Modern Algebra

Chapter III. Rings

III.6. Factorization in Polynomial Rings—Proofs of Theorems

Table of contents

- [Theorem III.6.2. The Division Algorithm](#page-2-0)
- [Corollary III.6.3. Remainder Theorem](#page-13-0)
- [Corollary III.6.4](#page-17-0)
- [Theorem III.6.6. Factor Theorem](#page-23-0)
- [Theorem III.6.7](#page-27-0)
- [Proposition III.6.8](#page-32-0)
- [Theorem III.6.10](#page-35-0)
- [Lemma III.6.11. \(Gauss\)](#page-48-0)
	- [Lemma III.6.12](#page-55-0)
- [Lemma III.6.13](#page-61-0)
	- [Theorem III.6.14](#page-73-0)
		- [Theorem III.6.15. Eisenstein's Criterion](#page-90-0)

Theorem III.6.2. The Division Algorithm.

Let R be a ring with identity and $f, g \in R[x]$ nonzero polynomials such that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R[x]$ such that $f = qg + r$ and $deg(r) < deg(g)$.

Proof. If $deg(g) > deg(f)$, let $q = 0$ and $r = f$.

Theorem III.6.2. The Division Algorithm.

Let R be a ring with identity and $f, g \in R[x]$ nonzero polynomials such that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R[x]$ such that $f = qg + r$ and $deg(r) < deg(g)$.

Proof. If $deg(g) > deg(f)$, let $g = 0$ and $r = f$. If $deg(g) \leq deg(f)$, then $f = \sum_{i=0}^n a_i x^i$, $g = \sum_{i=0}^m b_i x^i$ with $a_n \neq 0$, $b_m \neq 0$, $m \leq n$, and b_m a unit in R (by hypothesis, the leading coefficient of g is a unit).

Theorem III.6.2. The Division Algorithm.

Let R be a ring with identity and $f, g \in R[x]$ nonzero polynomials such that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R[x]$ such that $f = qg + r$ and $deg(r) < deg(g)$.

Proof. If $deg(g) > deg(f)$, let $q = 0$ and $r = f$. If $deg(g) \leq deg(f)$, then $f=\sum_{i=0}^na_i x^i$, $g=\sum_{i=0}^m b_i x^i$ with $a_n\neq 0$, $b_m\neq 0$, $m\leq n$, and b_m a unit in R (by hypothesis, the leading coefficient of g is a unit). We now apply induction on $n = \deg(f)$. If $n = 0$, then $m = 0$, $f = a_0$, $g = b_0$ and b_0 is a unit (by hypothesis).

Theorem III.6.2. The Division Algorithm.

Let R be a ring with identity and $f, g \in R[x]$ nonzero polynomials such that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R[x]$ such that $f = qg + r$ and $deg(r) < deg(g)$.

Proof. If $deg(g) > deg(f)$, let $q = 0$ and $r = f$. If $deg(g) \leq deg(f)$, then $f=\sum_{i=0}^na_i x^i$, $g=\sum_{i=0}^m b_i x^i$ with $a_n\neq 0$, $b_m\neq 0$, $m\leq n$, and b_m a unit in R (by hypothesis, the leading coefficient of g is a unit). We now apply induction on $n = \deg(f)$. If $n = 0$, then $m = 0$, $f = a_0$, ${\sf g}={\sf b}_0$ and ${\sf b}_0$ is a unit (by hypothesis). Let $q=a_0b_0^{-1}$ and $r=0;$ then $deg(r) < deg(g)$ (from Note III.6.A, $deg(r) = -\infty$) and $qg + r = (a_0 b_0^{-1})b_0 = a_0 = f$. So the result holds for $n = 0$.

Theorem III.6.2. The Division Algorithm.

Let R be a ring with identity and $f, g \in R[x]$ nonzero polynomials such that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R[x]$ such that $f = qg + r$ and $deg(r) < deg(g)$.

Proof. If $deg(g) > deg(f)$, let $q = 0$ and $r = f$. If $deg(g) \leq deg(f)$, then $f=\sum_{i=0}^na_i x^i$, $g=\sum_{i=0}^m b_i x^i$ with $a_n\neq 0$, $b_m\neq 0$, $m\leq n$, and b_m a unit in R (by hypothesis, the leading coefficient of g is a unit). We now apply induction on $n = \deg(f)$. If $n = 0$, then $m = 0$, $f = a_0$, $g=b_0$ and b_0 is a unit (by hypothesis). Let $q=a_0b_0^{-1}$ and $r=0;$ then $deg(r) < deg(g)$ (from Note III.6.A, $deg(r) = -\infty$) and $qg + r = (a_0b_0^{-1})b_0 = a_0 = f$. So the result holds for $n = 0$.

Theorem III.6.2 (continued 1)

Proof (continued). Assume that the existence part of the theorem is true for polynomials of degree less than $n = \deg(f)$. Then the polynomial

$$
(a_n b_m^{-1} x^{n-m}) g = (a_n b_m^{-1} x^{n-m}) \sum_{i=0}^m b_i x^i = \sum_{i=0}^m a_n b_m^{-1} b_i x^{n-m+i}
$$

$$
= a_n x^n + \sum_{i=0}^{m-1} a_n b_m^{-1} b_i x^{n-m+i}
$$

has degree *n* and leading coefficient a_n . Hence $f - (a_n b_m^{-1} x^{n-m})g = (a_n x^n + \cdots a_0) - (a_n x^n + \cdots + a_n b_m^{-1} b_0 x^{n-m})$ is a polynomial of degree less than n . By the induction hypothesis there are polynomials q' and r such that $f - (a_n b_m^{-1} x^{n-m})g = q'g + r$ and $deg(r) < deg(g)$.

Theorem III.6.2 (continued 1)

Proof (continued). Assume that the existence part of the theorem is true for polynomials of degree less than $n = \deg(f)$. Then the polynomial

$$
(a_n b_m^{-1} x^{n-m}) g = (a_n b_m^{-1} x^{n-m}) \sum_{i=0}^m b_i x^i = \sum_{i=0}^m a_n b_m^{-1} b_i x^{n-m+i}
$$

$$
= a_n x^n + \sum_{i=0}^{m-1} a_n b_m^{-1} b_i x^{n-m+i}
$$

has degree *n* and leading coefficient a_n . Hence $f - (a_n b_m^{-1} x^{n-m})g = (a_n x^n + \cdots a_0) - (a_n x^n + \cdots + a_n b_m^{-1} b_0 x^{n-m})$ is a polynomial of degree less than n . By the induction hypothesis there are polynomials q' and r such that $f-(a_n b_m^{-1}x^{n-m})g=q'g+r$ and $\mathsf{deg}(r)<\mathsf{deg}(g).$ Therefore, if $q=a_nb_m^{-1}x^{n-m}+q'$ then $f=(a_n b_m^{-1} x^{n-m})g+q'g+r=qg+r$ where $\deg(r)<\deg(g).$ So the existence claim is justified by induction.

Theorem III.6.2 (continued 1)

Proof (continued). Assume that the existence part of the theorem is true for polynomials of degree less than $n = \deg(f)$. Then the polynomial

$$
(a_n b_m^{-1} x^{n-m}) g = (a_n b_m^{-1} x^{n-m}) \sum_{i=0}^m b_i x^i = \sum_{i=0}^m a_n b_m^{-1} b_i x^{n-m+i}
$$

$$
= a_n x^n + \sum_{i=0}^{m-1} a_n b_m^{-1} b_i x^{n-m+i}
$$

has degree *n* and leading coefficient a_n . Hence $f - (a_n b_m^{-1} x^{n-m})g = (a_n x^n + \cdots a_0) - (a_n x^n + \cdots + a_n b_m^{-1} b_0 x^{n-m})$ is a polynomial of degree less than n . By the induction hypothesis there are polynomials q' and r such that $f-(a_n b_m^{-1}x^{n-m})g=q'g+r$ and $\deg(r) < \deg(g)$. Therefore, if $q = a_n b_m^{-1} x^{n-m} + q'$ then $f=(a_n b_m^{-1} x^{n-m}) g + q' g + r = q g + r$ where $\deg(r) < \deg(g).$ So the existence claim is justified by induction.

Theorem III.6.2 (continued 2)

Theorem III.6.2. The Division Algorithm.

Let R be a ring with identity and $f, g \in R[x]$ nonzero polynomials such that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R[x]$ such that $f = qg + r$ and $deg(r) < deg(g)$.

Proof (continued). Now for the uniqueness. Suppose

 $f = q_1g + r_1 = q_2g + r_2$ with $deg(r_1) < deg(g)$ and $deg(r_2) < deg(g)$. Then we have $(q_1 - q_2)g = r_2 - r_1$. Since the leading coefficient of g is a unit (by hypothesis), by Theorem $III.6.1(iv)$ we have $deg(q_1 - q_2) + deg(g) = deg((q_1 - q_2)g) = deg(r_2 - r_1).$

Theorem III.6.2 (continued 2)

Theorem III.6.2. The Division Algorithm.

Let R be a ring with identity and $f, g \in R[x]$ nonzero polynomials such that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R[x]$ such that $f = qg + r$ and $deg(r) < deg(g)$.

Proof (continued). Now for the uniqueness. Suppose $f = q_1g + r_1 = q_2g + r_2$ with $deg(r_1) < deg(g)$ and $deg(r_2) < deg(g)$. Then we have $(q_1 - q_2)g = r_2 - r_1$. Since the leading coefficient of g is a unit (by hypothesis), by Theorem $III.6.1(iv)$ we have $deg(q_1 - q_2) + deg(g) = deg((q_1 - q_2)g) = deg(r_2 - r_1)$. Since $deg(r_2 - r_1) \leq max(deg(r_1), deg(r_2)) \leq deg(g)$, the above equality is true only if deg($q_1 - q_2$) = $-\infty$ = deg($r_2 - r_1$) (that is, the equality does not hold for finite degrees). In other words, $q_1 - q_2 = 0$ and $r_2 - r_1 = 0$. That is, $q_1 = q_2$ and $r_1 = r_2$, so the q and r are unique.

Theorem III.6.2 (continued 2)

Theorem III.6.2. The Division Algorithm.

Let R be a ring with identity and $f, g \in R[x]$ nonzero polynomials such that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R[x]$ such that $f = qg + r$ and $deg(r) < deg(g)$.

Proof (continued). Now for the uniqueness. Suppose $f = q_1g + r_1 = q_2g + r_2$ with $deg(r_1) < deg(g)$ and $deg(r_2) < deg(g)$. Then we have $(q_1 - q_2)g = r_2 - r_1$. Since the leading coefficient of g is a unit (by hypothesis), by Theorem $III.6.1(iv)$ we have $deg(q_1 - q_2) + deg(g) = deg((q_1 - q_2)g) = deg(r_2 - r_1)$. Since $deg(r_2 - r_1) \leq max(deg(r_1), deg(r_2)) < deg(g)$, the above equality is true only if deg($q_1 - q_2$) = $-\infty$ = deg($r_2 - r_1$) (that is, the equality does not hold for finite degrees). In other words, $q_1 - q_2 = 0$ and $r_2 - r_1 = 0$. That is, $q_1 = q_2$ and $r_1 = r_2$, so the q and r are unique.

Corollary III.6.3. Remainder Theorem.

Let R be a ring with identity and $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$. For any $c \in R$ there exists a unique $q(x) \in R[x]$ such that $f(x) = q(x)(x - c) + f(c)$.

Proof. The result is trivial if $f \equiv 0$, so WLOG $f \not\equiv 0$.

Corollary III.6.3. Remainder Theorem.

Let R be a ring with identity and $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$. For any $c \in R$ there exists a unique $q(x) \in R[x]$ such that $f(x) = q(x)(x - c) + f(c)$.

Proof. The result is trivial if $f \equiv 0$, so WLOG $f \not\equiv 0$. With $g(x) = x - c$, Theorem III.6.2 implies that there exist unique polynomials $q(x), r(x) \in R[x]$ such that $f(x) = q(x)(x - c) + r(x)$ and $deg(r(x)) < deg(x - c) = 1$. Thus $r(x) = r$ is a constant polynomial (possibly 0).

Corollary III.6.3. Remainder Theorem.

