Modern Algebra

Chapter IV. Modules

IV.1. Modules, Homomorphisms, and Exact Sequences—Proofs of Theorems

Table of contents

- Theorem IV.1.6
- 2 Theorem IV.1.12
- 3 Theorem IV.1.13
- 4 Theorem IV.1.14
- 5 Lemma IV.1.17. The Short Five Lemma
- 6 Theorem IV.1.18

Theorem IV.1.6. Let *B* be a submodule *A* over a ring *R*. Then the quotient group A/B is an *R*-module with the action of *R* on A/B given by

$$r(a+B) = rB$$
 for all $r \in R, a \in A$.

The map $\pi : A \to A/B$ given by $a \mapsto a + B$ is an *R*-module epimorphism with kernel *B*.

Proof. By the definition of module, A is an additive abelian group, so B < A is a normal subgroup and $A \setminus B$ is defined and itself abelian. If a + B = a' + B (as cosets of B) then $a - a' \in B$.

Theorem IV.1.6. Let *B* be a submodule *A* over a ring *R*. Then the quotient group A/B is an *R*-module with the action of *R* on A/B given by

$$r(a+B) = rB$$
 for all $r \in R, a \in A$.

The map $\pi : A \to A/B$ given by $a \mapsto a + B$ is an *R*-module epimorphism with kernel *B*.

Proof. By the definition of module, A is an additive abelian group, so B < A is a normal subgroup and $A \setminus B$ is defined and itself abelian. If a + B = a' + B (as cosets of B) then $a - a' \in B$. Since B is a submodule then $r(a - a') \in B$ for all $r \in R$; that is, $ra - ra' \in B$. So ra + B = ra' + B (by Corollary 1.4.3) and the action (of "scalar multiplication") of R on $A \setminus B$ is well defined (that is, independent of the representation a + B or a' + B of the coset).

Theorem IV.1.6. Let *B* be a submodule *A* over a ring *R*. Then the quotient group A/B is an *R*-module with the action of *R* on A/B given by

$$r(a+B) = rB$$
 for all $r \in R, a \in A$.

The map $\pi : A \to A/B$ given by $a \mapsto a + B$ is an *R*-module epimorphism with kernel *B*.

Proof. By the definition of module, A is an additive abelian group, so B < A is a normal subgroup and $A \setminus B$ is defined and itself abelian. If a + B = a' + B (as cosets of B) then $a - a' \in B$. Since B is a submodule then $r(a - a') \in B$ for all $r \in R$; that is, $ra - ra' \in B$. So ra + B = ra' + B (by Corollary I.4.3) and the action (of "scalar multiplication") of R on $A \setminus B$ is well defined (that is, independent of the representation a + B or a' + B of the coset).

We now check the three parts of the definition of *R*-module. First, r((a+B)+(b+B)) = r((a+b)+B) = r(a+b)+B = (ra+rb)+B = (ra+B)+(rb+B) = r(a+b)+r(b+B).

Theorem IV.1.6. Let *B* be a submodule *A* over a ring *R*. Then the quotient group A/B is an *R*-module with the action of *R* on A/B given by

$$r(a+B) = rB$$
 for all $r \in R, a \in A$.

The map $\pi : A \to A/B$ given by $a \mapsto a + B$ is an *R*-module epimorphism with kernel *B*.

Proof. By the definition of module, A is an additive abelian group, so B < A is a normal subgroup and $A \setminus B$ is defined and itself abelian. If a + B = a' + B (as cosets of B) then $a - a' \in B$. Since B is a submodule then $r(a - a') \in B$ for all $r \in R$; that is, $ra - ra' \in B$. So ra + B = ra' + B (by Corollary I.4.3) and the action (of "scalar multiplication") of R on $A \setminus B$ is well defined (that is, independent of the representation a + B or a' + B of the coset).

We now check the three parts of the definition of *R*-module. First, r((a+B)+(b+B)) = r((a+b)+B) = r(a+b)+B = (ra+rb)+B = (ra+B)+(rb+B) = r(a+b)+r(b+B).

Theorem IV.1.6. Let *B* be a submodule *A* over a ring *R*. Then the quotient group A/B is an *R*-module with the action of *R* on A/B given by

$$r(a+B) = rB$$
 for all $r \in R, a \in A$.

The map $\pi : A \to A/B$ given by $a \mapsto a + B$ is an *R*-module epimorphism with kernel *B*.

Proof. Next, (r + s)(a + B) = (r + s)a + B = (ra + sa) + B = (ra + B) + (sa + B) = r(a + B) + s(a + B). Finally, r(s(a + B)) = r(sa + B) = r(sa) + B = (rs)a + B = rs(a + B). So $A \setminus B$ is an *R*-module.

Now to check π . Consider $\pi(a+b) = (a+b) + B - (a+B) + (b+B) = \pi(a) + \pi(b)$, and $\pi(ra) = (ra + B = r(a+B) = r\pi(a)$, so π is a homomorphism. Since B is the identity in $A \setminus B$ and b + B = B if and only if $b \in B$, then $\operatorname{Ker}(\pi) = B$. Finally, π is clearly onto, so that π is an epimorphism. \Box

Theorem IV.1.6. Let *B* be a submodule *A* over a ring *R*. Then the quotient group A/B is an *R*-module with the action of *R* on A/B given by

$$r(a+B) = rB$$
 for all $r \in R, a \in A$.

The map $\pi : A \to A/B$ given by $a \mapsto a + B$ is an *R*-module epimorphism with kernel *B*.

