit. So f is a product of irreducibles. Similarly, if C(f) is a unit then
f=C(f)f = C(f)(up1)p2- - pn where pa, p3, ..., pp are irreducible in
D[x] as described above (and underlined) and C(f)up; is irreducible in
D[x] since py is irreducible and C(f)u is a unit. So f is a product of
irreducibles.
(ii) Uniqueness. Let f € D[x] have positive degree. Then, as argued in
part (i), f = c1ca - Cmp1p2 - - - pn With each ¢; irreducible in D,
C(f) = cico -+ - cm, and each p; is irreducible in D[x] (this is established in
(i) for both C(f) a nonunit and C(f) a unit [in which case m = 0]—when
C(f) is a nonunit we replace up; of (i) with py = up; since up; is
irreducible as well where v is a unit; when C(f) is a unit we replace
C(f)upr with p1 = C(f)ups since C(f)up; is irreducible as well where
C(f)u is a unit).
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Theorem 111.6.14 (continued 3)

Proof (continued). Suppose f = c1¢ -+ cmp1p2 - - - Pn With each ¢;
irreducible in D, C(f) = cic2 -+ - ¢m, and p; irreducible in D[x] and
f=didr---drq1q2- - - gs with each d; irreducible in D, C(f) = did>-- - d,
and each g; is irreducible in D[x].
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Theorem 111.6.14 (continued 3)

Proof (continued). Suppose f = c1¢ -+ cmp1p2 - - - Pn With each ¢;
irreducible in D, C(f) = cic2 -+ - ¢m, and p; irreducible in D[x] and
f=didr---drq1q2- - - gs with each d; irreducible in D, C(f) = did>-- - d,
and each g; is irreducible in D[x]. Since each p; and g; is irreducible then
each p; and g; is primitive (or wlse we could factor out nonunit C(p;) or
C(gi) from p; or g; respectively and p; or g; would not be irreducible).
Since C(f) =1+ cm and C(f) = didz - - - d, then cicp - - - ¢y and

didy - - - d, are associates in D[x] and hence in F[x].
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Theorem 111.6.14 (continued 3)

Proof (continued). Suppose f = c1¢ -+ cmp1p2 - - - Pn With each ¢;
irreducible in D, C(f) = cic2 -+ - ¢m, and p; irreducible in D[x] and
f=didr---drq1q2- - - gs with each d; irreducible in D, C(f) = did>-- - d,
and each g; is irreducible in D[x]. Since each p; and g; is irreducible then
each p; and g; is primitive (or wlse we could factor out nonunit C(p;) or
C(gi) from p; or g; respectively and p; or g; would not be irreducible).
Since C(f) =1+ cm and C(f) = didz - - - d, then cicp - - - ¢y and

didy - - - d, are associates in D[x] and hence in F[x]. Since each p; and g;
is irreducible in D[x], then by Lemma 111.6.13, each p; and g; is irreducible
in F[x]. Now by Corollary.6.4, since F is a field (of quotients of D) then
F[x] is a unique factorization domain and so n = s and (after reindexing;
“permuting” as the definition of unique factorization domain says) each p;
is an associate of g; in F[x]. By Lemma 111.6.12 each p; is an associate of
qi in D[x].
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Theorem 111.6.14 (continued 3)

Proof (continued). Suppose f = c1¢ -+ cmp1p2 - - - Pn With each ¢;
irreducible in D, C(f) = cic2 -+ - ¢m, and p; irreducible in D[x] and
f=didr---drq1q2- - - gs with each d; irreducible in D, C(f) = did>-- - d,
and each g; is irreducible in D[x]. Since each p; and g; is irreducible then
each p; and g; is primitive (or wlse we could factor out nonunit C(p;) or
C(gi) from p; or g; respectively and p; or g; would not be irreducible).
Since C(f) =1+ cm and C(f) = didz - - - d, then cicp - - - ¢y and

didy - - - d, are associates in D[x] and hence in F[x]. Since each p; and g;
is irreducible in D[x], then by Lemma 111.6.13, each p; and g; is irreducible
in F[x]. Now by Corollary.6.4, since F is a field (of quotients of D) then
F[x] is a unique factorization domain and so n = s and (after reindexing;
“permuting” as the definition of unique factorization domain says) each p;
is an associate of g; in F[x]. By Lemma 111.6.12 each p; is an associate of
gi in D[x]. Hence, part (ii) of the definition of unique factorization domain
is satisfied in D[x] and so D[x] is a unique factorization domain. O
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Theorem 111.6.15