Let R be a ring with identity and $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$. For any $c \in R$ there exists a unique $q(x) \in R[x]$ such that $f(x) = q(x)(x - c) + f(c)$.

Proof. The result is trivial if $f \equiv 0$, so WLOG $f \not\equiv 0$. With $g(x) = x - c$, Theorem III.6.2 implies that there exist unique polynomials $q(x), r(x) \in R[x]$ such that $f(x) = q(x)(x - c) + r(x)$ and $deg(r(x)) < deg(x - c) = 1$. Thus $r(x) = r$ is a constant polynomial **(possibly 0).** If $q(x) = \sum_{j=0}^{n-1} b_j x^j$ then $f(x) = q(x)(x - c) + r = -b_0c + \sum_{k=1}^{n-1} (-b_kc + b_{k-1})x^k + b_{n-1}x^n + r,$ whence $f(c) = -b_0 c + \sum_{k=1}^{n-1} (-b_k c + b_{k-1})c^k + b_{n-1}c^n + r =$ $-\sum_{k=0}^{n-1} b_k c^{k+1} + \sum_{k=1}^{n} b_{k-1} c^k + r = r$. So we have $f(x) = q(x)(x - c) + r = q(x)(x - c) + f(c).$

Corollary III.6.3. Remainder Theorem.

Let R be a ring with identity and $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$. For any $c \in R$ there exists a unique $q(x) \in R[x]$ such that $f(x) = q(x)(x - c) + f(c)$.

Proof. The result is trivial if $f \equiv 0$, so WLOG $f \not\equiv 0$. With $g(x) = x - c$, Theorem III.6.2 implies that there exist unique polynomials $q(x), r(x) \in R[x]$ such that $f(x) = q(x)(x - c) + r(x)$ and $deg(r(x)) < deg(x - c) = 1$. Thus $r(x) = r$ is a constant polynomial (possibly 0). If $q(x) = \sum_{j=0}^{n-1} b_j x^j$ then $f(x) = q(x)(x - c) + r = -b_0c + \sum_{k=1}^{n-1} (-b_kc + b_{k-1})x^k + b_{n-1}x^n + r,$ whence $f(c) = -b_0 c + \sum_{k=1}^{n-1} (-b_k c + b_{k-1})c^k + b_{n-1}c^n + r =$ $-\sum_{k=0}^{n-1} b_k c^{k+1} + \sum_{k=1}^{n} b_{k-1} c^k + r = r$. So we have $f(x) = q(x)(x - c) + r = q(x)(x - c) + f(c).$

Corollary III.6.4. If F is a field, then the polynomial ring $F[x]$ is a Euclidean domain, whence $F[x]$ is a principal ideal domain and a unique factorization domain. The units in $F[x]$ are precisely the nonzero constant polynomials.

Proof. Since F is a field (and hence an integral domain) then by Theorem III.5.1(ii) $F[x]$ is an integral domain. Define $\varphi : F[x] \setminus \{0\} \to \mathbb{N} \cup \{0\}$ by $\varphi(f) = \deg(f)$.

Corollary III.6.4. If F is a field, then the polynomial ring $F[x]$ is a Euclidean domain, whence $F[x]$ is a principal ideal domain and a unique factorization domain. The units in $F[x]$ are precisely the nonzero constant polynomials.

Proof. Since F is a field (and hence an integral domain) then by Theorem III.5.1(ii) $F[x]$ is an integral domain. Define $\varphi : F[x] \setminus \{0\} \rightarrow \mathbb{N} \cup \{0\}$ by $\varphi(f) = \deg(f)$. Every nonzero element of F is a unit since F is a field, so first by Theorem III.6.1(iv), $\varphi(fg) = \varphi(f) + \varphi(g)$, and second by Theorem III.6.2, $f = qg + r$ for some $q, r \in F[x]$ where $deg(r) < deg(g)$.

Corollary III.6.4. If F is a field, then the polynomial ring $F[x]$ is a Euclidean domain, whence $F[x]$ is a principal ideal domain and a unique factorization domain. The units in $F[x]$ are precisely the nonzero constant polynomials.

Proof. Since F is a field (and hence an integral domain) then by Theorem III.5.1(ii) $F[x]$ is an integral domain. Define $\varphi : F[x] \setminus \{0\} \rightarrow \mathbb{N} \cup \{0\}$ by $\varphi(f) = \deg(f)$. Every nonzero element of F is a unit since F is a field, so first by Theorem III.6.1(iv), $\varphi(fg) = \varphi(f) + \varphi(g)$, and second by Theorem III.6.2, $f = qg + r$ for some $q, r \in F[x]$ where $deg(r) < deg(g)$. So by Definition III.3.8 $F[x]$ is a Euclidean domain. By Theorem III.3.9 $F[x]$ is a principal ideal domain and a unique factorization domain.

Corollary III.6.4. If F is a field, then the polynomial ring $F[x]$ is a Euclidean domain, whence $F[x]$ is a principal ideal domain and a unique factorization domain. The units in $F[x]$ are precisely the nonzero constant polynomials.

Proof. Since F is a field (and hence an integral domain) then by Theorem III.5.1(ii) $F[x]$ is an integral domain. Define $\varphi : F[x] \setminus \{0\} \to \mathbb{N} \cup \{0\}$ by $\varphi(f) = \deg(f)$. Every nonzero element of F is a unit since F is a field, so first by Theorem III.6.1(iv), $\varphi(fg) = \varphi(f) + \varphi(g)$, and second by Theorem III.6.2, $f = qg + r$ for some $q, r \in F[x]$ where $deg(r) < deg(g)$. So by Definition III.3.8 $F[x]$ is a Euclidean domain. By Theorem III.3.9 $F[x]$ is a principal ideal domain and a unique factorization domain.

Corollary III.6.4 (continued)

Corollary III.6.4. If F is a field, then the polynomial ring $F[x]$ is a Euclidean domain, whence $F[x]$ is a principal ideal domain and a unique factorization domain. The units in $F[x]$ are precisely the nonzero constant polynomials.

Proof (continued). If f is a unit in $F[x]$, then there exists $g \in F[x]$ such that $fg = 1$. By Theorem III.6.1(iv), $0 = \deg(1) = \deg(fg) = \deg(f) + \deg(g)$ and so $\deg(f) = 0$. Therefore f is a constant polynomial and it must be nonzero. Conversely, if f is a nonzero constant polynomial in $F[x]$ then there is a multiplicative inverse of f in $F[x]$ since F is a field (so $f\in F$ implies $f^{-1}\in F$, here we draw no distinction between a constant polynomial in $F[x]$ and an element of F).

Corollary III.6.4 (continued)

Corollary III.6.4. If F is a field, then the polynomial ring $F[x]$ is a Euclidean domain, whence $F[x]$ is a principal ideal domain and a unique factorization domain. The units in $F[x]$ are precisely the nonzero constant polynomials.

Proof (continued). If f is a unit in $F[x]$, then there exists $g \in F[x]$ such that $fg = 1$. By Theorem III.6.1(iv), $0 = \deg(1) = \deg(fg) = \deg(f) + \deg(g)$ and so $\deg(f) = 0$. Therefore f is a constant polynomial and it must be nonzero. Conversely, if f is a nonzero constant polynomial in $F[x]$ then there is a multiplicative inverse of f in $\mathsf{F}[x]$ since $\mathsf F$ is a field (so $f\in\mathsf F$ implies $f^{-1}\in\mathsf F,$ here we draw no distinction between a constant polynomial in $F[x]$ and an element of F).

Theorem III.6.6. Factor Theorem.

Let R be a commutative ring with identity and $f \in R[x]$. Then $c \in R$ is a root of f if and only if $x - c$ divides f.

Proof. (1) By Corollary III.6.3, $f(x) = g(x)(x - c) + f(c)$. If $x - c$ divides $f(x)$ then $h(x)(x - c) = f(x) = g(x)(x - c) + f(c)$ for some $h(x) \in R[x]$. Whence $(h(x) - q(x))(x - c) = f(c)$ (in $R[x]$).

Theorem III.6.6. Factor Theorem.

Let R be a commutative ring with identity and $f \in R[x]$. Then $c \in R$ is a root of f if and only if $x - c$ divides f.

Proof. (1) By Corollary III.6.3, $f(x) = g(x)(x - c) + f(c)$. If $x - c$ divides $f(x)$ then $h(x)(x - c) = f(x) = g(x)(x - c) + f(c)$ for some $h(x) \in R[x]$. Whence $(h(x) - g(x))(x - c) = f(c)$ (in $R[x]$). By applying the evaluation homomorphism that replaces x with c to give an element of R (see Corollary III.5.6 and the "Remark" after it), we have that $f(c) = (h(c) - g(c))(c - c) = 0$ (in R). So if $x - c$ divides $f(x)$ then $f(c) = 0.$

Theorem III.6.6. Factor Theorem.

Let R be a commutative ring with identity and $f \in R[x]$. Then $c \in R$ is a root of f if and only if $x - c$ divides f.

Proof. (1) By Corollary III.6.3, $f(x) = g(x)(x - c) + f(c)$. If $x - c$ divides $f(x)$ then $h(x)(x - c) = f(x) = g(x)(x - c) + f(c)$ for some $h(x) \in R[x]$. Whence $(h(x) - q(x))(x - c) = f(c)$ (in $R[x]$). By applying the evaluation homomorphism that replaces x with c to give an element of R (see Corollary III.5.6 and the "Remark" after it), we have that $f(c) = (h(c) - q(c))(c - c) = 0$ (in R). So if $x - c$ divides $f(x)$ then $f(c)=0.$

(2) Suppose $f(c) = 0$. By the Remainder Theorem (Corollary III.6.3), $f(x) = g(x)(x - c) + f(c) = g(x)(x - c)$ and so $x - c$ divides $f(x)$. (Notice that the Remainder Theorem does not require commutivity and so this result holds even for noncommutative rings with identity.)

Theorem III.6.6. Factor Theorem.

Let R be a commutative ring with identity and $f \in R[x]$. Then $c \in R$ is a root of f if and only if $x - c$ divides f.

Proof. (1) By Corollary III.6.3, $f(x) = g(x)(x - c) + f(c)$. If $x - c$ divides $f(x)$ then $h(x)(x - c) = f(x) = g(x)(x - c) + f(c)$ for some $h(x) \in R[x]$. Whence $(h(x) - g(x))(x - c) = f(c)$ (in $R[x]$). By applying the evaluation homomorphism that replaces x with c to give an element of R (see Corollary III.5.6 and the "Remark" after it), we have that $f(c) = (h(c) - q(c))(c - c) = 0$ (in R). So if $x - c$ divides $f(x)$ then $f(c)=0.$

(2) Suppose $f(c) = 0$. By the Remainder Theorem (Corollary III.6.3), $f(x) = g(x)(x - c) + f(c) = g(x)(x - c)$ and so $x - c$ divides $f(x)$. (Notice that the Remainder Theorem does not require commutivity and so this result holds even for noncommutative rings with identity.)

Theorem III.6.7. If D is an integral domain contained in an integral domain E and $f \in D[x]$ has degree n, then f has at most n distinct roots in E.

Proof. Let c_1, c_2, \ldots be the distinct roots of f in E.

Theorem III.6.7. If D is an integral domain contained in an integral domain E and $f \in D[x]$ has degree n, then f has at most n distinct roots in E.

Proof. Let c_1, c_2, \ldots be the *distinct* roots of f in E. By Theorem III.6.6, $f(x) = q_1(x)(x - c_1)$ for some $q_1(x) \in R[x]$. Whence applying an evaluation homomorphism $0 = f(c_2) = q_1(c_2)(c_2 - c_1)$ (Hungerford says "by Corollary III.5.6"). Since we are considering distinct c_i , then $c_1 \neq c_2$.

Theorem III.6.7. If D is an integral domain contained in an integral domain E and $f \in D[x]$ has degree n, then f has at most n distinct roots in E.

Proof. Let c_1, c_2, \ldots be the *distinct* roots of f in E. By Theorem III.6.6, $f(x) = q_1(x)(x - c_1)$ for some $q_1(x) \in R[x]$. Whence applying an evaluation homomorphism $0 = f(c_2) = q_1(c_2)(c_2 - c_1)$ (Hungerford says "by Corollary III.5.6"). Since we are considering distinct c_i , then $c_1 \neq c_2$. Since E is an integral domain (no divisors of zero) then $q_1(c_2) = 0$. Therefore, $x - c_2$ divides q_2 by Theorem III.6.6 and so $f(x) = q_2(x)(x - c_2)(x - c_1)$. Inductively, for distinct roots c_1, c_2, \ldots, c_m of f in E we have $g_m = (x - c_1)(x - c_2) \cdots (x - c_m)$ divides f.