Proof. Next,
$$(r + s)(a + B) = (r + s)a + B = (ra + sa) + B = (ra + B) + (sa + B) = r(a + B) + s(a + B)$$
. Finally,
 $r(s(a + B)) = r(sa + B) = r(sa) + B = (rs)a + B = rs(a + B)$. So $A \setminus B$
is an *R*-module.
Now to check π . Consider
 $\pi(a + b) = (a + b) + B - (a + B) + (b + B) = \pi(a) + \pi(b)$, and
 $\pi(ra) = (ra + B = r(a + B) = r\pi(a)$, so π is a homomorphism. Since *B* is

the identity in $A \setminus B$ and b + B = B if and only if $b \in B$, then Ker $(\pi) = B$. Finally, π is clearly onto, so that π is an epimorphism.

Theorem IV.1.12. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *C* an *R*-module, and $\{\varphi_i : C \to A_i \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\varphi : C \to \prod_{i \in I} A_i$ such that $\pi_i \varphi = \varphi_i$ for all $i \in I$. $\prod_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\prod_{i \in I} A_i$ is a product in the category of *R*-modules.

Proof. By Theorem 1.8.2 there is a unique *group* homomorphism $\varphi: C \to \prod A_i$ which has the desired property and φ is given by (as seen in the proof of Theorem 1.8.2) $\varphi(c) = \{\varphi_i(c)\}_{i \in I}$.

Theorem IV.1.12. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *C* an *R*-module, and $\{\varphi_i : C \to A_i \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\varphi : C \to \prod_{i \in I} A_i$ such that $\pi_i \varphi = \varphi_i$ for all $i \in I$. $\prod_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\prod_{i \in I} A_i$ is a product in the category of *R*-modules.

Proof. By Theorem I.8.2 there is a unique *group* homomorphism $\varphi: C \to \prod A_i$ which has the desired property and φ is given by (as seen in the proof of Theorem I.8.2) $\varphi(c) = \{\varphi_i(c)\}_{i \in I}$. Since each φ_i is an *R*-module homomorphism then for all $r \in R$, $x \in C$, we have $\varphi(rc) = \{\varphi_i(rc)\}_{i \in I} = \{r\varphi_i(c)\}_{i \in I} = f\{\varphi_i(c)\}_{i \in I} = r\{\varphi_i(c)\} = r\varphi(c)$ and for $c_1, c_2 \in C$ we have $\varphi(c_1 + c_2) = \{\varphi_i(c_2 + c_2)\}_{i \in I} = \{\varphi_i(c_1) + \varphi_i(c_2)\}_{i \in I} = \{\varphi_i(c_1)\}_{i \in I} + \{\varphi_i(c_2)\}_{i \in I} = \varphi(c_1) + \varphi(c_2)$ so φ is an *R*-module homomorphism.

Theorem IV.1.12. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *C* an *R*-module, and $\{\varphi_i : C \to A_i \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\varphi : C \to \prod_{i \in I} A_i$ such that $\pi_i \varphi = \varphi_i$ for all $i \in I$. $\prod_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\prod_{i \in I} A_i$ is a product in the category of *R*-modules.

Proof. By Theorem I.8.2 there is a unique *group* homomorphism $\varphi : C \to \prod A_i$ which has the desired property and φ is given by (as seen in the proof of Theorem I.8.2) $\varphi(c) = \{\varphi_i(c)\}_{i \in I}$. Since each φ_i is an *R*-module homomorphism then for all $r \in R$, $x \in C$, we have $\varphi(rc) = \{\varphi_i(rc)\}_{i \in I} = \{r\varphi_i(c)\}_{i \in I} = f\{\varphi_i(c)\}_{i \in I} = r\{\varphi_i(c)\} = r\varphi(c)$ and for $c_1, c_2 \in C$ we have $\varphi(c_1 + c_2) = \{\varphi_i(c_2 + c_2)\}_{i \in I} = \{\varphi_i(c_1) + \varphi_i(c_2)\}_{i \in I} = \{\varphi_i(c_1)\}_{i \in I} = \{\varphi_i(c_1)\}_{i \in I} = \{\varphi_i(c_1)\}_{i \in I} = \varphi(c_1) + \varphi(c_2)$ so φ is an *R*-module homomorphism.

Theorem IV.1.12 (continued)

Theorem IV.1.12. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *C* an *R*-module, and $\{\varphi_i : C \to A_i \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\varphi : C \to \prod_{i \in I} A_i$ such that $\pi_i \varphi = \varphi_i$ for all $i \in I$. $\prod_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\prod_{i \in I} A_i$ is a product in the category of *R*-modules.

Proof (continued). By Definition 1.7.2 (with $P = \prod_{i \in I} A_i$, B = c, $\pi_i - \pi_i$, $\varphi_i - \varphi_i$, and $\varphi = \varphi$) we have that $P = \prod_{i \in I} A_i$ is a product in the category of *R*-modules. By Theorem 1.7.3, $\prod_{i \in I} A_i$ is uniquely determined up to isomorphism (or "equivalence").

Theorem IV.1.12 (continued)

Theorem IV.1.12. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *C* an *R*-module, and $\{\varphi_i : C \to A_i \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\varphi : C \to \prod_{i \in I} A_i$ such that $\pi_i \varphi = \varphi_i$ for all $i \in I$. $\prod_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\prod_{i \in I} A_i$ is a product in the category of *R*-modules.