Theorem 111.6.15. (Eisenstein’s Criterion) Let D be a unique
factorization domain with quotient field F. If f = >""_ja;x' € D[x],
deg(f) > 1 and p is an irreducible element of D such that

ijan; p|3,’ fori:0717"'7n_1; p2+307

then f is irreducible in F[x]. If f is primitive, then f is irreducible in D[x].
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Theorem 111.6.15

Theorem 111.6.15. (Eisenstein’s Criterion) Let D be a unique
factorization domain with quotient field F. If f = >""_ja;x' € D[x],
deg(f) > 1 and p is an irreducible element of D such that

plan plaifori=01,...,n—1; p*fap,

then f is irreducible in F[x]. If f is primitive, then f is irreducible in D[x].

Proof. Let f = C(f)fy where f; is primitive in D[x] and C(f) € D (in
particular, fi = f if f is primitive). Since C(f) is a unit in F (F is a field;
Corollary 111.6.4 technically), it suffices to show that f; is irreducible in
Fx].
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Theorem 111.6.15

Theorem 111.6.15. (Eisenstein’s Criterion) Let D be a unique
factorization domain with quotient field F. If f = >""_ja;x' € D[x],
deg(f) > 1 and p is an irreducible element of D such that

plan plaifori=01,...,n—1; p*fap,

then f is irreducible in F[x]. If f is primitive, then f is irreducible in D[x].

Proof. Let f = C(f)fy where f; is primitive in D[x] and C(f) € D (in
particular, fi = f if f is primitive). Since C(f) is a unit in F (F is a field;
Corollary 111.6.4 technically), it suffices to show that f; is irreducible in
F[x]. By Lemma 111.6.13, f; is irreducible in F[x] if and only if it is
irreducible in D[x] so it suffices to prove that F is irreducible in D[x].
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Theorem 111.6.15

Theorem 111.6.15. (Eisenstein’s Criterion) Let D be a unique
factorization domain with quotient field F. If f = >""_ja;x' € D[x],
deg(f) > 1 and p is an irreducible element of D such that

plan plaifori=01,...,n—1; p*fap,

then f is irreducible in F[x]. If f is primitive, then f is irreducible in D[x].

Proof. Let f = C(f)fy where f; is primitive in D[x] and C(f) € D (in
particular, fi = f if f is primitive). Since C(f) is a unit in F (F is a field;
Corollary 111.6.4 technically), it suffices to show that f; is irreducible in
F[x]. By Lemma 111.6.13, f; is irreducible in F[x] if and only if it is
irreducible in D[x] so it suffices to prove that F is irreducible in D[x].
ASSUME that f; is not irreducible in D[x] and that fi = gh with

g =bx"+ -+ bix+ by € D[x], deg(g) = r > 1, and
h=cox?>+---+cc+c € D[x], deg(h) = s > 1.
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Theorem 111.6.15 (continued 1)

Proof (continued). Now p does not divide C(f) (the greatest common
divisor of the coefficients of f) since pt a, (and p is irreducible), whence
the coefficients of 1 = Y., a}kx" satisfy the same divisibility conditions
with respect to p as do the coefficients of f.

April 15, 2024 27 / 28
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Theorem 111.6.15 (continued 1)

Proof (continued). Now p does not divide C(f) (the greatest common
divisor of the coefficients of f) since pt a, (and p is irreducible), whence
the coefficients of 1 = Y., a}kx" satisfy the same divisibility conditions
with respect to p as do the coefficients of f. Since p divides aj = bgcy
and every irreducible in D is prime (by part (ii) of the definition of unique
factorization domain, Definition 111.3.5; see the “Remark” on page 137)
then either p | by or p | co. Say p | bo. Since p? { a; then p { co.
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Theorem 111.6.15 (continued 1)

Proof (continued). Now p does not divide C(f) (the greatest common
divisor of the coefficients of f) since pt a, (and p is irreducible), whence
the coefficients of 1 = Y., a}kx" satisfy the same divisibility conditions
with respect to p as do the coefficients of f. Since p divides aj = bgcy
and every irreducible in D is prime (by part (ii) of the definition of unique
factorization domain, Definition 111.3.5; see the “Remark” on page 137)
then either p | by or p | co. Say p | bo. Since p? { a; then p { co.