Theorem III.6.7. If D is an integral domain contained in an integral domain E and $f \in D[x]$ has degree n, then f has at most n distinct roots in E.

Proof. Let c_1, c_2, \ldots be the *distinct* roots of f in E. By Theorem III.6.6, $f(x) = q_1(x)(x - c_1)$ for some $q_1(x) \in R[x]$. Whence applying an evaluation homomorphism $0 = f(c_2) = q_1(c_2)(c_2 - c_1)$ (Hungerford says "by Corollary III.5.6"). Since we are considering distinct c_i , then $c_1 \neq c_2$. Since E is an integral domain (no divisors of zero) then $q_1(c_2) = 0$. Therefore, $x - c_2$ divides q_2 by Theorem III.6.6 and so $f(x) = q_2(x)(x - c_2)(x - c_1)$. Inductively, for distinct roots c_1, c_2, \ldots, c_m of f in E we have $g_m = (x - c_1)(x - c_2) \cdots (x - c_m)$ divides f. But $deg(g_m) = m$ by Theorem III.6.1(iv), and by Theorem III.6.1(ii) $m \le n$. So the total number of distinct roots of f is less than or equal to n .

Theorem III.6.7. If D is an integral domain contained in an integral domain E and $f \in D[x]$ has degree n, then f has at most n distinct roots in E.

Proof. Let c_1, c_2, \ldots be the *distinct* roots of f in E. By Theorem III.6.6, $f(x) = q_1(x)(x - c_1)$ for some $q_1(x) \in R[x]$. Whence applying an evaluation homomorphism $0 = f(c_2) = q_1(c_2)(c_2 - c_1)$ (Hungerford says "by Corollary III.5.6"). Since we are considering distinct c_i , then $c_1 \neq c_2$. Since E is an integral domain (no divisors of zero) then $q_1(c_2) = 0$. Therefore, $x - c_2$ divides q_2 by Theorem III.6.6 and so $f(x) = q_2(x)(x - c_2)(x - c_1)$. Inductively, for distinct roots c_1, c_2, \ldots, c_m of f in E we have $g_m = (x - c_1)(x - c_2) \cdots (x - c_m)$ divides f. But $deg(g_m) = m$ by Theorem III.6.1(iv), and by Theorem III.6.1(ii) $m \leq n$. So the total number of distinct roots of f is less than or equal to n .

Proposition III.6.8. Let D be a unique factorization domain with quotient field F (that is, F is the field of quotients produced from D) and let $f = \sum_{i=0}^{n} a_i x^i \in D[x]$. If $u = c/d \in F$ with c and d relatively prime (so u is in "reduced form"), and u is a root of f, then c divides a_0 and d divides a_n .

Proof. Since we hypothesize that $f(u) = 0$, we have $f(u) = f(c/d) = \sum_{i=0}^{n} a_i (c/d)^i = 0$ or (multiplying both sides by d^n) $\sum_{i=0}^{n} a_i c^i d^{n-i} = 0$ or $a_0 d^n + c \sum_{i=1}^{n} a_i c^{i-1} d^{n-i} = 0$ or $\overline{a_0}$ d $\overline{a}^n = c(\sum_{i=1}^n (-a_i)c^{i-1}d^{n-i})$. Since c and d are relatively prime then by Exercise III.3.10 we have that c divides a_0 .

Proposition III.6.8. Let D be a unique factorization domain with quotient field F (that is, F is the field of quotients produced from D) and let $f = \sum_{i=0}^{n} a_i x^i \in D[x]$. If $u = c/d \in F$ with c and d relatively prime (so u is in "reduced form"), and u is a root of f, then c divides a_0 and d divides a_n .

Proof. Since we hypothesize that $f(u) = 0$, we have $f(u) = f(c/d) = \sum_{i=0}^{n} a_i (c/d)^i = 0$ or (multiplying both sides by d^n) $\sum_{i=0}^{n} a_i c^i d^{n-i} = 0$ or $a_0 d^n + c \sum_{i=1}^{n} a_i c^{i-1} d^{n-i} = 0$ or $\overline{a_0}$ d $\overline{a}^n = c(\sum_{i=1}^n (-a_i)c^{i-1}d^{n-i})$. Since c and d are relatively prime then by Exercise III.3.10 we have that c divides a_0 .

Also
$$
\sum_{i=0}^{n} a_i c^i d^{n-i} = 0
$$
 or $\sum_{i=0}^{n-1} a_i c^i d^{n-i} + a_n c^n = 0$ or $-a_n c^n = \left(\sum_{i=0}^{n-1} a_i c^i d^{n-i-1}\right) d$. Since *c* and *d* are relatively prime then by Exercise III.3.10 we have that *d* divides *a_n*.

Proposition III.6.8. Let D be a unique factorization domain with quotient field F (that is, F is the field of quotients produced from D) and let $f = \sum_{i=0}^{n} a_i x^i \in D[x]$. If $u = c/d \in F$ with c and d relatively prime (so u is in "reduced form"), and u is a root of f, then c divides a_0 and d divides a_n .

Proof. Since we hypothesize that $f(u) = 0$, we have $f(u) = f(c/d) = \sum_{i=0}^{n} a_i (c/d)^i = 0$ or (multiplying both sides by d^n) $\sum_{i=0}^{n} a_i c^i d^{n-i} = 0$ or $a_0 d^n + c \sum_{i=1}^{n} a_i c^{i-1} d^{n-i} = 0$ or $\overline{a_0}$ d $\overline{a}^n = c(\sum_{i=1}^n (-a_i)c^{i-1}d^{n-i})$. Since c and d are relatively prime then by Exercise III.3.10 we have that c divides a_0 .

Also
$$
\sum_{i=0}^{n} a_i c^i d^{n-i} = 0
$$
 or $\sum_{i=0}^{n-1} a_i c^i d^{n-i} + a_n c^n = 0$ or $-a_n c^n = \left(\sum_{i=0}^{n-1} a_i c^i d^{n-i-1}\right) d$. Since *c* and *d* are relatively prime then by Exercise III.3.10 we have that *d* divides *a_n*.

Theorem III.6.10. Let D be an integral domain which is a subring of an integral domain E. Let $f \in D[x]$ and $c \in E$.

(i) c is a multiple root of f if and only if $f(c) = 0$ and $f'(c) = 0$.

- (ii) If D is a field and f is relatively prime to f' , then f has no multiple roots in E.
- (iii) If D is a field, f is irreducible in $D[x]$ and E contains a root of f, then f has no multiple roots in E if and only if $f' \neq 0$ (here, " $f' \neq 0$ " means that f' is not the zero polynomial in $D[x]$).

Proof. (i) Let c be a root of f of multiplicity m . Then (by definition) $f(x) = (x - c)^m g(x)$ and $g(c) \neq 0$.
Theorem III.6.10

Theorem III.6.10. Let D be an integral domain which is a subring of an integral domain E. Let $f \in D[x]$ and $c \in E$.

(i) c is a multiple root of f if and only if $f(c) = 0$ and $f'(c) = 0$.

- (ii) If D is a field and f is relatively prime to f' , then f has no multiple roots in E.
- (iii) If D is a field, f is irreducible in $D[x]$ and E contains a root of f, then f has no multiple roots in E if and only if $f' \neq 0$ (here, " $f' \neq 0$ " means that f' is not the zero polynomial in $D[x]$).

Proof. (i) Let c be a root of f of multiplicity m. Then (by definition) $f(x) = (x - c)^{m} g(x)$ and $g(c) \neq 0$. By Lemma III.6.9(iii) $f'(x) = m(x-c)^{m-1}g(x) + (x-c)^{m}g'(x)$. If c is a multiple root of f (i.e., $m > 1$) then we have that $f'(c) = 0$.

Theorem III.6.10

Theorem III.6.10. Let D be an integral domain which is a subring of an integral domain E. Let $f \in D[x]$ and $c \in E$.

(i) c is a multiple root of f if and only if $f(c) = 0$ and $f'(c) = 0$.

- (ii) If D is a field and f is relatively prime to f' , then f has no multiple roots in E.
- (iii) If D is a field, f is irreducible in $D[x]$ and E contains a root of f, then f has no multiple roots in E if and only if $f' \neq 0$ (here, " $f' \neq 0$ " means that f' is not the zero polynomial in $D[x]$).

Proof. (i) Let c be a root of f of multiplicity m. Then (by definition) $f(x) = (x - c)^m g(x)$ and $g(c) \neq 0$. By Lemma III.6.9(iii) $f'(x) = m(x-c)^{m-1}g(x) + (x-c)^{m}g'(x)$. If c is a multiple root of f (i.e., $m > 1$) then we have that $f'(c) = 0$.

Proof (continued). Conversely, let $f(c) = f'(c) = 0$. Since $f(c) = 0$ then $m > 1$ by the Factor Theorem (Theorem III.6.6). ASSUME $m = 1$. Then $f'(x) = g(x) + (x - c)g'(x)$. Consequently, since $f'(c) = 0$, we have that $0 = f'(c) = g(c)$ (Hungerford quotes Corollary III.5.6 since we are using the evaluation homomorphism), a CONTRADICTION to the properties of g. So this contradiction implies the assumption that $m = 1$ is incorrect and hence $m > 1$.

Proof (continued). Conversely, let $f(c) = f'(c) = 0$. Since $f(c) = 0$ then $m > 1$ by the Factor Theorem (Theorem III.6.6). ASSUME $m = 1$. Then $f'(x) = g(x) + (x - c)g'(x)$. Consequently, since $f'(c) = 0$, we have that $0 = f^{\prime}(c) = g(c)$ (Hungerford quotes Corollary III.5.6 since we are using the evaluation homomorphism), a CONTRADICTION to the properties of g. So this contradiction implies the assumption that $m = 1$ is incorrect and hence $m > 1$.

(ii) Let D be a field and f relatively prime to f' .

Proof (continued). Conversely, let $f(c) = f'(c) = 0$. Since $f(c) = 0$ then $m > 1$ by the Factor Theorem (Theorem III.6.6). ASSUME $m = 1$. Then $f'(x) = g(x) + (x - c)g'(x)$. Consequently, since $f'(c) = 0$, we have that $0 = f^{\prime}(c) = g(c)$ (Hungerford quotes Corollary III.5.6 since we are using the evaluation homomorphism), a CONTRADICTION to the properties of g. So this contradiction implies the assumption that $m = 1$ is incorrect and hence $m > 1$.

(ii) Let D be a field and f relatively prime to f' . By Corollary III.6.4, since D is a field then $D[x]$ is a principal ideal domain. Since f and f' are relatively prime, $\gcd(f,f')=1_D$ and so by Theorem III.3.11(ii) there are $k(x)$, $h(x) \in D[x]$ such that $kf + hf' = 1_D$.

Proof (continued). Conversely, let $f(c) = f'(c) = 0$. Since $f(c) = 0$ then $m > 1$ by the Factor Theorem (Theorem III.6.6). ASSUME $m = 1$. Then $f'(x) = g(x) + (x - c)g'(x)$. Consequently, since $f'(c) = 0$, we have that $0 = f^{\prime}(c) = g(c)$ (Hungerford quotes Corollary III.5.6 since we are using the evaluation homomorphism), a CONTRADICTION to the properties of g. So this contradiction implies the assumption that $m = 1$ is incorrect and hence $m > 1$.

(ii) Let D be a field and f relatively prime to f' . By Corollary III.6.4, since D is a field then $D[x]$ is a principal ideal domain. Since f and f' are relatively prime, $\gcd(f,f')=1_D$ and so by Theorem III.3.11(ii) there are $k(x)$, $h(x) \in D[x]$ such that $kf + hf' = 1_D$. ASSUME c is a multiple root of f . Then by Corollary III.5.6 (the use of the evaluation homomorphism) and part (i), $q_D = k(c)f(c) + h(c)f'(c) = 0$ (part (i) implies $f'(c) = 0$), a CONTRADICTION $(1_D \neq 0)$. So the assumption that c is a multiple root of f is false and so c is a simple root of f .