Proof (continued). By Definition 1.7.2 (with $P = \prod_{i \in I} A_i$, B = c, $\pi_i - \pi_i$, $\varphi_i - \varphi_i$, and $\varphi = \varphi$) we have that $P = \prod_{i \in I} A_i$ is a product in the category of *R*-modules. By Theorem 1.7.3, $\prod_{i \in I} A_i$ is uniquely determined up to isomorphism (or "equivalence").

Theorem IV.1.13. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *D* an *R*-module, and $\{\psi_i : A_i \to D \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\psi : \sum_{i \in I} A_i \to D$ such that $\psi_{l_i} = \psi_i$ for all $i \in I$. $\sum_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\sum_{i \in I} A_i$ is a coproduct in the category of *R*-modules.

Proof. By Theorem 1.8.5 there is a unique abelian group homomorphism $\psi : \sum A_i \to D$ with the desired property and ψ is given by (as seen in the proof of Theorem 1.8.5) $\psi(\{a_i\}) = \sum_i \psi_i(a_i)$, where the sum is taken over the finite set of indices *i* such that $q_i \neq 0$.

Theorem IV.1.13. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *D* an *R*-module, and $\{\psi_i : A_i \to D \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\psi : \sum_{i \in I} A_i \to D$ such that $\psi_{l_i} = \psi_i$ for all $i \in I$. $\sum_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\sum_{i \in I} A_i$ is a coproduct in the category of *R*-modules.

Proof. By Theorem I.8.5 there is a unique abelian group homomorphism $\psi : \sum A_i \to D$ with the desired property and ψ is given by (as seen in the proof of Theorem I.8.5) $\psi(\{a_i\}) = \sum_i \psi_i(a_i)$, where the sum is taken over the finite set of indices *i* such that $q_i \neq 0$. Since each ψ_i is an *R*-module homomorphism, then for all $r \in R$ and $\{a_i\} \in \sum A_i$

$$\psi(c\{a_i\}) = \psi(\{ca_i\}) = \sum_i \psi_i(ca_i) = \sum_i c\psi_i(a_i) = s\sum_i \psi_i(a_i) = s\psi(\{a_i\})$$

. . .

Theorem IV.1.13. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *D* an *R*-module, and $\{\psi_i : A_i \to D \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\psi : \sum_{i \in I} A_i \to D$ such that $\psi_{l_i} = \psi_i$ for all $i \in I$. $\sum_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\sum_{i \in I} A_i$ is a coproduct in the category of *R*-modules.

Proof. By Theorem 1.8.5 there is a unique abelian group homomorphism $\psi : \sum A_i \to D$ with the desired property and ψ is given by (as seen in the proof of Theorem 1.8.5) $\psi(\{a_i\}) = \sum_i \psi_i(a_i)$, where the sum is taken over the finite set of indices *i* such that $q_i \neq 0$. Since each ψ_i is an *R*-module homomorphism, then for all $r \in R$ and $\{a_i\} \in \sum A_i$

$$\psi(c\{a_i\}) = \psi(\{ca_i\}) = \sum_i \psi_i(ca_i) = \sum_i c\psi_i(a_i) = s\sum_i \psi_i(a_i) = s\psi(\{a_i\})$$

Theorem IV.1.13. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *D* an *R*-module, and $\{\psi_i : A_i \to D \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\psi : \sum_{i \in I} A_i \to D$ such that $\psi_{l_i} = \psi_i$ for all $i \in I$. $\sum_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\sum_{i \in I} A_i$ is a coproduct in the category of *R*-modules.

Proof (continued). . . . and for $\{a_i\}, \{a'_i\} \in \sim_i A_i$ we have

$$\psi(\{a_i\} + \{a'_i\}) = \psi(\{a_i + a'_i\}) = \sum_i \psi_i(a_i + a'_i)$$

$$=\sum_{i}(\psi_{i}(a_{i})+\psi(a_{i}'))=\sum_{i}\psi_{i}(a_{i})+\sum_{i}\psi_{i}(a_{i}')=\psi(\{a_{i}\})+\psi(\{a_{i}'\}),$$

and ψ is an *R*-module homomorphism. By Definition 1.7.4 (with $S = \sum_i A_i$, B = D, $\psi_i = \psi_i$, $\iota_i = \iota_i$, and $\psi = \psi$), $\sum_i A_i$ is a coproduct in the category of *R*-modules. By Theorem 1.7.5, $\sum_i A_i$ is uniquely determined up to isomorphism (or "equivalence").

Theorem IV.1.13. If *R* is a ring, $\{A_i \mid i \in I\}$ a family of *R*-modules, *D* an *R*-module, and $\{\psi_i : A_i \to D \mid i \in I\}$ a family of *R*-module homomorphisms, then there is a unique *R*-module homomorphism $\psi : \sum_{i \in I} A_i \to D$ such that $\psi_{li} = \psi_i$ for all $i \in I$. $\sum_{i \in I} A_i$ is uniquely determined up to isomorphism by this property. In other words, $\sum_{i \in I} A_i$ is a coproduct in the category of *R*-modules.

