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Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring K. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a+ B)=rB forall r € R,a € A.

The map 7w : A— A/B given by a+ a+ B is an R-module epimorphism
with kernel B.

Proof. Next, (r+s)(a+B)=(r+s)a+B=(ra+sa)+B=

(ra+ B)+ (sa+ B) =r(a+ B) + s(a+ B). Finally,

r(s(a+ B)) =r(sa+ B)=r(sa)+ B=(rs)a+ B=rs(a+ B). So A\ B
is an R-module.

Now to check 7. Consider

m(a+b)=(a+ b)+ B—(a+ B)+ (b+ B) =n(a)+ n(b), and

n(ra) = (ra+ B = r(a+ B) = rm(a), so 7 is a homomorphism. Since B is
the identity in A\ B an db+ B = B if and only if b € B, then

Ker(m) = B. Finally, 7 is clearly onto, so that 7 is an epimorphism. O
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Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring R. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a+ B)=rBforallre R,ac A

The map 7 : A— A/B given by a+ a+ B is an R-module epimorphism
with kernel B.

Proof. By the definition of module, A is an additive abelian group, so

B < Ais a normal subgroup and A\ B is defined and itself abelian. If
a+ B = a + B (as cosets of B) then a — @ € B. Since B is a submodule
then r(a—a') e Bforallr € R; thatis, ra—ra’ € B. Sora+ B =ra’ + B
(by Corollary 1.4.3) and the action (of “scalar multiplication”) of R on

A\ B is well defined (that is, independent of the representation a + B or
a + B of the coset).

We now check the three parts of the definition of R-module. First,
r((a+B)+(b+B))=r((a+b)+B)=r(a+b)+B=(ra+rb)+B=
(ra+B)+(rb+ B)=r(a+ b)+r(b+ B).
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Theorem IV.1.12

Theorem IV.1.12. If Ris a ring, {A; | i € I} a family of R-modules, C
an R-module, and {p; : C — A; | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

¢ : C— [];es Ai such that mip = @; for all i € I. [];; A is uniquely
determined up to isomorphism by this property. In other words, [, A; is
a product in the category of R-modules.

Proof. By Theorem 1.8.2 there is a unique group homomorphism

¢ : C — ]] Ai which has the desired property and ¢ is given by (as seen in
the proof of Theorem 1.8.2) ¢(c) = {pi(c)}ies. Since each y; is an
R-module homomorphism then for all r € R, x € C, we have

p(rc) = {pi(re)ticr = {rvi(c)}ier = f{pi(c)}ier = r{pi(c)} = ro(c)
and for ¢1, ¢ € C we have p(c1 + @) = {pi(c2 + @) }ier =

{pi(a) + vi(c2)tier = {pi(a)}ier +{pi(c2)}ier = ¢(c1) + ¢(c2) so ¢ is
an R-module homomorphism.
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Theorem IV.1.12 (continued)

Theorem IV.1.12. If R is a ring, {A; | i € I} a family of R-modules, C
an R-module, and {p; : C — A; | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

¢ C—[l;es Ai such that mjp = @; for all i € I. ], Ai is uniquely
determined up to isomorphism by this property. In other words, [, A; is
a product in the category of R-modules.

Proof (continued). By Definition 1.7.2 (with P =[], A;, B =c,

T — T, i — i, and @ = ) we have that P = [],., A; is a product in the
category of R-modules. By Theorem 1.7.3, [];-, A; is uniquely determined
up to isomorphism (or “equivalence”). O
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Theorem 1V.1.13

Theorem IV.1.13. If R is a ring, {A; | i € I} a family of R-modules, D
an R-module, and {4¢; : A; — D | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism
V1)) Ai — D such that Yu; = forall i€ 1. )., Aj is uniquely
determined up to isomorphism by this property. In other words, > .., A; is
a coproduct in the category of R-modules.

Proof (continued). ...and for {a;}, {a}} €~; A; we have

v(ar} + &) = ({ar+ ) = 3 vilar + &)

= Z('vi'f(a;) +v(a7)) = Zt.-i-'f(a;) + Z'vi';(a?) =v({ai}) +v({a}),

and v is an R-module homomorphism. By Definition 1.7.4 (with
S=> A, B=D, V=1, tj =1, and ¥ = 1), ), A; is a coproduct in
the category of R-modules. By Theorem 1.7.5, >, A; is uniquely
determined up to isomorphism (or “equivalence”). O
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Theorem IV.1.13

Theorem IV.1.13. If Ris a ring, {A; | i € I} a family of R-modules, D
an R-module, and {v; : A; — D | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

V1) i) Ai — D such that u; = forall i € 1. )., Aj is uniquely
determined up to isomorphism by this property. In other words, > .., A; is
a coproduct in the category of R-modules.

Proof. By Theorem 1.8.5 there is a unique abelian group homomorphism
Y > Aj — D with the desired property and 1) is given by (as seen in the
proof of Theorem 1.8.5) ¥)({a;j}) = >_; ¥i(ai), where the sum is taken over
the finite set of indices / such that g; # 0. Since each 1; is an R-module
homomorphism, then for all r € R and {a;} € > A

U(c{ai}) = v({cai}) = Z vi(ca;) = Z cti(a;) = sZ-uﬁ;(a;) = sy({a;})

!
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Theorem IV.1.14

Theorem IV.1.14. Let R be a ring and A, Ay, Ap, ..., A, R-modules.