Proof (continued). Conversely, let $f(c) = f'(c) = 0$. Since $f(c) = 0$ then $m > 1$ by the Factor Theorem (Theorem III.6.6). ASSUME $m = 1$. Then $f'(x) = g(x) + (x - c)g'(x)$. Consequently, since $f'(c) = 0$, we have that $0 = f^{\prime}(c) = g(c)$ (Hungerford quotes Corollary III.5.6 since we are using the evaluation homomorphism), a CONTRADICTION to the properties of g. So this contradiction implies the assumption that $m = 1$ is incorrect and hence $m > 1$.

(ii) Let D be a field and f relatively prime to f' . By Corollary III.6.4, since D is a field then $D[x]$ is a principal ideal domain. Since f and f' are relatively prime, $\gcd(f,f')=1_D$ and so by Theorem III.3.11(ii) there are $k(x)$, $h(x) \in D[x]$ such that $kf + hf' = 1_D$. ASSUME c is a multiple root of f . Then by Corollary III.5.6 (the use of the evaluation homomorphism) and part (i), $q_D = k(c)f(c) + h(c)f'(c) = 0$ (part (i) implies $f'(c) = 0$), a CONTRADICTION $(1_D \neq 0)$. So the assumption that c is a multiple root of f is false and so c is a simple root of f .

Proof (continued). (iii) Let D be a field, f irreducible in $D[x]$, and E contain a root of f. First, let $f' \neq 0$. Since f is irreducible then (by definition) the only divisors of f are unit multiples of $f.$ Since $f'\neq 0$ then $deg(f) \geq 1$ and so $deg(f') < deg(f)$.

Proof (continued). (iii) Let D be a field, f irreducible in $D[x]$, and E contain a root of f . First, let $f'\neq 0$. Since f is irreducible then (by definition) the only divisors of f are unit multiples of $f.$ Since $f'\neq 0$ then $\mathsf{deg}(f) \geq 1$ and so $\mathsf{deg}(f') < \mathsf{deg}(f)$. So the only thing that could divide both f' and f is a unit (i.e., a constant polynomial). So f and f' are relatively prime. By part (ii), f has no multiple roots in E .

Proof (continued). (iii) Let D be a field, f irreducible in $D[x]$, and E contain a root of f . First, let $f'\neq 0$. Since f is irreducible then (by definition) the only divisors of f are unit multiples of $f.$ Since $f'\neq 0$ then $\operatorname{\sf deg}(f)\ge 1$ and so $\operatorname{\sf deg}(f')<\operatorname{\sf deg}(f)$. So the only thing that could divide both f' and f is a unit (i.e., a constant polynomial). So f and f' are relatively prime. By part (ii), f has no multiple roots in E . Conversely, suppose f has no multiple roots in E . We have hypothesized that E has a root of f, say b is the root. ASSUME $f' = 0$.

Proof (continued). (iii) Let D be a field, f irreducible in $D[x]$, and E contain a root of f . First, let $f'\neq 0$. Since f is irreducible then (by definition) the only divisors of f are unit multiples of $f.$ Since $f'\neq 0$ then $\operatorname{\sf deg}(f)\ge 1$ and so $\operatorname{\sf deg}(f')<\operatorname{\sf deg}(f)$. So the only thing that could divide both f' and f is a unit (i.e., a constant polynomial). So f and f' are relatively prime. By part (ii), f has no multiple roots in E . Conversely, suppose f has no multiple roots in E . We have hypothesized that E has a root of f, say b is the root. ASSUME $f' = 0$. Then $f'(b) = 0$ and b is a multiple root of f by part (i), a CONTRADICTION. So the assumption is false and $f' \neq 0$.

Proof (continued). (iii) Let D be a field, f irreducible in $D[x]$, and E contain a root of f . First, let $f'\neq 0$. Since f is irreducible then (by definition) the only divisors of f are unit multiples of $f.$ Since $f'\neq 0$ then $\operatorname{\sf deg}(f)\ge 1$ and so $\operatorname{\sf deg}(f')<\operatorname{\sf deg}(f)$. So the only thing that could divide both f' and f is a unit (i.e., a constant polynomial). So f and f' are relatively prime. By part (ii), f has no multiple roots in E . Conversely, suppose f has no multiple roots in E . We have hypothesized that E has a root of f, say b is the root. ASSUME $f' = 0$. Then $f'(b) = 0$ and b is a multiple root of f by part (i), a CONTRADICTION. So the assumption is false and $f' \neq 0$.

Lemma III.6.11. (Gauss) If D is a unique factorization domain and $f, g \in D[x]$, then $C(fg) = C(f)C(g)$. In particular, the product of primitive polynomials is primitive.

Proof. If $a \in D$ and $f \in D[x]$, then $C(af) = aC(f)$ by Exercise II.6.4. Now $f = F(f)f_1$ and $g = C(g)g_1$ where f_1 and g_1 are primitive. Consequently $C(fg) = C(C(f)f_1C(g)g_1) = C(f)C(g)C(f_1g_1)$.

Lemma III.6.11. (Gauss) If D is a unique factorization domain and $f, g \in D[x]$, then $C(fg) = C(f)C(g)$. In particular, the product of primitive polynomials is primitive.

Proof. If $a \in D$ and $f \in D[x]$, then $C(af) = aC(f)$ by Exercise II.6.4. Now $f = F(f)f_1$ and $g = C(g)g_1$ where f_1 and g_1 are primitive. **Consequently** $C(fg) = C(C(f)f_1C(g)g_1) = C(f)C(g)C(f_1g_1)$ **.** Hence it suffices to prove that f_1g_1 is primitive (that is, $C(f_1g_1)$ is a unit). If $f_1g_1=\sum_{i=0}^na_ix^i$ and $g_1=\sum_{j=0}^mb_jx^j$, then $f_1g_1=\sum_{k=0}^{m+n}c_kx^k$ where $c_k = \sum_{i+j=k} a_i b_j$.

Lemma III.6.11. (Gauss) If D is a unique factorization domain and $f, g \in D[x]$, then $C(fg) = C(f)C(g)$. In particular, the product of primitive polynomials is primitive.

Proof. If $a \in D$ and $f \in D[x]$, then $C(af) = aC(f)$ by Exercise II.6.4. Now $f = F(f)f_1$ and $g = C(g)g_1$ where f_1 and g_1 are primitive. Consequently $C(fg) = C(C(f)f_1C(g)g_1) = C(f)C(g)C(f_1g_1)$. Hence it suffices to prove that f_1g_1 is primitive (that is, $C(f_1g_1)$ is a unit). If $f_1g_1=\sum_{i=0}^na_ix^i$ and $g_1=\sum_{j=0}^mb_jx^j$, then $f_1g_1=\sum_{k=0}^{m+n}c_kx^k$ where $\mathsf{c}_{\bm{k}} = \sum_{\bm{i}+\bm{j}=\bm{k}} \bm{a}_{\bm{i}} \bm{b}_{\bm{j}}.$ ASSUME f_1g_1 is not primitive, then $C(f_1g_1)$ is not a unit (by the definition of "primitive") and so by the definition of unique factorization domain (Definition III.3.5(i)) $C(f_1g_1)$ can be written as a product of irreducibles. Since $C(f_1g_1)$ is a greatest common divisor of the c_k , then one of these irreducibles, say p, must be a divisor of each c_k : $p \mid c_k$ for all k.

Lemma III.6.11. (Gauss) If D is a unique factorization domain and $f, g \in D[x]$, then $C(fg) = C(f)C(g)$. In particular, the product of primitive polynomials is primitive.

Proof. If $a \in D$ and $f \in D[x]$, then $C(af) = aC(f)$ by Exercise II.6.4. Now $f = F(f)f_1$ and $g = C(g)g_1$ where f_1 and g_1 are primitive. Consequently $C(fg) = C(C(f)f_1C(g)g_1) = C(f)C(g)C(f_1g_1)$. Hence it suffices to prove that f_1g_1 is primitive (that is, $C(f_1g_1)$ is a unit). If $f_1g_1=\sum_{i=0}^na_ix^i$ and $g_1=\sum_{j=0}^mb_jx^j$, then $f_1g_1=\sum_{k=0}^{m+n}c_kx^k$ where $\mathsf{c}_k = \sum_{i+j = k} \mathsf{a}_i \mathsf{b}_j$. ASSUME $\mathsf{f}_1 \mathsf{g}_1$ is not primitive, then $\mathsf{C}(\mathsf{f}_1 \mathsf{g}_1)$ is not a unit (by the definition of "primitive") and so by the definition of unique factorization domain (Definition III.3.5(i)) $C(f_1g_1)$ can be written as a product of irreducibles. Since $C(f_1g_1)$ is a greatest common divisor of the c_k , then one of these irreducibles, say p, must be a divisor of each c_k : $p \mid c_k$ for all k.

Proof (continued). Since $C(f_1)$ is a unit then $p \nmid C(f_1)$ (for if $p \mid C(f_1)$) then we have also that $C(f_1) | p$ by Theorem III.3.2(iii) and so, by definition of the fact that p and $C(f_1)$ are associates—but then by Theorem III.3.4(v), $C(f_1)$ is irreducible which contradicts the fact that $C(f_1)$ is a unit and hence, by definition, is irreducible). Whence there is a least nonnegative integer s such that $p \mid a_i$ for $i < s$ and $p \nmid a_s$. Similarly there is a least integer t such that $p \mid b_j$ for $j < t$ and $p \nmid b_t.$ Since p divides $c_{s+t} = a_0b_{s+t} + \cdots + a_{s-1}b_{t+1} + a_s b_t + a_{s+1}b_{t-1} + \cdots + a_{s+1}b_0$ then, since p divides $a_0, a_1, \ldots, a_{s-1}$ and $b_0, b_1, \ldots, b_{t-1}$ then p must divide $a_s b_t$.

Proof (continued). Since $C(f_1)$ is a unit then $p \nmid C(f_1)$ (for if $p \mid C(f_1)$) then we have also that $C(f_1) | p$ by Theorem III.3.2(iii) and so, by definition of the fact that p and $C(f_1)$ are associates—but then by Theorem III.3.4(v), $C(f_1)$ is irreducible which contradicts the fact that $C(f_1)$ is a unit and hence, by definition, is irreducible). Whence there is a least nonnegative integer s such that $p \mid a_i$ for $i < s$ and $p \nmid a_s$. Similarly there is a least integer t such that $p \mid b_j$ for $j < t$ and $p \nmid b_t$. Since p divides $c_{s+t} = a_0b_{s+t} + \cdots + a_{s-1}b_{t+1} + a_sb_t + a_{s+1}b_{t-1} + \cdots + a_{s+1}b_0$ then, since p divides $a_0, a_1, \ldots, a_{s-1}$ and $b_0, b_1, \ldots, b_{t-1}$ then p must **divide** $a_{\mathsf{s}}b_{\mathsf{t}}.$ Since every irreducible element in D is prime (this follows from Definition III.3.5(ii); see the "Remark" after the definition on page 137), then $p \mid a_s b_t$ implies that either $p \mid a_s$ or $p \mid b_t$. But this CONTRADICTS the choice of s or t. This contradiction shows that the assumption that f_1g_1 is not primitive is false. Therefore f_1g_1 is primitive. So $C(f_1g_1)$ is a unit and since $C(fg) = C(f)C(g)C(f_1g_1)$ as shown above, then $C(fg) \approx C(f)C(g)$.