Now some coefficient by of g is not divisible by p (otherwise p would
divide every coefficient of g and hence every coefficient of fi = gh which is
a contradiction to the fact that f; is primitive and so C(f1) is a unit, not a
multiple of an irreducible).
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Theorem 111.6.15 (continued 1)

Proof (continued). Now p does not divide C(f) (the greatest common
divisor of the coefficients of f) since pt a, (and p is irreducible), whence
the coefficients of 1 = Y., a}kx" satisfy the same divisibility conditions
with respect to p as do the coefficients of f. Since p divides aj = bgcy
and every irreducible in D is prime (by part (ii) of the definition of unique
factorization domain, Definition 111.3.5; see the “Remark” on page 137)
then either p | by or p | co. Say p | bo. Since p? { a; then p { co.

Now some coefficient by of g is not divisible by p (otherwise p would
divide every coefficient of g and hence every coefficient of fi = gh which is
a contradiction to the fact that f; is primitive and so C(f1) is a unit, not a
multiple of an irreducible). Let k be the least positive integer such that

p | bjfori < kand ptbg. Then1l < k <r < n(since p| by as described
above, since deg(f;) = deg(g) + deg(h), by Theorem 111.6.1(iv), and since
deg(h) > 1 by the choice of h, then deg(g) < n—1andsor <n-—1).
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Theorem 111.6.15 (continued 2)

Theorem 111.6.15. (Eisenstein’s Criterion) Let D be a unique
factorization domain with quotient field F. If f =>"7 a;x’ € D[x],
deg(f) > 1 and p is an irreducible element of D such that

ptan plajfori=01,...,n—1; p>1ao,

then f is irreducible in F[x]. If f is primitive, then f is irreducible in D[x].

Proof (continued). Since aj = bock + bick—1 + -+ + bx_1c1 + brco and
p | a; (since p | ax because k < n—1). Since p | b; for i < k then p must
divide bycp.
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Theorem 111.6.15 (continued 2)

Theorem 111.6.15. (Eisenstein’s Criterion) Let D be a unique
factorization domain with quotient field F. If f =>"7 a;x’ € D[x],
deg(f) > 1 and p is an irreducible element of D such that

ptan plajfori=01,...,n—1; p>1ao,

then f is irreducible in F[x]. If f is primitive, then f is irreducible in D[x].

Proof (continued). Since aj = bock + bick—1 + -+ + bx_1c1 + brco and
p | a; (since p | ax because k < n—1). Since p | b; for i < k then p must
divide bgcyp. As above, p is prime so this implies that p | by or p | co, both
a CONTRADICTION. So the assumption that f; is not irreducible is false
and hence fi is irreducible in D[x]. Whence f is irreducible in D[x] and so
is irreducible in F[x].
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Theorem 111.6.15 (continued 2)

Theorem 111.6.15. (Eisenstein’s Criterion) Let D be a unique
factorization domain with quotient field F. If f =>"7 a;x’ € D[x],
deg(f) > 1 and p is an irreducible element of D such that

ptan plajfori=01,...,n—1; p>1ao,

then f is irreducible in F[x]. If f is primitive, then f is irreducible in D[x].

Proof (continued). Since aj = bock + bick—1 + -+ + bx_1c1 + brco and
p | a; (since p | ax because k < n—1). Since p | b; for i < k then p must
divide bgcyp. As above, p is prime so this implies that p | by or p | co, both
a CONTRADICTION. So the assumption that f; is not irreducible is false
and hence fi is irreducible in D[x]. Whence f is irreducible in D[x] and so
is irreducible in F[x]. Also, if f is primitive, then say f = f; and we have

seen that fi is irreducible in D[x]. O
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