Proof (continued). . . . and for $\{a_i\}, \{a'_i\} \in \sim_i A_i$ we have

$$\psi(\{a_i\} + \{a'_i\}) = \psi(\{a_i + a'_i\}) = \sum_i \psi_i(a_i + a'_i)$$

$$=\sum_{i}(\psi_{i}(a_{i})+\psi(a_{i}'))=\sum_{i}\psi_{i}(a_{i})+\sum_{i}\psi_{i}(a_{i}')=\psi(\{a_{i}\})+\psi(\{a_{i}'\}),$$

and ψ is an *R*-module homomorphism. By Definition 1.7.4 (with $S = \sum_{i} A_{i}$, B = D, $\psi_{i} = \psi_{i}$, $\iota_{i} = \iota_{i}$, and $\psi = \psi$), $\sum_{i} A_{i}$ is a coproduct in the category of *R*-modules. By Theorem 1.7.5, $\sum_{i} A_{i}$ is uniquely determined up to isomorphism (or "equivalence").

Theorem IV.1.14. Let *R* be a ring and A, A_1, A_2, \ldots, A_n *R*-modules. Then $A \cong A_i \oplus A_2 \oplus \cdots \oplus A_n$ if and only if for each $i = 1, 2, \ldots, n$ there are *R*-module homomorphisms $\pi_i : A \to A_i$ and $\iota_i : A_i \to A$ such that

(i)
$$\pi_{i}\iota_{i} = 1_{A_{i}}$$
 for $i = 1, 2, ..., n$;
(ii) $\pi_{j}\iota_{i} = 0$ for $i \neq j$;
(iii) $\iota_{1}\pi_{1} + \iota_{2}\pi_{2} + \dots + \iota_{n}\pi_{n} = 1_{A}$.

Proof. First, suppose $A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$. We take π_i as the canonical projection and ι_i the canonical injection.

Theorem IV.1.14. Let *R* be a ring and A, A_1, A_2, \ldots, A_n *R*-modules. Then $A \cong A_i \oplus A_2 \oplus \cdots \oplus A_n$ if and only if for each $i = 1, 2, \ldots, n$ there are *R*-module homomorphisms $\pi_i : A \to A_i$ and $\iota_i : A_i \to A$ such that

(i)
$$\pi_{i}\iota_{i} = 1_{A_{i}}$$
 for $i = 1, 2, ..., n$;
(ii) $\pi_{j}\iota_{i} = 0$ for $i \neq j$;
(iii) $\iota_{1}\pi_{1} + \iota_{2}\pi_{2} + \dots + \iota_{n}\pi_{n} = 1_{A}$.

Proof. First, suppose $A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$. We take π_i as the canonical projection and ι_i the canonical injection. Then for $a_i \in A_i$ we have $\pi_i \iota_i(a_i) = \pi_i(e_1, e_2, \dots, a_i, \dots, e_n) = a_i$ (where e_i is the identity in A_i) and so $\pi_i \iota_i = 1_{A_i}$ and (i) holds.

Theorem IV.1.14. Let *R* be a ring and A, A_1, A_2, \ldots, A_n *R*-modules. Then $A \cong A_i \oplus A_2 \oplus \cdots \oplus A_n$ if and only if for each $i = 1, 2, \ldots, n$ there are *R*-module homomorphisms $\pi_i : A \to A_i$ and $\iota_i : A_i \to A$ such that

(i)
$$\pi_{i}\iota_{i} = 1_{A_{i}}$$
 for $i = 1, 2, ..., n$;
(ii) $\pi_{j}\iota_{i} = 0$ for $i \neq j$;
(iii) $\iota_{1}\pi_{1} + \iota_{2}\pi_{2} + \dots + \iota_{n}\pi_{n} = 1_{A}$.

Proof. First, suppose $A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$. We take π_i as the canonical projection and ι_i the canonical injection. Then for $a_i \in A_i$ we have $\pi_i \iota_i(a_i) = \pi_i(e_1, e_2, \dots, a_i, \dots, e_n) = a_i$ (where e_i is the identity in A_i) and so $\pi_i \iota_i = 1_{A_i}$ and (i) holds. Also, for $i \neq j$, $\pi_j \iota_i(a_i) = \pi_j(e_1, e_2, \dots, a_i, \dots, e_n) = e_j$ (with additive notation, $e_j = 0$) and (ii) holds.

Theorem IV.1.14. Let *R* be a ring and A, A_1, A_2, \ldots, A_n *R*-modules. Then $A \cong A_i \oplus A_2 \oplus \cdots \oplus A_n$ if and only if for each $i = 1, 2, \ldots, n$ there are *R*-module homomorphisms $\pi_i : A \to A_i$ and $\iota_i : A_i \to A$ such that

(i)
$$\pi_i \iota_i = 1_{A_i}$$
 for $i = 1, 2, ..., n$;
(ii) $\pi_j \iota_i = 0$ for $i \neq j$;
(iii) $\iota_1 \pi_1 + \iota_2 \pi_2 + \dots + \iota_n \pi_n = 1_A$.

Proof. First, suppose $A = A_1 \oplus A_2 \oplus \cdots \oplus A_n$. We take π_i as the canonical projection and ι_i the canonical injection. Then for $a_i \in A_i$ we have $\pi_i \iota_i(a_i) = \pi_i(e_1, e_2, \dots, a_i, \dots, e_n) = a_i$ (where e_i is the identity in A_i) and so $\pi_i \iota_i = 1_{A_i}$ and (i) holds. Also, for $i \neq j$, $\pi_j \iota_i(a_i) = \pi_j(e_1, e_2, \dots, a_i, \dots, e_n) = e_j$ (with additive notation, $e_j = 0$) and (ii) holds.