Proof (continued). Since $C(f_1)$ is a unit then $p \nmid C(f_1)$ (for if $p \mid C(f_1)$) then we have also that $C(f_1) | p$ by Theorem III.3.2(iii) and so, by definition of the fact that p and $C(f_1)$ are associates—but then by Theorem III.3.4(v), $C(f_1)$ is irreducible which contradicts the fact that $C(f_1)$ is a unit and hence, by definition, is irreducible). Whence there is a least nonnegative integer s such that $p \mid a_i$ for $i < s$ and $p \nmid a_s$. Similarly there is a least integer t such that $p \mid b_j$ for $j < t$ and $p \nmid b_t$. Since p divides $c_{s+t} = a_0b_{s+t} + \cdots + a_{s-1}b_{t+1} + a_sb_t + a_{s+1}b_{t-1} + \cdots + a_{s+1}b_0$ then, since p divides $a_0, a_1, \ldots, a_{s-1}$ and $b_0, b_1, \ldots, b_{t-1}$ then p must divide $a_{s}b_{t}.$ Since every irreducible element in D is prime (this follows from Definition III.3.5(ii); see the "Remark" after the definition on page 137), then $p \mid a_{s}b_{t}$ implies that either $p \mid a_{s}$ or $p \mid b_{t}$. But this CONTRADICTS the choice of s or t . This contradiction shows that the assumption that f_1g_1 is not primitive is false. Therefore f_1g_1 is primitive. So $C(f_1g_1)$ is a unit and since $C(fg) = C(f)C(g)C(f_1g_1)$ as shown above, then $C(fg) \approx C(f)C(g)$.

Lemma III.6.12. Let D be a unique factorization domain with quotient field F and let f and g be primitive polynomials in $D[x]$. Then f and g are associates in $D[x]$ if and only if they are associates in $F[x]$.

Proof. Let f and g be associates in the integral domain $F[x]$ (since F is a field, $F[x]$ is commutative and has no zero divisors) then $f = gu$ for some unit $u \in F[x]$ by Theorem III.3.2(vi).

Lemma III.6.12. Let D be a unique factorization domain with quotient field F and let f and g be primitive polynomials in $D[x]$. Then f and g are associates in $D[x]$ if and only if they are associates in $F[x]$.

Proof. Let f and g be associates in the integral domain $F[x]$ (since F is a field, $F[x]$ is commutative and has no zero divisors) then $f = gu$ for some unit $u \in F[x]$ by Theorem III.3.2(vi). By Corollary III.6.4, u is a nonzero constant polynomial and so $u \in F$, whence $u = b/c$ for some $b, c \in D$ and $c \neq 0$. Therefore $f = gb/c$ and $cf = bg$. Since $C(f)$ and $C(g)$ are units in D (because f, g are primitive) then

> $c \approx cC(f)$ since $C(f)$ is a unit \approx C(cf) by Exercise III.6.4 $= C(bg)$ \approx bC(g) by Exercise II.6.4 \approx b since $C(g)$ is a unit.

Lemma III.6.12. Let D be a unique factorization domain with quotient field F and let f and g be primitive polynomials in $D[x]$. Then f and g are associates in $D[x]$ if and only if they are associates in $F[x]$.

Proof. Let f and g be associates in the integral domain $F[x]$ (since F is a field, $F[x]$ is commutative and has no zero divisors) then $f = gu$ for some unit $u \in F[x]$ by Theorem III.3.2(vi). By Corollary III.6.4, u is a nonzero constant polynomial and so $u \in F$, whence $u = b/c$ for some $b, c \in D$ and $c \neq 0$. Therefore $f = gb/c$ and $cf = bg$. Since $C(f)$ and $C(g)$ are units in D (because f, g are primitive) then

- $c \approx cC(f)$ since $C(f)$ is a unit \approx C(cf) by Exercise III.6.4 $= C(bg)$
	- \approx bC(g) by Exercise II.6.4
	- \approx b since $C(g)$ is a unit.

Lemma III.6.12. Let D be a unique factorization domain with quotient field F and let f and g be primitive polynomials in $D[x]$. Then f and g are associates in $D[x]$ if and only if they are associates in $F[x]$.

Proof (continued). Therefore $b = cv$ for some unit $v \in D$ and $cf = bg = cvg$. Consequently $f = vg$ (since $c \neq 0$) whence f and g are associates.

Let f and g be associates in $D[x]$. The by Theorem III.3.2(vi) $f = gu$ for some unit $u \in D[x]$.

Lemma III.6.12. Let D be a unique factorization domain with quotient field F and let f and g be primitive polynomials in $D[x]$. Then f and g are associates in $D[x]$ if and only if they are associates in $F[x]$.

Proof (continued). Therefore $b = cv$ for some unit $v \in D$ and $cf = bg = cvg$. Consequently $f = vg$ (since $c \neq 0$) whence f and g are associates.

Let f and g be associates in $D[x]$. The by Theorem III.3.2(vi) $f = gu$ for some unit $u \in D[x]$. But F is a quotient field of D so $D[x] \subset F[x]$ (as rings, say) so $f = gu$ where u is a unit in $F[x]$ and so f and g are associates in $F[x]$.

Lemma III.6.12. Let D be a unique factorization domain with quotient field F and let f and g be primitive polynomials in $D[x]$. Then f and g are associates in $D[x]$ if and only if they are associates in $F[x]$.

Proof (continued). Therefore $b = cv$ for some unit $v \in D$ and $cf = bg = cvg$. Consequently $f = vg$ (since $c \neq 0$) whence f and g are associates.

Let f and g be associates in $D[x]$. The by Theorem III.3.2(vi) $f = gu$ for some unit $u \in D[x]$. But F is a quotient field of D so $D[x] \subset F[x]$ (as rings, say) so $f = gu$ where u is a unit in $F[x]$ and so f and g are associates in $F[x]$.

Lemma III.6.13. Let D be a unique factorization domain with quotient field F and f a primitive polynomial of positive degree in $D[x]$. Then f is irreducible in $D[x]$ if and only if f is irreducible in $F[x]$. **Proof.** Let f be irreducible in $D[x]$ and ASSUME that $f = gh$ with $g, h \in F[x]$ where $deg(g) \geq 1$, $deg(h) \geq 1$ (that is, assume f is not irreducible in $F[x]$).

Lemma III.6.13. Let D be a unique factorization domain with quotient field F and f a primitive polynomial of positive degree in $D[x]$. Then f is irreducible in $D[x]$ if and only if f is irreducible in $F[x]$. **Proof.** Let f be irreducible in $D[x]$ and ASSUME that $f = gh$ with $g, h \in F[x]$ where $deg(g) \geq 1$, $deg(h) \geq 1$ (that is, assume f is not **irreducible in** $F[x]$ **).** Then $g = \sum_{i=0}^n (a_i/b_i)x^i$ and $h = \sum_{j=0}^m (c_j/d_j)x^j$ with $a_i, b_{i,j}$, $d_j \in D$ and $b_i \neq 0, d_j \neq 0$ for all i and j . Let $b = b_0b_1 \cdots b_n$ and for each i let $b_i^* = b_0b_1\cdots b_{i-1}b_{i+1}\cdots b_n$. If $g_1 = \sum_{i=1}^n a_ib_i^*x^i \in D[x]$ then $g_1 = ag_2$ with $a = C(g_1)$ for $g_2 \in D[x]$ and g_2 primitive.

Lemma III.6.13. Let D be a unique factorization domain with quotient field F and f a primitive polynomial of positive degree in $D[x]$. Then f is irreducible in $D[x]$ if and only if f is irreducible in $F[x]$. **Proof.** Let f be irreducible in $D[x]$ and ASSUME that $f = gh$ with $g, h \in F[x]$ where $deg(g) \geq 1$, $deg(h) \geq 1$ (that is, assume f is not irreducible in $\digamma[\![x]\!]$). Then $g=\sum_{i=0}^n(a_i/b_i)x^i$ and $h=\sum_{j=0}^m(c_j/d_j)x^j$ with $a_i, b_{i,j}$, $d_j \in D$ and $b_i \neq 0, d_j \neq 0$ for all i and j . Let $b = b_0b_1 \cdots b_n$ and for each i let $b_i^* = b_0 b_1 \cdots b_{i-1} b_{i+1} \cdots b_n$. If $g_1 = \sum_{i=1}^n a_i b_i^* x^i \in D[x]$ then $g_1 = ag_2$ with $a = C(g_1)$ for $g_2 \in D[x]$ and g_2 primitive. Now

$$
g = \sum_{i=0}^{n} (a_i/b_i)x^{i} = (b/b) \sum_{i=0}^{n} (a_i/b_i)x^{i} = (1_D/b) \sum_{i=0}^{n} (a_i b/b_i)x^{i}
$$

$$
= (1_D/b) \sum_{i=0}^{n} a_i b_i^{*} x^{i} = (a_D/b)g_1 = (a/b)g_2
$$

and deg(g) = deg(g₂) = n.

Lemma III.6.13. Let D be a unique factorization domain with quotient field F and f a primitive polynomial of positive degree in $D[x]$. Then f is irreducible in $D[x]$ if and only if f is irreducible in $F[x]$. **Proof.** Let f be irreducible in $D[x]$ and ASSUME that $f = gh$ with $g, h \in F[x]$ where $deg(g) \geq 1$, $deg(h) \geq 1$ (that is, assume f is not irreducible in $\digamma[\![x]\!]$). Then $g=\sum_{i=0}^n(a_i/b_i)x^i$ and $h=\sum_{j=0}^m(c_j/d_j)x^j$ with $a_i, b_{i,j}$, $d_j \in D$ and $b_i \neq 0, d_j \neq 0$ for all i and j . Let $b = b_0b_1 \cdots b_n$ and for each i let $b_i^* = b_0 b_1 \cdots b_{i-1} b_{i+1} \cdots b_n$. If $g_1 = \sum_{i=1}^n a_i b_i^* x^i \in D[x]$ then $g_1 = ag_2$ with $a = C(g_1)$ for $g_2 \in D[x]$ and g_2 primitive. Now

$$
g = \sum_{i=0}^{n} (a_i/b_i)x^{i} = (b/b) \sum_{i=0}^{n} (a_i/b_i)x^{i} = (1_D/b) \sum_{i=0}^{n} (a_i b/b_i)x^{i}
$$

$$
= (1_D/b) \sum_{i=0}^{n} a_i b_i^{*} x^{i} = (a_D/b)g_1 = (a/b)g_2
$$

and deg(g) = deg(g₂) = n.

Proof (continued). Similarly, $h = (c/d)h_2$ with $c, d \in D$, $h_2 \in D[x]$, h_2 primitive, and deg(h) = deg(h₂) = m. Consequently, $f = gh = (a/b)g_2(c/d)h_2$ whence $bdf = acg_2h_2$. Since f is primitive by hypothesis of the lemma, and g_2h_2 is primitive by Lemma III.6.11, then

bd \approx bdC(f) since C(f) is a unit

- \approx C(bdf) by Exercise III.6.4
- $= C(acg_2h_2)$
- \approx acC(g₂h₂) by Exercise III.6.4

 \approx ac since $C(g_2g_2)$ is a unit.

Proof (continued). Similarly, $h = (c/d)h_2$ with $c, d \in D$, $h_2 \in D[x]$, h_2 primitive, and deg(h) = deg(h₂) = m. Consequently, $f = gh = (a/b)g_2(c/d)h_2$ whence $bdf = acg_2h_2$. Since f is primitive by hypothesis of the lemma, and g_2h_2 is primitive by Lemma III.6.11, then

$$
bd \approx bdC(f) \text{ since } C(f) \text{ is a unit}
$$

$$
\approx
$$
 C(bdf) by Exercise III.6.4

$$
= C(acg_2h_2)
$$

 \approx acC(g_2h_2) by Exercise III.6.4

$$
\approx \quad \text{ac since } C(g_2g_2) \text{ is a unit.}
$$

Therefore $ac = bdv$ for some unit $v \in D$ and so $bdf = acg₂h₂ = bdvg₂h₂$ or $f = v g_2 h_2$ where v is a unit in $D[x]$. So f and $g_2 h_2$ are associates in $D[x]$.

Proof (continued). Similarly, $h = (c/d)h_2$ with $c, d \in D$, $h_2 \in D[x]$, h_2 primitive, and deg(h) = deg(h₂) = m. Consequently, $f = gh = (a/b)g_2(c/d)h_2$ whence $bdf = acg_2h_2$. Since f is primitive by hypothesis of the lemma, and g_2h_2 is primitive by Lemma III.6.11, then

$$
bd \approx bdC(f) \text{ since } C(f) \text{ is a unit}
$$

$$
\approx
$$
 C(bdf) by Exercise III.6.4

$$
= C(acg_2h_2)
$$

 \approx acC(g_2h_2) by Exercise III.6.4

 \approx ac since $C(g_2g_2)$ is a unit.