Then AZ A, @A & --- B A, ifand only if foreach i =1,2,..., n there
are R-module homomorphisms 7; : A — A; and (; : A; — A such that

(i) miti =14 fori=1,2,...,m;
(ii) mjei =0 for i # j;
(iii) m +wm2 4+ tamh = 1a.

Proof. First, suppose A= A; & Ay & --- D A,. We take 7; as the
canonical projection and ¢; the canonical injection. Then for a; € A; we

have mjii(a;) = wi(er, €, ..., a;,...,€,) = a;j (where e; is the identity in
A;) and so Tjtj = 14, and (i) holds. Also, for i # j,

miti(ai) = mj(er. e, ...,aj,...,e,) = ¢ (with additive notation, ¢; = 0)
and (ii) holds.
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Proof (continued). Also, for (a1, ao,..., ap) € A we have
(eam2 + tom2 + -+ - + tan) (a1, 325 - - -, an)
= um(a,a,...,an) + toma(a1, @2, ... an) + -+ tama(ar, a2, . .
t1(a1) + t2(az2) + - - + tn(an)
= (319629629---361'1) +(elaa‘2=e3="'=en)+"'+(ele92 ----- an)
- (81782:"":8!})

and 1171 + o2+« + 1pTh = 14 and (iii) holds. Similarly, if the
isomorphism is f : A — Ay & A> & --- & A, then replacing 7; with

mif : A— A; and 1; with f~1;; : A; — A then (i) and (ii) still hold and

Y11y + tama + -+ + 1amn)f = 1,4 implies (iii).

October 21, 2018
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Theorem IV.1.14 (continued 3)

Proof (continued). Similarly,

n n
33
i=1 j=1

n
= Z Vimi since ; and ¢; satisfy (i), (ii), (iii)
i—1

P —

l,'/ h‘!’ —

= lasae-eA,

By Theorem 1.2.3(ii), ¢ is a group isomorphism and so
AZAI B AD---B A,
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Theorem |V.1.14 (continued 2)

Proof (continued). Second, suppose that R-module homomorphism
mi: A— Aj and ¢; : A; — A satisfy (i), (i), (iii). Let the canonical

projections 7 : Ay @ Ax @ --- @ A, — A; and the canonical injections
U A= AlB A S B Ayas =1+ thma + -+ LT, Then

oY = Z L Z ymj = Z Z LT
=1 j=1 i=1 j=1
n
= Z 1imiim; since the canonical mappings satisfy
i=1
mitj = 0 for i # j as shown above
n
= Zi,,‘l,qr,?'r,‘ since 7.1, = 14, by above
i=1
n
= > umi =14, by (iii) above.
i=1
0] Modern Algebra October 21, 2018

Lemma IV.1.17

Lemma IV.1.17. The Short Five Lemma.
Let R be a ring and
0— A

B-£. . C—0

o 3 ¥

0— A BE o

a commutative diagram of R-modules and R-module homomorphisms
such that each row is a short exact sequence. Then

1/23

(i) if & and ~y are monomorphisms then /3 is a monomorphism;

(i) if o and -y are epimorphisms then (3 is an epimorphism;
(iii) if o and 7y are isomorphisms then /3 is an isomorphism.
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emma IV.1.17. The Short Five Lemma

Lemma IV.1.17 (continued 1)

Proof (continued). (i) We have

vg(b) = g'B(b) by the commutivity

= g'(0) since 3 is a homomorphism

= 0 since g’ is a homomorphism.
This implies g(b) = 0 since 7 is hypothesized to be one to one. So
b € Ker(g). Since the top row is a (short) exact sequence, then
Im(f) = Ker(g) and so b = f(a) for some a € A. We have

fla(a) = [f(a) by commutivity

B(b) since f(a) = b
= 0 by hypothesis.

Since the bottom row is a short exact sequence then, by the note above,
f’ is one to one and so the only thing mapped to 0 by " is 0 and we must
have a(a) = 0.
0 |
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Lemma IV.1.17 (continued 3)

Proof (continued). (ii) Consider b — f(a) € B:
B(b— f(a)) = B(b) — f(a). We have
pBf(a) = f'a(a) by commutivity
= f/(d') since ' = a(a)
= fB(b) — b since f'(a') = B(b) — V.
Hence
B(b—f(a)) = pB(b)— pBf(a)
= JB(b) — (B(b) — b') by the previous computation
= b.
Since b’ € B’ was arbitrary, then 3 is onto (an epimorphism) and (ii)
follows.

(iii) This follows from (i) and (ii). O
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Lemma IV.1.17 (continued 2)

Proof (continued). (i) But « is one to one by hypothesis and so a = 0.
Hence b = f(a) = f(0) = 0 since f is a homomorphism. So b =0 and /3
is one to one and (i) follows.