Theorem IV.1.14 (continued 1)

Proof (continued). Also, for $(a_1, a_2, \ldots, a_n) \in A$ we have

$$(\iota_1\pi_2+\iota_2\pi_2+\cdots+\iota_n\pi_n)(a_1,a_2,\ldots,a_n)$$

$$= \iota_1 \pi_1(a_1, a_2, \dots, a_n) + \iota_2 \pi_2(a_1, a_2, \dots, a_n) + \dots + \iota_n \pi_n(a_1, a_2, \dots, a_n)$$

$$= \iota_1(a_1) + \iota_2(a_2) + \dots + \iota_n(a_n)$$

$$= (a_1, e_2, e_2, \dots, e_n) + (e_1, a_2, e_3, \dots, e_n) + \dots + (e_1, e_2, \dots, a_n)$$

$$= (a_1, a_2, \dots, a_n)$$

and $\iota_1\pi_1 + \iota_2\pi_2 + \cdots + \iota_n\pi_n = \mathbf{1}_A$ and (iii) holds. Similarly, if the isomorphism is $f : A \to A_1 \oplus A_2 \oplus \cdots \oplus A_n$, then replacing π_i with $\pi_i f : A \to A_i$ and ι_i with $f^{-1}\iota_i : A_i \to A$ then (i) and (ii) still hold and $f^{-1}(\iota_1\pi_1 + \iota_2\pi_2 + \cdots + \iota_n\pi_n)f = \mathbf{1}_A$ implies (iii).

Theorem IV.1.14 (continued 1)

Proof (continued). Also, for $(a_1, a_2, \ldots, a_n) \in A$ we have

$$(\iota_1\pi_2+\iota_2\pi_2+\cdots+\iota_n\pi_n)(a_1,a_2,\ldots,a_n)$$

$$= \iota_1 \pi_1(a_1, a_2, \dots, a_n) + \iota_2 \pi_2(a_1, a_2, \dots, a_n) + \dots + \iota_n \pi_n(a_1, a_2, \dots, a_n)$$

$$= \iota_1(a_1) + \iota_2(a_2) + \dots + \iota_n(a_n)$$

$$= (a_1, e_2, e_2, \dots, e_n) + (e_1, a_2, e_3, \dots, e_n) + \dots + (e_1, e_2, \dots, a_n)$$

$$= (a_1, a_2, \dots, a_n)$$

and $\iota_1\pi_1 + \iota_2\pi_2 + \cdots + \iota_n\pi_n = \mathbf{1}_A$ and (iii) holds. Similarly, if the isomorphism is $f : A \to A_1 \oplus A_2 \oplus \cdots \oplus A_n$, then replacing π_i with $\pi_i f : A \to A_i$ and ι_i with $f^{-1}\iota_i : A_i \to A$ then (i) and (ii) still hold and $f^{-1}(\iota_1\pi_1 + \iota_2\pi_2 + \cdots + \iota_n\pi_n)f = \mathbf{1}_A$ implies (iii).

Theorem IV.1.14 (continued 2)

Proof (continued). Second, suppose that *R*-module homomorphism $\pi_i : A \to A_i$ and $\iota_i : A_i \to A$ satisfy (i), (ii), (iii). Let the canonical projections $\pi'_i : A_1 \oplus A_2 \oplus \cdots \oplus A_n \to A_i$ and the canonical injections $\iota'_i : A_i \to A_1 \oplus A_2 \oplus \cdots \oplus A_n$ as $\varphi = \iota'_1 \pi_1 + \iota'_2 \pi_2 + \cdots + \iota'_n \pi_n$.

Theorem IV.1.14 (continued 2)

Proof (continued). Second, suppose that *R*-module homomorphism $\pi_i : A \to A_i$ and $\iota_i : A_i \to A$ satisfy (i), (ii), (iii). Let the canonical projections $\pi'_i : A_1 \oplus A_2 \oplus \cdots \oplus A_n \to A_i$ and the canonical injections $\iota'_i: A_i \to A_1 \oplus A_2 \oplus \cdots \oplus A_n$ as $\varphi = \iota'_1 \pi_1 + \iota'_2 \pi_2 + \cdots + \iota'_n \pi_n$. Then $\varphi \psi = \sum \iota_i \pi'_i \sum \iota'_j \pi_j = \sum \sum \iota_i \pi'_i \iota'_j \pi_j$ = $\sum \iota_i \pi'_i \iota'_i \pi_i$ since the canonical mappings satisfy $\pi_i \iota_i = 0$ for $i \neq i$ as shown above = $\sum \iota_i 1_{A_i} \pi_i$ since $\pi'_i \iota'_i = 1_{A_i}$ by above = $\sum \iota_i \pi_i = 1_{A_i}$ by (iii) above.

Theorem IV.1.14 (continued 2)

Proof (continued). Second, suppose that *R*-module homomorphism $\pi_i: A \to A_i$ and $\iota_i: A_i \to A$ satisfy (i), (ii), (iii). Let the canonical projections $\pi'_i : A_1 \oplus A_2 \oplus \cdots \oplus A_n \to A_i$ and the canonical injections $\iota'_i: A_i \to A_1 \oplus A_2 \oplus \cdots \oplus A_n$ as $\varphi = \iota'_1 \pi_1 + \iota'_2 \pi_2 + \cdots + \iota'_n \pi_n$. Then $\varphi\psi = \sum_{i=1}^{n} \iota_i \pi'_i \sum_{j=1}^{n} \iota'_j \pi_j = \sum_{j=1}^{n} \sum_{i=1}^{n} \iota_i \pi'_i \iota'_j \pi_j$ = $\sum \iota_i \pi'_i \iota'_i \pi_i$ since the canonical mappings satisfy $\pi_i \iota_i = 0$ for $i \neq i$ as shown above $= \sum \iota_i 1_{\mathcal{A}_i} \pi_i$ since $\pi'_i \iota'_i = 1_{\mathcal{A}_i}$ by above = $\sum_{i=1}^{n} \iota_i \pi_i = 1_{A_i}$ by (iii) above. i=1Modern Algebra