Therefore $ac = bdv$ for some unit $v \in D$ and so $bdf = acg_2h_2 = bdv g_2h_2$ or $f = v g_2 h_2$ where v is a unit in $D[x]$. So f and $g_2 h_2$ are associates in $D[x]$. But by Theorem III.3.4(v), every associate of an irreducible is irreducible (here, in integral domain $D[x]$) so vg_2h_2 is irreducible in $D[x]$, a CONTRADICTION (since neither g_2 nor h_2 is a unit in $D \subset F$ since...

Proof (continued). Similarly, $h = (c/d)h_2$ with $c, d \in D$, $h_2 \in D[x]$, h_2 primitive, and deg(h) = deg(h₂) = m. Consequently, $f = gh = (a/b)g_2(c/d)h_2$ whence $bdf = acg_2h_2$. Since f is primitive by hypothesis of the lemma, and g_2h_2 is primitive by Lemma III.6.11, then

$$
bd \approx bdC(f) \text{ since } C(f) \text{ is a unit}
$$

$$
\approx
$$
 C(bdf) by Exercise III.6.4

$$
= C(acg_2h_2)
$$

 \approx acC(g_2h_2) by Exercise III.6.4

$$
\approx \quad \text{ac since } C(g_2g_2) \text{ is a unit.}
$$

Therefore $ac = bdv$ for some unit $v \in D$ and so $bdf = acg_2h_2 = bdv g_2h_2$ or $f = v g_2 h_2$ where v is a unit in $D[x]$. So f and $g_2 h_2$ are associates in $D[x]$. But by Theorem III.3.4(v), every associate of an irreducible is irreducible (here, in integral domain $D[x]$) so $v g_2 h_2$ is irreducible in $D[x]$, a CONTRADICTION (since neither g_2 nor h_2 is a unit in $D \subset F$ since...

Lemma III.6.13. Let D be a unique factorization domain with quotient field F and f a primitive polynomial of positive degree in $D[x]$. Then f is irreducible in $D[x]$ if and only if f is irreducible in $F[x]$.

Proof (continued). ... the only units in F [and hence in D] are the nonzero constant polynomials by Corollary III.6.4). So the assumption that f is not irreducible in $F[x]$ is false and we have shown that f is irreducible in $D[x]$ implies that f is irreducible in $F[x]$ and $f = gh$ for some $g, h \in D[x]$.

Lemma III.6.13. Let D be a unique factorization domain with quotient field F and f a primitive polynomial of positive degree in $D[x]$. Then f is irreducible in $D[x]$ if and only if f is irreducible in $F[x]$.

Proof (continued). ... the only units in F [and hence in D] are the nonzero constant polynomials by Corollary III.6.4). So the assumption that f is not irreducible in $F[x]$ is false and we have shown that f is irreducible in $D[x]$ implies that f is irreducible in $F[x]$ and $f = gh$ for some $g, h \in D[x]$. Then by Corollary III.6.4, one of g, h (say g) is a constant polynomial. Thus $C(f) = C(gh) \approx gC(h)$ by Exercise III.6.4. Since f is hypothesized to be primitive then $C(f)$ is a unit in D and has an inverse $C(f)^{-1}$ in D.

Lemma III.6.13. Let D be a unique factorization domain with quotient field F and f a primitive polynomial of positive degree in $D[x]$. Then f is irreducible in $D[x]$ if and only if f is irreducible in $F[x]$.

Proof (continued). ... the only units in F [and hence in D] are the nonzero constant polynomials by Corollary III.6.4). So the assumption that f is not irreducible in $F[x]$ is false and we have shown that f is irreducible in $D[x]$ implies that f is irreducible in $F[x]$ and $f = gh$ for some $g, h \in D[x]$. Then by Corollary III.6.4, one of g, h (say g) is a constant polynomial. Thus $C(f) = C(gh) \approx gC(h)$ by Exercise III.6.4. Since f is hypothesized to be primitive then $C(f)$ is a unit in D and has an inverse $C(f)^{-1}$ in D. Since $C(f) \approx gC(h)$ then $C(f) = gC(h)u$ for some unit $u\in D.$ But then $1_D=gC(h)uC(f)^{-1}$ and so g is a unit in D and hence in $D[x]$. So $f = gh$ in $D[x]$ implies that g (or h) is a unit in $D[x]$ and so f is irreducible in $D[x]$.
Lemma III.6.13 (continued 2)

Lemma III.6.13. Let D be a unique factorization domain with quotient field F and f a primitive polynomial of positive degree in $D[x]$. Then f is irreducible in $D[x]$ if and only if f is irreducible in $F[x]$.

Proof (continued). ... the only units in F [and hence in D] are the nonzero constant polynomials by Corollary III.6.4). So the assumption that f is not irreducible in $F[x]$ is false and we have shown that f is irreducible in $D[x]$ implies that f is irreducible in $F[x]$ and $f = gh$ for some $g, h \in D[x]$. Then by Corollary III.6.4, one of g, h (say g) is a constant polynomial. Thus $C(f) = C(gh) \approx gC(h)$ by Exercise III.6.4. Since f is hypothesized to be primitive then $C(f)$ is a unit in D and has an inverse $C(f)^{-1}$ in D. Since $C(f) \approx gC(h)$ then $C(f) = gC(h)u$ for some unit $u\in D$. But then $1_D=g\mathcal{C}(h)u\mathcal{C}(f)^{-1}$ and so g is a unit in D and hence in $D[x]$. So $f = gh$ in $D[x]$ implies that g (or h) is a unit in $D[x]$ and so f is irreducible in $D[x]$.

Theorem III.6.14. If D is a unique factorization domain, then so is the polynomial ring $D[x_1, x_2, \ldots, x_n]$.

Proof. We shall prove that $D[x]$ is a unique factorization domain. Since $D[x_1, x_2, \ldots, x_n] = D[x_1, x_2, \ldots, x_{n-1}][x_n]$ by Corollary III.5.7, a routine inductive argument completes the proof. Now we show that $D[x]$ satisfies both parts of the definition of a unique factorization domain (Definition III.3.5).

Theorem III.6.14. If D is a unique factorization domain, then so is the polynomial ring $D[x_1, x_2, \ldots, x_n]$.

Proof. We shall prove that $D[x]$ is a unique factorization domain. Since $D[x_1, x_2, \ldots, x_n] = D[x_1, x_2, \ldots, x_{n-1}][x_n]$ by Corollary III.5.7, a routine inductive argument completes the proof. Now we show that $D[x]$ satisfies both parts of the definition of a unique factorization domain (Definition III.3.5).

(i) Factorization. If $f \in D[x]$ has positive degree, then $f = C(f)f_1$ with f_1 a primitive polynomial in $D[x]$ of positive degree. Since D is a unique factorization domain then either $C(f)$ is a unit or $C(f) = c_1 c_2 \cdots c_m$ with each c_i irreducible in D and hence in $D[\mathrm{\mathsf{x}}]$ (by part (i) of the definition of unique factorization domain).

Theorem III.6.14. If D is a unique factorization domain, then so is the polynomial ring $D[x_1, x_2, \ldots, x_n]$.

Proof. We shall prove that $D[x]$ is a unique factorization domain. Since $D[x_1, x_2, \ldots, x_n] = D[x_1, x_2, \ldots, x_{n-1}][x_n]$ by Corollary III.5.7, a routine inductive argument completes the proof. Now we show that $D[x]$ satisfies both parts of the definition of a unique factorization domain (Definition III.3.5).

(i) Factorization. If $f \in D[x]$ has positive degree, then $f = C(f)f_1$ with f_1 a primitive polynomial in $D[x]$ of positive degree. Since D is a unique factorization domain then either $C(f)$ is a unit or $C(f) = c_1c_2 \cdots c_m$ with each c_i irreducible in D and hence in $D[\mathrm{\mathsf{x}}]$ (by part (i) of the definition of **unique factorization domain).** Let F be the field of quotients of D . Since $F[x]$ is a unique factorization domain by Corollary III.6.4 which contains $D[x]$, then $f_1 = p_1^* p_2^* \cdots p_n^*$ with each p_i^* an irreducible polynomial in $F[x]$ (by part (i) of the definition of unique factorization domain).

Theorem III.6.14. If D is a unique factorization domain, then so is the polynomial ring $D[x_1, x_2, \ldots, x_n]$.

Proof. We shall prove that $D[x]$ is a unique factorization domain. Since $D[x_1, x_2, \ldots, x_n] = D[x_1, x_2, \ldots, x_{n-1}][x_n]$ by Corollary III.5.7, a routine inductive argument completes the proof. Now we show that $D[x]$ satisfies both parts of the definition of a unique factorization domain (Definition III.3.5).

(i) Factorization. If $f \in D[x]$ has positive degree, then $f = C(f)f_1$ with f_1 a primitive polynomial in $D[x]$ of positive degree. Since D is a unique factorization domain then either $C(f)$ is a unit or $C(f) = c_1c_2 \cdots c_m$ with each c_i irreducible in D and hence in $D[\mathrm{\mathsf{x}}]$ (by part (i) of the definition of unique factorization domain). Let F be the field of quotients of D . Since $F[x]$ is a unique factorization domain by Corollary III.6.4 which contains $D[x]$, then $f_1 = p_1^* p_2^* \cdots p_n^*$ with each p_i^* an irreducible polynomial in $F[x]$ (by part (i) of the definition of unique factorization domain).

Proof (continued). As shown in the proof of Lemma III.6.13 (take it from the "Similarly $h = (c/d)h_2...$ " part), for each *i* we have $p_i^* = (a_i/b_i)p_i$ with $a_i, b_i \in D$, $b_i \neq 0$, $a_i/b_i \in F$, $p_i \in D[x]$ and p_i **primitive**. Since each p_i^* is irreducible in $F[x]$ then each $p_i = (b_i/a_i)p_i^*$ is irreducible in $F[x]$ (from the definition of irreducible). Whence by Lemma III.6.13 each p_i is irreducible in $D[x]$. If we define $a = a_1 a_2 \cdots a_n$ and $b = b_1 b_2 \cdots b_n$ then $f_1 = p_1^* p_2^* \cdots p_n^* = (a/b)p_1p_2 \cdots p_n$. Consequently, $bf_1 = a p_1 p_2 \cdots p_n$.

Proof (continued). As shown in the proof of Lemma III.6.13 (take it from the "Similarly $h = (c/d)h_2...$ " part), for each *i* we have $p_i^* = (a_i/b_i)p_i$ with $a_i, b_i \in D$, $b_i \neq 0$, $a_i/b_i \in F$, $p_i \in D[x]$ and p_i primitive. Since each p_i^* is irreducible in $F[x]$ then each $p_i = (b_i/a_i)p_i^*$ is irreducible in $F[x]$ (from the definition of irreducible). Whence by Lemma III.6.13 each p_i is irreducible in $D[x]$. If we define $a = a_1 a_2 \cdots a_n$ and $b = b_1 b_2 \cdots b_n$ then $f_1 = p_1^* p_2^* \cdots p_n^* = (a/b)p_1p_2 \cdots p_n$. Consequently, $bf_1 = ap_1p_2 \cdots p_n$. Since f_1 is primitive by the choice of it above and $p_1p_2\cdots p_n$ is primitive by Lemma III.6.11, it follows as in the proof of Lemma III.6.12 that a and b are associates in D $(b \approx bC(f_1) \approx C(bf_1) = C(ap_1p_2\cdots p_n) \approx aC(p_1p_2\cdots p_n) \approx a$. Thus $a = bu$ or $a/b = u$ with u a unit in D by Theorem III.3.2(iv).

Proof (continued). As shown in the proof of Lemma III.6.13 (take it from the "Similarly $h = (c/d)h_2...$ " part), for each *i* we have $p_i^* = (a_i/b_i)p_i$ with $a_i, b_i \in D$, $b_i \neq 0$, $a_i/b_i \in F$, $p_i \in D[x]$ and p_i primitive. Since each p_i^* is irreducible in $F[x]$ then each $p_i = (b_i/a_i)p_i^*$ is irreducible in $F[x]$ (from the definition of irreducible). Whence by Lemma III.6.13 each p_i is irreducible in $D[x]$. If we define $a = a_1 a_2 \cdots a_n$ and $b = b_1 b_2 \cdots b_n$ then $f_1 = p_1^* p_2^* \cdots p_n^* = (a/b)p_1p_2 \cdots p_n$. Consequently, $bf_1 = ap_1p_2 \cdots p_n$. Since f_1 is primitive by the choice of it above and $p_1p_2\cdots p_n$ is primitive by Lemma III.6.11, it follows as in the proof of Lemma III.6.12 that a and b are associates in D $(b \approx bC(f_1) \approx C(bf_1) = C(ap_1p_2\cdots p_n) \approx aC(p_1p_2\cdots p_n) \approx a$. Thus $a = bu$ or $a/b = u$ with u a unit in D by Theorem III.3.2(iv). Therefore, if $C(f)$ is a nonunit, say $C(f) = c_1 c_2 \cdots c_m$ where each c_i is irreducible in D (since D is a unique factorization domain).