(i) Let b’ € B’. Then g'(b') € C'. Since 7 is hypothesized to be onto
then g’(b") = v(c) for some ¢ € C. Since the top row is a short exact
sequence then, by the not above, g is an epimorphism (onto). Hence
¢ = g(b) for some b € B. We have

g'B(b) = ~vg(b) by commutivity
= 7(c) since ¢ = g(b)
= g'(b) since g'(b') = 7(c).
Thus 0 = g'B(b) — g’'(b') = &’(B(b) — b') and
B(b) — b’ € Ker(g’) = Im(f’) by the exactness of the bottom row. Say
f'(a")B(b) — b' where &’ € A. Since « is hypothesized to be onto, then
a(a) = & for some a € A.
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Theorem 1V.1.18

Theorem IV.1.18. Let R be a ring and 0 — A i B & A> — 0 a short
exact sequence of R-module homomorphisms. Then the following
conditions are equivalent:

(i) There is an R-module homomorphism h : Ay — B with

gh = 1A2;
(ii) There is an R-module homomorphism k : B — A; with
kf = 1a,;

(iii) the given sequence is isomorphic (with identity maps on A;

and Ay) to the direct sum short exact sequence

{0} — Ay L ABA A — {0}; in particular

B = A & A;.
Proof. (i)=-(iii) Suppose there is an R-module homomorphism
h: A, — B with gh = 14,. Then by Theorem IV.1.13 (with ¢; = f and
Up = h, where D = B) there is a unique module homomorphism
¢ : A; @& Ay — B given by (see the proof of Theorem IV.1.13 where
v({ai}) = >_;vi(ai)) the mapping (a1, a2) — f(a1) + h(az).
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Theorem [V.1.18 (continued 1)

Proof (continued). (i)=-(iii) Consider the diagram:

0 — A1~ Ai@A —2% As — 0

f g

0O0— A — B = A— 0
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Theorem 1V.1.18 (continued 3)

Proof. (ii)=(iii) Suppose there is an R-module homomorphism

k : B — A; with kf =14,. Then by Theorem IV.1.12 (with ¢; = k and
@2 = g, where C = B) there is a unique 1 : B — A; X Ay = A1 @ Ay (the
second equality holding since the indexing set is finite; see page 173) given
by (see the proof of Theorem 1V.1.12 where ¢(c) = {p(c)}ics) the
mapping ¢(b) = (k(b),g(b)). Consider the diagram:

f g

— B  —

0 — A A — 0

‘ ‘p ‘1,42

L1 w2

00— AA— Ai2A — A, — 0
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Theorem [V.1.18 (continued 2)

Proof (continued). (i)=-(iii) For a; € A; we have
pt1(a1) = p(a1,0) = f(a1) + h(0) = f(a1) = fla,(a1) and so pi1 = faa,.
For (a1, a2) € A1 @ Az we have

1p(a2) = a2 = 1p,(a2)
= gh(az) since gh = 14 by hypothesis

1a,m2(a1, a2)

= gf(a1)+ gh(az) since df =0 by note above
(see Remark on p. 176)

= g(f(a1) + h(a1)) since g is a homomorphism

= gy((a1,2)).

So 14,m = gy and the diagram commutes. Since 14, and 14, are
isomorphisms, then by the Short Five Lemma (Lemma 1V.1.17) ¢ is an
isomorphism and (iii) holds.
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Theorem [V.1.18 (continued 4)

Proof. (ii)=(iii) For a; € A; we have ¢f(a1) = (kf(a1),gf(a1)) = (a1,0)
(since kf = 14, and since gf = 0 by the not above [see Remark on page
176]) and (a1,0) = t1(a1) = t11a,(a1), and so pf = 1114. For b € B we
have 14,8(b) = g(b) = m2(k(b), g(b)) = m@(b), and so 14,8 = Ty and
the diagram commutes. Since 1,4, and 1,4, are isomorphisms, then by the
Short Five Lemma (Lemma IV.1.17) % is an isomorphism and (iii) holds.
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Theorem [V.1.18 (continued 5)

Proof. (iii)=(i) and (ii) Suppose the given sequence

{0} — Ay L A, — {0} is isomorphic (with identity maps on A; and
Az) to the short exact sequence {0} — A; 5 A; @ Ay 3 Ay — {0}. Let
p : A1 & Ay — B be the “center” isomorphism. Consider the diagram:

0 — Alf'—l> AL & A T2, A, — 0

‘ ‘p ‘1,42

0— A L» £, A — 0
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Theorem IV.1.18

Theorem 1V.1.18 (continued 6)

Proof (continued). (iii)=-(i) and (ii) By the definition of “isomorphic,”
the diagram commutes. Define h: A, — B as h= s and k: B — A; as
k = mn,o‘l. Now mjt; = 14, and ;9_1;,9 = 1a,@A,. Since the diagram
commutes, we have

kf = (mp )f = (me™)(fla,)
(m191)(pr1) since fla, = @u1 by the commutivity of the diagram

= Tl = 1A1
and

gh = g(p2) = (fo)r
= (1a,m2)t2 since g = 14,7 by the commutivity of the diagram

= 1,42(]T262) = 1,421,42 = 1A2-

So (i) and (ii) follow. O
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