11 / 23

Theorem IV.1.14 (continued 3)

Proof (continued). Similarly,

$$\psi \varphi = \sum_{i=1}^{n} \sum_{j=1}^{n} \iota'_{i} \pi_{i} \iota_{j} \pi'_{j}$$
$$= \sum_{i=1}^{n} \iota'_{i} \pi'_{i} \text{ since } \pi_{i} \text{ and } \iota_{i} \text{ satisfy (i), (ii), (iii)}$$
$$= 1_{A_{1} \oplus A_{2} \oplus \dots \oplus A_{n}}.$$

By Theorem I.2.3(ii), φ is a group isomorphism and so $A \cong A_1 \oplus A_2 \oplus \cdots \oplus A_n$.

Theorem IV.1.14 (continued 3)

Proof (continued). Similarly,

$$\psi \varphi = \sum_{i=1}^{n} \sum_{j=1}^{n} \iota'_{i} \pi_{i} \iota_{j} \pi'_{j}$$
$$= \sum_{i=1}^{n} \iota'_{i} \pi'_{i} \text{ since } \pi_{i} \text{ and } \iota_{i} \text{ satisfy (i), (ii), (iii)}$$
$$= 1_{A_{1} \oplus A_{2} \oplus \dots \oplus A_{n}}.$$

By Theorem I.2.3(ii), φ is a group isomorphism and so $A \cong A_1 \oplus A_2 \oplus \cdots \oplus A_n$.

Lemma IV.1.17

Lemma IV.1.17. The Short Five Lemma.

Let R be a ring and

a commutative diagram of *R*-modules and *R*-module homomorphisms such that each row is a short exact sequence. Then

(i) if α and γ are monomorphisms then β is a monomorphism;

(ii) if α and γ are epimorphisms then β is an epimorphism;

(iii) if α and γ are isomorphisms then β is an isomorphism.

Proof. (i) Let $b \in B$ and suppose $\beta(b) = 0$. By Theorem I.2.3 (see the comment on page 170) the result follows if we show that b = 0.

Lemma IV.1.17

Lemma IV.1.17. The Short Five Lemma.

Let R be a ring and

a commutative diagram of R-modules and R-module homomorphisms such that each row is a short exact sequence. Then

(i) if α and γ are monomorphisms then β is a monomorphism; (ii) if α and γ are epimorphisms then β is an epimorphism; (iii) if α and γ are isomorphisms then β is an isomorphism.

Proof. (i) Let $b \in B$ and suppose $\beta(b) = 0$. By Theorem I.2.3 (see the comment on page 170) the result follows if we show that b = 0.

Proof (continued). (i) We have

$\gamma g(b) = g' \beta(b)$ by the commutivity = g'(0) since β is a homomorphism = 0 since g' is a homomorphism.

This implies g(b) = 0 since γ is hypothesized to be one to one. So $b \in \text{Ker}(g)$. Since the top row is a (short) exact sequence, then Im(f) = Ker(g) and so b = f(a) for some $a \in A$.

Proof (continued). (i) We have

$\gamma g(b) = g' \beta(b)$ by the commutivity = g'(0) since β is a homomorphism = 0 since g' is a homomorphism.

This implies g(b) = 0 since γ is hypothesized to be one to one. So $b \in \text{Ker}(g)$. Since the top row is a (short) exact sequence, then Im(f) = Ker(g) and so b = f(a) for some $a \in A$. We have

$$f' \alpha(a) = \beta f(a)$$
 by commutivity
= $\beta(b)$ since $f(a) = b$

Proof (continued). (i) We have

$\gamma g(b) = g' \beta(b)$ by the commutivity = g'(0) since β is a homomorphism = 0 since g' is a homomorphism.

This implies g(b) = 0 since γ is hypothesized to be one to one. So $b \in \text{Ker}(g)$. Since the top row is a (short) exact sequence, then Im(f) = Ker(g) and so b = f(a) for some $a \in A$. We have

$$f' \alpha(a) = \beta f(a)$$
 by commutivity
= $\beta(b)$ since $f(a) = b$
= 0 by hypothesis.

Since the bottom row is a short exact sequence then, by the note above, f' is one to one and so the only thing mapped to 0 by f' is 0 and we must have $\alpha(a) = 0$.

Proof (continued). (i) We have

$$\gamma g(b) = g' \beta(b)$$
 by the commutivity
= $g'(0)$ since β is a homomorphism
= 0 since g' is a homomorphism.

This implies g(b) = 0 since γ is hypothesized to be one to one. So $b \in \text{Ker}(g)$. Since the top row is a (short) exact sequence, then Im(f) = Ker(g) and so b = f(a) for some $a \in A$. We have

$$f' \alpha(a) = \beta f(a)$$
 by commutivity
= $\beta(b)$ since $f(a) = b$
= 0 by hypothesis.

Since the bottom row is a short exact sequence then, by the note above, f' is one to one and so the only thing mapped to 0 by f' is 0 and we must have $\alpha(a) = 0$.

Proof (continued). (i) But α is one to one by hypothesis and so a = 0. Hence b = f(a) = f(0) = 0 since f is a homomorphism. So b = 0 and β is one to one and (i) follows.