Proof (continued). As shown in the proof of Lemma III.6.13 (take it from the "Similarly $h = (c/d)h_2...$ " part), for each *i* we have $p_i^* = (a_i/b_i)p_i$ with $a_i, b_i \in D$, $b_i \neq 0$, $a_i/b_i \in F$, $p_i \in D[x]$ and p_i primitive. Since each p_i^* is irreducible in $F[x]$ then each $p_i = (b_i/a_i)p_i^*$ is irreducible in $F[x]$ (from the definition of irreducible). Whence by Lemma III.6.13 each p_i is irreducible in $D[x]$. If we define $a = a_1 a_2 \cdots a_n$ and $b = b_1 b_2 \cdots b_n$ then $f_1 = p_1^* p_2^* \cdots p_n^* = (a/b)p_1p_2 \cdots p_n$. Consequently, $bf_1 = ap_1p_2 \cdots p_n$. Since f_1 is primitive by the choice of it above and $p_1p_2\cdots p_n$ is primitive by Lemma III.6.11, it follows as in the proof of Lemma III.6.12 that a and b are associates in D $(b \approx bC(f_1) \approx C(bf_1) = C(ap_1p_2\cdots p_n) \approx aC(p_1p_2\cdots p_n) \approx a$. Thus $a = bu$ or $a/b = u$ with u a unit in D by Theorem III.3.2(iv). Therefore, if $C(f)$ is a nonunit, say $C(f) = c_1 c_2 \cdots c_m$ where each c_i is irreducible in D (since D is a unique factorization domain).

Proof (continued). Then $f = C(f)f_1 = c_1c_2 \cdots c_m(up_1)p_2 \cdots p_n$ (with $n = a/b$) where each c_i and p_i are irreducible in $D[x]$ as described above (and underlined) and up_1 is irreducible in $D[x]$ since p_1 is irreducible and u is a unit. So f is a product of irreducibles.

Proof (continued). Then $f = C(f)f_1 = c_1c_2 \cdots c_m(up_1)p_2 \cdots p_n$ (with $n = a/b$) where each c_i and p_i are irreducible in $D[x]$ as described above (and underlined) and up_1 is irreducible in $D[x]$ since p_1 is irreducible and u is a unit. So f is a product of irreducibles. Similarly, if $C(f)$ is a unit then $f = C(f)f_1 = C(f)(up_1)p_2 \cdots p_n$ where p_2, p_3, \ldots, p_n are irreducible in $D[x]$ as described above (and underlined) and $C(f)up_1$ is irreducible in $D[x]$ since p_1 is irreducible and $C(f)u$ is a unit. So f is a product of irreducibles.

Proof (continued). Then $f = C(f)f_1 = c_1c_2 \cdots c_m(up_1)p_2 \cdots p_n$ (with $n = a/b$) where each c_i and p_i are irreducible in $D[x]$ as described above (and underlined) and up_1 is irreducible in $D[x]$ since p_1 is irreducible and u is a unit. So f is a product of irreducibles. Similarly, if $C(f)$ is a unit then $f = C(f)f_1 = C(f)(up_1)p_2 \cdots p_n$ where p_2, p_3, \ldots, p_n are irreducible in $D[x]$ as described above (and underlined) and $C(f)up_1$ is irreducible in $D[x]$ since p_1 is irreducible and $C(f)u$ is a unit. So f is a product of irreducibles.

(ii) Uniqueness. Let $f \in D[x]$ have positive degree.

Proof (continued). Then $f = C(f)f_1 = c_1c_2 \cdots c_m(up_1)p_2 \cdots p_n$ (with $n = a/b$) where each c_i and p_i are irreducible in $D[x]$ as described above (and underlined) and up_1 is irreducible in $D[x]$ since p_1 is irreducible and u is a unit. So f is a product of irreducibles. Similarly, if $C(f)$ is a unit then $f = C(f)f_1 = C(f)(up_1)p_2 \cdots p_n$ where p_2, p_3, \ldots, p_n are irreducible in $D[x]$ as described above (and underlined) and $C(f)up_1$ is irreducible in $D[x]$ since p_1 is irreducible and $C(f)u$ is a unit. So f is a product of irreducibles.

(ii) Uniqueness. Let $f \in D[x]$ have positive degree. Then, as argued in part (i), $f = c_1 c_2 \cdots c_m p_1 p_2 \cdots p_n$ with each c_i irreducible in D, $C(f) = c_1 c_2 \cdots c_m$, and each p_i is irreducible in $D[x]$ (this is established in (i) for both $C(f)$ a nonunit and $C(f)$ a unit [in which case $m = 0$]—when $C(f)$ is a nonunit we replace up₁ of (i) with $p_1 = up_1$ since up₁ is irreducible as well where u is a unit; when $C(f)$ is a unit we replace $C(f)$ up₁ with $p_1 = C(f)$ up₁ since $C(f)$ up₁ is irreducible as well where $C(f)$ u is a unit).

Proof (continued). Then $f = C(f)f_1 = c_1c_2 \cdots c_m(up_1)p_2 \cdots p_n$ (with $n = a/b$) where each c_i and p_i are irreducible in $D[x]$ as described above (and underlined) and up_1 is irreducible in $D[x]$ since p_1 is irreducible and u is a unit. So f is a product of irreducibles. Similarly, if $C(f)$ is a unit then $f = C(f)f_1 = C(f)(up_1)p_2 \cdots p_n$ where p_2, p_3, \ldots, p_n are irreducible in $D[x]$ as described above (and underlined) and $C(f)up_1$ is irreducible in $D[x]$ since p_1 is irreducible and $C(f)u$ is a unit. So f is a product of irreducibles.

(ii) Uniqueness. Let $f \in D[x]$ have positive degree. Then, as argued in part (i), $f = c_1 c_2 \cdots c_m p_1 p_2 \cdots p_n$ with each c_i irreducible in D, $C(f) = c_1 c_2 \cdots c_m$, and each p_i is irreducible in $D[x]$ (this is established in (i) for both $C(f)$ a nonunit and $C(f)$ a unit [in which case $m = 0$]—when $C(f)$ is a nonunit we replace up₁ of (i) with $p_1 = up_1$ since up₁ is irreducible as well where u is a unit; when $C(f)$ is a unit we replace $C(f)up_1$ with $p_1 = C(f)up_1$ since $C(f)up_1$ is irreducible as well where $C(f)$ u is a unit).

Proof (continued). Suppose $f = c_1 c_2 \cdots c_m p_1 p_2 \cdots p_n$ with each c_i irreducible in D, $C(f) = c_1 c_2 \cdots c_m$, and p_i irreducible in $D[x]$ and $f=d_1d_2\cdots d_rq_1q_2\cdots q_s$ with each d_i irreducible in $D, \; C(f)=d_1d_2\cdots d_r$ **and each** q_i **is irreducible in** $D[x]$. Since each p_i and q_i is irreducible then each ρ_i and q_i is primitive (or wlse we could factor out nonunit $C(\rho_i)$ or $C(q_i)$ from p_i or q_i respectively and p_i or q_i would not be irreducible). Since $C(f) = c_1 c_2 \cdots c_m$ and $C(f) = d_1 d_2 \cdots d_r$ then $c_1 c_2 \cdots c_m$ and $d_1 d_2 \cdots d_r$ are associates in $D[x]$ and hence in $F[x]$.

Proof (continued). Suppose $f = c_1 c_2 \cdots c_m p_1 p_2 \cdots p_n$ with each c_i irreducible in D, $C(f) = c_1 c_2 \cdots c_m$, and p_i irreducible in $D[x]$ and $f=d_1d_2\cdots d_rq_1q_2\cdots q_s$ with each d_i irreducible in $D, \; C(f)=d_1d_2\cdots d_r$ and each q_i is irreducible in $D[x]$. Since each p_i and q_i is irreducible then each ρ_i and q_i is primitive (or wlse we could factor out nonunit $C(\rho_i)$ or $C(q_i)$ from p_i or q_i respectively and p_i or q_i would not be irreducible). Since $C(f) = c_1 c_2 \cdots c_m$ and $C(f) = d_1 d_2 \cdots d_r$ then $c_1 c_2 \cdots c_m$ and $d_1 d_2 \cdots d_r$ are associates in $D[x]$ and hence in $F[x]$. Since each p_i and q_i is irreducible in $D[x]$, then by Lemma III.6.13, each ρ_i and q_i is irreducible in $F[x]$. Now by Corollary.6.4, since F is a field (of quotients of D) then $F[x]$ is a unique factorization domain and so $n = s$ and (after reindexing; "permuting" as the definition of unique factorization domain says) each p_i is an associate of q_i in $\mathit{F}[x]$. By Lemma III.6.12 each p_i is an associate of q_i in $D[x]$.

Proof (continued). Suppose $f = c_1c_2 \cdots c_m p_1p_2 \cdots p_n$ with each c_i irreducible in D, $C(f) = c_1 c_2 \cdots c_m$, and p_i irreducible in $D[x]$ and $f=d_1d_2\cdots d_rq_1q_2\cdots q_s$ with each d_i irreducible in $D, \; C(f)=d_1d_2\cdots d_r$ and each q_i is irreducible in $D[x]$. Since each p_i and q_i is irreducible then each ρ_i and q_i is primitive (or wlse we could factor out nonunit $C(\rho_i)$ or $C(q_i)$ from p_i or q_i respectively and p_i or q_i would not be irreducible). Since $C(f) = c_1 c_2 \cdots c_m$ and $C(f) = d_1 d_2 \cdots d_r$ then $c_1 c_2 \cdots c_m$ and $d_1 d_2 \cdots d_r$ are associates in $D[x]$ and hence in $F[x]$. Since each p_i and q_i is irreducible in $D[\mathsf{x}]$, then by Lemma III.6.13, each p_i and q_i is irreducible in $F[x]$. Now by Corollary.6.4, since F is a field (of quotients of D) then $F[x]$ is a unique factorization domain and so $n = s$ and (after reindexing; "permuting" as the definition of unique factorization domain says) each p_i is an associate of q_i in $\mathit{F}[x]$. By Lemma III.6.12 each p_i is an associate of $\bm{q_i}$ in $D[\bm{\mathsf{x}}]$. Hence, part (ii) of the definition of unique factorization domain is satisfied in $D[x]$ and so $D[x]$ is a unique factorization domain.

Proof (continued). Suppose $f = c_1c_2 \cdots c_m p_1p_2 \cdots p_n$ with each c_i irreducible in D, $C(f) = c_1 c_2 \cdots c_m$, and p_i irreducible in $D[x]$ and $f=d_1d_2\cdots d_rq_1q_2\cdots q_s$ with each d_i irreducible in $D, \; C(f)=d_1d_2\cdots d_r$ and each q_i is irreducible in $D[x]$. Since each p_i and q_i is irreducible then each ρ_i and q_i is primitive (or wlse we could factor out nonunit $C(\rho_i)$ or $C(q_i)$ from p_i or q_i respectively and p_i or q_i would not be irreducible). Since $C(f) = c_1 c_2 \cdots c_m$ and $C(f) = d_1 d_2 \cdots d_r$ then $c_1 c_2 \cdots c_m$ and $d_1 d_2 \cdots d_r$ are associates in $D[x]$ and hence in $F[x]$. Since each p_i and q_i is irreducible in $D[\mathsf{x}]$, then by Lemma III.6.13, each p_i and q_i is irreducible in $F[x]$. Now by Corollary.6.4, since F is a field (of quotients of D) then $F[x]$ is a unique factorization domain and so $n = s$ and (after reindexing; "permuting" as the definition of unique factorization domain says) each p_i is an associate of q_i in $\mathit{F}[x]$. By Lemma III.6.12 each p_i is an associate of q_i in $D[x]$. Hence, part (ii) of the definition of unique factorization domain is satisfied in $D[x]$ and so $D[x]$ is a unique factorization domain.

Theorem III.6.15. (Eisenstein's Criterion) Let D be a unique factorization domain with quotient field F . If $f = \sum_{i=0}^n a_i x^i \in D[x]$, $deg(f) > 1$ and p is an irreducible element of D such that

$$
p \nmid a_n; \, p \mid a_i \text{ for } i = 0, 1, \ldots, n-1; \, p^2 \nmid a_0,
$$

then f is irreducible in $F[x]$. If f is primitive, then f is irreducible in $D[x]$.

Proof. Let $f = C(f)f_1$ where f_1 is primitive in $D[x]$ and $C(f) \in D$ (in particular, $f_1 = f$ if f is primitive). Since $C(f)$ is a unit in F (F is a field; Corollary III.6.4 technically), it suffices to show that f_1 is irreducible in $F[x]$.

Theorem III.6.15. (Eisenstein's Criterion) Let D be a unique factorization domain with quotient field F . If $f = \sum_{i=0}^n a_i x^i \in D[x]$, $deg(f) > 1$ and p is an irreducible element of D such that

$$
p \nmid a_n; \, p \mid a_i \text{ for } i = 0, 1, \ldots, n-1; \, p^2 \nmid a_0,
$$

then f is irreducible in $F[x]$. If f is primitive, then f is irreducible in $D[x]$.

Proof. Let $f = C(f)f_1$ where f_1 is primitive in $D[x]$ and $C(f) \in D$ (in particular, $f_1 = f$ if f is primitive). Since $C(f)$ is a unit in F (F is a field; Corollary III.6.4 technically), it suffices to show that f_1 is irreducible in **F[x].** By Lemma III.6.13, f_1 is irreducible in $F[x]$ if and only if it is irreducible in $D[x]$ so it suffices to prove that F_1 is irreducible in $D[x]$.

Theorem III.6.15. (Eisenstein's Criterion) Let D be a unique factorization domain with quotient field F . If $f = \sum_{i=0}^n a_i x^i \in D[x]$, $deg(f) \geq 1$ and p is an irreducible element of D such that

$$
p \nmid a_n; \, p \mid a_i \text{ for } i = 0, 1, \ldots, n-1; \, p^2 \nmid a_0,
$$

then f is irreducible in $F[x]$. If f is primitive, then f is irreducible in $D[x]$.

Proof. Let $f = C(f)f_1$ where f_1 is primitive in $D[x]$ and $C(f) \in D$ (in particular, $f_1 = f$ if f is primitive). Since $C(f)$ is a unit in F (F is a field; Corollary III.6.4 technically), it suffices to show that f_1 is irreducible in $F[x]$. By Lemma III.6.13, f_1 is irreducible in $F[x]$ if and only if it is irreducible in $D[x]$ so it suffices to prove that F_1 is irreducible in $D[x]$. ASSUME that f_1 is not irreducible in $D[x]$ and that $f_1 = gh$ with $g = b_r x^r + \cdots + b_1 x + b_0 \in D[x]$, $deg(g) = r \ge 1$, and $h = c_2 x^2 + \cdots + c_1 c + c_0 \in D[x]$, deg $(h) = s \ge 1$.

Theorem III.6.15. (Eisenstein's Criterion) Let D be a unique factorization domain with quotient field F . If $f = \sum_{i=0}^n a_i x^i \in D[x]$, $deg(f) \geq 1$ and p is an irreducible element of D such that

$$
p \nmid a_n; \, p \mid a_i \text{ for } i = 0, 1, \ldots, n-1; \, p^2 \nmid a_0,
$$

then f is irreducible in $F[x]$. If f is primitive, then f is irreducible in $D[x]$.

Proof. Let $f = C(f)f_1$ where f_1 is primitive in $D[x]$ and $C(f) \in D$ (in particular, $f_1 = f$ if f is primitive). Since $C(f)$ is a unit in F (F is a field; Corollary III.6.4 technically), it suffices to show that f_1 is irreducible in $F[x]$. By Lemma III.6.13, f_1 is irreducible in $F[x]$ if and only if it is irreducible in $D[x]$ so it suffices to prove that F_1 is irreducible in $D[x]$. ASSUME that f_1 is not irreducible in $D[x]$ and that $f_1 = gh$ with $g = b_r x^r + \cdots + b_1 x + b_0 \in D[x]$, $deg(g) = r \ge 1$, and $h=c_2x^2+\cdots+c_1c+c_0\in D[x],\ \deg(h)=s\geq 1.$

Proof (continued). Now p does not divide $C(f)$ (the greatest common divisor of the coefficients of f) since $p \nmid a_n$ (and p is irreducible), whence the coefficients of $f_1 = \sum_{i=0}^n a_i^* x^i$ satisfy the same divisibility conditions with respect to \bm{p} as do the coefficients of \bm{f} . Since p divides $a_0^*=b_0c_0$ and every irreducible in D is prime (by part (ii) of the definition of unique factorization domain, Definition III.3.5; see the "Remark" on page 137) then either $p \mid b_0$ or $p \mid c_0$. Say $p \mid b_0$. Since $p^2 \nmid a_0^*$ then $p \nmid c_0$.

Proof (continued). Now p does not divide $C(f)$ (the greatest common divisor of the coefficients of f) since $p \nmid a_n$ (and p is irreducible), whence the coefficients of $f_1 = \sum_{i=0}^n a_i^* x^i$ satisfy the same divisibility conditions with respect to p as do the coefficients of f . Since p divides $a_0^* = b_0 c_0$ and every irreducible in D is prime (by part (ii) of the definition of unique factorization domain, Definition III.3.5; see the "Remark" on page 137) then either $p \mid b_0$ or $p \mid c_0$. Say $p \mid b_0$. Since $p^2 \nmid a_0^*$ then $p \nmid c_0$.

Now some coefficient b_k of g is not divisible by p (otherwise p would divide every coefficient of g and hence every coefficient of $f_1 = gh$ which is a contradiction to the fact that f_1 is primitive and so $C(f_1)$ is a unit, not a multiple of an irreducible).

Proof (continued). Now p does not divide $C(f)$ (the greatest common divisor of the coefficients of f) since $p \nmid a_n$ (and p is irreducible), whence the coefficients of $f_1 = \sum_{i=0}^n a_i^* x^i$ satisfy the same divisibility conditions with respect to p as do the coefficients of f . Since p divides $a_0^* = b_0 c_0$ and every irreducible in D is prime (by part (ii) of the definition of unique factorization domain, Definition III.3.5; see the "Remark" on page 137) then either $p \mid b_0$ or $p \mid c_0$. Say $p \mid b_0$. Since $p^2 \nmid a_0^*$ then $p \nmid c_0$.

Now some coefficient b_k of g is not divisible by p (otherwise p would divide every coefficient of g and hence every coefficient of $f_1 = gh$ which is a contradiction to the fact that f_1 is primitive and so $C(f_1)$ is a unit, not a **multiple of an irreducible).** Let k be the least positive integer such that $p \mid b_i$ for $i < k$ and $p \nmid b_k$. Then $1 \leq k \leq r < n$ (since $p \mid b_0$ as described above, since deg(f_1) = deg(g) + deg(h), by Theorem III.6.1(iv), and since $deg(h) \ge 1$ by the choice of h, then $deg(g) \le n-1$ and so $r \le n-1$).

Proof (continued). Now p does not divide $C(f)$ (the greatest common divisor of the coefficients of f) since $p \nmid a_n$ (and p is irreducible), whence the coefficients of $f_1 = \sum_{i=0}^n a_i^* x^i$ satisfy the same divisibility conditions with respect to p as do the coefficients of f . Since p divides $a_0^* = b_0 c_0$ and every irreducible in D is prime (by part (ii) of the definition of unique factorization domain, Definition III.3.5; see the "Remark" on page 137) then either $p \mid b_0$ or $p \mid c_0$. Say $p \mid b_0$. Since $p^2 \nmid a_0^*$ then $p \nmid c_0$.

Now some coefficient b_k of g is not divisible by p (otherwise p would divide every coefficient of g and hence every coefficient of $f_1 = gh$ which is a contradiction to the fact that f_1 is primitive and so $C(f_1)$ is a unit, not a multiple of an irreducible). Let k be the least positive integer such that $p \mid b_i$ for $i < k$ and $p \nmid b_k$. Then $1 \leq k \leq r < n$ (since $p \mid b_0$ as described above, since deg(f_1) = deg(g) + deg(h), by Theorem III.6.1(iv), and since $deg(h) \ge 1$ by the choice of h, then $deg(g) \le n-1$ and so $r \le n-1$).

Theorem III.6.15. (Eisenstein's Criterion) Let D be a unique factorization domain with quotient field F. If $f = \sum_{i=0}^{n} a_i x^i \in D[x]$, $deg(f) \geq 1$ and p is an irreducible element of D such that

$$
p \nmid a_n; \quad p \mid a_i \text{ for } i = 0, 1, \ldots, n-1; \quad p^2 \nmid a_0,
$$

then f is irreducible in $F[x]$. If f is primitive, then f is irreducible in $D[x]$.

Proof (continued). Since $a_k^* = b_0c_k + b_1c_{k-1} + \cdots + b_{k-1}c_1 + b_kc_0$ and $p \mid a_k^*$ (since $p \mid a_k$ because $k \leq n-1$). Since $p \mid b_i$ for $i < k$ then p must **divide** $b_k c_0$ **.** As above, p is prime so this implies that $p \mid b_k$ or $p \mid c_0$, both a CONTRADICTION. So the assumption that f_1 is not irreducible is false and hence f_1 is irreducible in $D[x]$. Whence f is irreducible in $D[x]$ and so is irreducible in $F[x]$.

Theorem III.6.15. (Eisenstein's Criterion) Let D be a unique factorization domain with quotient field F. If $f = \sum_{i=0}^{n} a_i x^i \in D[x]$, $deg(f) \geq 1$ and p is an irreducible element of D such that

$$
p \nmid a_n; \quad p \mid a_i \text{ for } i = 0, 1, \ldots, n-1; \quad p^2 \nmid a_0,
$$

then f is irreducible in $F[x]$. If f is primitive, then f is irreducible in $D[x]$.

Proof (continued). Since $a_k^* = b_0c_k + b_1c_{k-1} + \cdots + b_{k-1}c_1 + b_kc_0$ and $p \mid a_k^*$ (since $p \mid a_k$ because $k \leq n-1$). Since $p \mid b_i$ for $i < k$ then p must divide $b_k c_0$. As above, p is prime so this implies that $p \mid b_k$ or $p \mid c_0$, both a CONTRADICTION. So the assumption that f_1 is not irreducible is false and hence f_1 is irreducible in $D[x]$. Whence f is irreducible in $D[x]$ and so **is irreducible in F[x].** Also, if f is primitive, then say $f = f_1$ and we have seen that f_1 is irreducible in $D[x]$.

Theorem III.6.15. (Eisenstein's Criterion) Let D be a unique factorization domain with quotient field F. If $f = \sum_{i=0}^{n} a_i x^i \in D[x]$, $deg(f) \geq 1$ and p is an irreducible element of D such that

$$
p \nmid a_n; \quad p \mid a_i \text{ for } i = 0, 1, \ldots, n-1; \quad p^2 \nmid a_0,
$$

then f is irreducible in $F[x]$. If f is primitive, then f is irreducible in $D[x]$.

Proof (continued). Since $a_k^* = b_0c_k + b_1c_{k-1} + \cdots + b_{k-1}c_1 + b_kc_0$ and $p \mid a_k^*$ (since $p \mid a_k$ because $k \leq n-1$). Since $p \mid b_i$ for $i < k$ then p must divide $b_k c_0$. As above, p is prime so this implies that $p \mid b_k$ or $p \mid c_0$, both a CONTRADICTION. So the assumption that f_1 is not irreducible is false and hence f_1 is irreducible in $D[x]$. Whence f is irreducible in $D[x]$ and so is irreducible in $F[x]$. Also, if f is primitive, then say $f = f_1$ and we have seen that f_1 is irreducible in $D[x]$.