(ii) Let $b' \in B'$. Then $g'(b') \in C'$. Since γ is hypothesized to be onto then $g'(b') = \gamma(c)$ for some $c \in C$. Since the top row is a short exact sequence then, by the not above, g is an epimorphism (onto). Hence c = g(b) for some $b \in B$.

Proof (continued). (i) But α is one to one by hypothesis and so a = 0. Hence b = f(a) = f(0) = 0 since f is a homomorphism. So b = 0 and β is one to one and (i) follows.

(ii) Let $b' \in B'$. Then $g'(b') \in C'$. Since γ is hypothesized to be onto then $g'(b') = \gamma(c)$ for some $c \in C$. Since the top row is a short exact sequence then, by the not above, g is an epimorphism (onto). Hence c = g(b) for some $b \in B$. We have

$$egin{array}{rcl} g'eta(b)&=&\gamma g(b) ext{ by commutivity}\ &=&\gamma(c) ext{ since } c=g(b)\ &=&g'(b') ext{ since } g'(b')=\gamma(c). \end{array}$$

Proof (continued). (i) But α is one to one by hypothesis and so a = 0. Hence b = f(a) = f(0) = 0 since f is a homomorphism. So b = 0 and β is one to one and (i) follows.

(ii) Let $b' \in B'$. Then $g'(b') \in C'$. Since γ is hypothesized to be onto then $g'(b') = \gamma(c)$ for some $c \in C$. Since the top row is a short exact sequence then, by the not above, g is an epimorphism (onto). Hence c = g(b) for some $b \in B$. We have

$$g'\beta(b) = \gamma g(b)$$
 by commutivity
= $\gamma(c)$ since $c = g(b)$
= $g'(b')$ since $g'(b') = \gamma(c)$.

Thus $0 = g'\beta(b) - g'(b') = g'(\beta(b) - b')$ and $\beta(b) - b' \in \operatorname{Ker}(g') = \operatorname{Im}(f')$ by the exactness of the bottom row. Say $f'(a')\beta(b) - b'$ where $a' \in A$. Since α is hypothesized to be onto, then $\alpha(a) = a'$ for some $a \in A$.

Proof (continued). (i) But α is one to one by hypothesis and so a = 0. Hence b = f(a) = f(0) = 0 since f is a homomorphism. So b = 0 and β is one to one and (i) follows.

(ii) Let $b' \in B'$. Then $g'(b') \in C'$. Since γ is hypothesized to be onto then $g'(b') = \gamma(c)$ for some $c \in C$. Since the top row is a short exact sequence then, by the not above, g is an epimorphism (onto). Hence c = g(b) for some $b \in B$. We have

$$g'eta(b) = \gamma g(b)$$
 by commutivity
= $\gamma(c)$ since $c = g(b)$
= $g'(b')$ since $g'(b') = \gamma(c)$.

Thus $0 = g'\beta(b) - g'(b') = g'(\beta(b) - b')$ and $\beta(b) - b' \in \operatorname{Ker}(g') = \operatorname{Im}(f')$ by the exactness of the bottom row. Say $f'(a')\beta(b) - b'$ where $a' \in A$. Since α is hypothesized to be onto, then $\alpha(a) = a'$ for some $a \in A$.

Proof (continued). (ii) Consider $b - f(a) \in B$: $\beta(b - f(a)) = \beta(b) - \beta f(a)$. We have

$$eta f(a) = f' lpha(a)$$
 by commutivity
 $= f'(a')$ since $a' = lpha(a)$
 $= eta(b) - b'$ since $f'(a') = eta(b) - b'$.

Proof (continued). (ii) Consider $b - f(a) \in B$: $\beta(b - f(a)) = \beta(b) - \beta f(a)$. We have

$$\beta f(a) = f'\alpha(a) \text{ by commutivity}$$

= $f'(a') \text{ since } a' = \alpha(a)$
= $\beta(b) - b' \text{ since } f'(a') = \beta(b) - b'.$

Hence

$$\beta(b - f(a)) = \beta(b) - \beta f(a)$$

= $\beta(b) - (\beta(b) - b')$ by the previous computation
= b' .

Since $b'\in B'$ was arbitrary, then β is onto (an epimorphism) and (ii) follows.

Proof (continued). (ii) Consider $b - f(a) \in B$: $\beta(b - f(a)) = \beta(b) - \beta f(a)$. We have

$$\beta f(a) = f'\alpha(a) \text{ by commutivity}$$

= $f'(a') \text{ since } a' = \alpha(a)$
= $\beta(b) - b' \text{ since } f'(a') = \beta(b) - b'.$

Hence

$$\begin{array}{lll} \beta(b-f(a)) &=& \beta(b) - \beta f(a) \\ &=& \beta(b) - (\beta(b) - b') \text{ by the previous computation} \\ &=& b'. \end{array}$$

Since $b' \in B'$ was arbitrary, then β is onto (an epimorphism) and (ii) follows.

(iii) This follows from (i) and (ii).

Proof (continued). (ii) Consider $b - f(a) \in B$: $\beta(b - f(a)) = \beta(b) - \beta f(a)$. We have

$$\beta f(a) = f'\alpha(a) \text{ by commutivity}$$

= $f'(a') \text{ since } a' = \alpha(a)$
= $\beta(b) - b' \text{ since } f'(a') = \beta(b) - b'.$

Hence

$$\begin{array}{lll} \beta(b-f(a)) &=& \beta(b) - \beta f(a) \\ &=& \beta(b) - (\beta(b) - b') \text{ by the previous computation} \\ &=& b'. \end{array}$$

Since $b' \in B'$ was arbitrary, then β is onto (an epimorphism) and (ii) follows.

(iii) This follows from (i) and (ii).

Theorem IV.1.18. Let *R* be a ring and $0 \rightarrow A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \rightarrow 0$ a short exact sequence of *R*-module homomorphisms. Then the following conditions are equivalent:

- (i) There is an *R*-module homomorphism $h: A_2 \rightarrow B$ with $gh = 1_{A_2}$;
- (ii) There is an *R*-module homomorphism $k: B \rightarrow A_1$ with $kf = 1_{A_1}$;
- (iii) the given sequence is isomorphic (with identity maps on A_1 and A_2) to the direct sum short exact sequence $\{0\} \rightarrow A_1 \xrightarrow{\iota_1} A_1 \oplus A_2 \xrightarrow{\pi_2} A_2 \rightarrow \{0\}$; in particular $B \cong A_1 \oplus A_2$.

Proof. (i) \Rightarrow (iii) Suppose there is an *R*-module homomorphism $h: A_2 \rightarrow B$ with $gh = 1_{A_2}$. Then by Theorem IV.1.13 (with $\psi_1 = f$ and $\psi_2 = h$, where D = B) there is a unique module homomorphism $\varphi: A_1 \oplus A_2 \rightarrow B$ given by (see the proof of Theorem IV.1.13 where $\varphi(\{a_i\}) = \sum_i \psi_i(a_i)$) the mapping $(a_1, a_2) \mapsto f(a_1) + h(a_2)$.

Theorem IV.1.18. Let *R* be a ring and $0 \rightarrow A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \rightarrow 0$ a short exact sequence of *R*-module homomorphisms. Then the following conditions are equivalent:

- (i) There is an *R*-module homomorphism $h: A_2 \rightarrow B$ with $gh = 1_{A_2}$;
- (ii) There is an R-module homomorphism $k: B \to A_1$ with $kf = 1_{A_1}$;
- (iii) the given sequence is isomorphic (with identity maps on A_1 and A_2) to the direct sum short exact sequence $\{0\} \rightarrow A_1 \xrightarrow{\iota_1} A_1 \oplus A_2 \xrightarrow{\pi_2} A_2 \rightarrow \{0\}$; in particular $B \cong A_1 \oplus A_2$.

Proof. (i) \Rightarrow (iii) Suppose there is an *R*-module homomorphism $h: A_2 \rightarrow B$ with $gh = 1_{A_2}$. Then by Theorem IV.1.13 (with $\psi_1 = f$ and $\psi_2 = h$, where D = B) there is a unique module homomorphism $\varphi: A_1 \oplus A_2 \rightarrow B$ given by (see the proof of Theorem IV.1.13 where $\varphi(\{a_i\}) = \sum_i \psi_i(a_i)$) the mapping $(a_1, a_2) \mapsto f(a_1) + h(a_2)$.

Theorem IV.1.18 (continued 1)

Proof (continued). (i) \Rightarrow (iii) Consider the diagram:

Theorem IV.1.18 (continued 1)

Proof (continued). (i) \Rightarrow (iii) Consider the diagram:

Theorem IV.1.18 (continued 2)

Proof (continued). (i) \Rightarrow (iii) For $a_1 \in A_1$ we have $\varphi \iota_1(a_1) = \varphi(a_1, 0) = f(a_1) + h(0) = f(a_1) = f \mathbf{1}_{A_1}(a_1)$ and so $\varphi \iota_1 = f a_{A_1}$. For $(a_1, a_2) \in A_1 \oplus A_2$ we have

$$\begin{aligned} 1_{A_2}\pi_2(a_1,a_2) &= 1_{A_2}(a_2) = a_2 = 1_{A_2}(a_2) \\ &= gh(a_2) \text{ since } gh = 1_A \text{ by hypothesis} \\ &= gf(a_1) + gh(a_2) \text{ since } df = 0 \text{ by note above} \\ & \text{ (see Remark on p. 176)} \\ &= g(f(a_1) + h(a_1)) \text{ since } g \text{ is a homomorphism} \\ &= g\varphi((a_1,a_2)). \end{aligned}$$

Theorem IV.1.18 (continued 2)

Proof (continued). (i) \Rightarrow (iii) For $a_1 \in A_1$ we have $\varphi \iota_1(a_1) = \varphi(a_1, 0) = f(a_1) + h(0) = f(a_1) = f \mathbf{1}_{A_1}(a_1)$ and so $\varphi \iota_1 = f a_{A_1}$. For $(a_1, a_2) \in A_1 \oplus A_2$ we have

$$\begin{aligned} 1_{A_2}\pi_2(a_1,a_2) &= 1_{A_2}(a_2) = a_2 = 1_{A_2}(a_2) \\ &= gh(a_2) \text{ since } gh = 1_A \text{ by hypothesis} \\ &= gf(a_1) + gh(a_2) \text{ since } df = 0 \text{ by note above} \\ & (\text{see Remark on p. 176}) \\ &= g(f(a_1) + h(a_1)) \text{ since } g \text{ is a homomorphism} \\ &= g\varphi((a_1,a_2)). \end{aligned}$$

So $1_{A_2}\pi = g\varphi$ and the diagram commutes. Since 1_{A_1} and 1_{A_2} are isomorphisms, then by the Short Five Lemma (Lemma IV.1.17) φ is an isomorphism and (iii) holds.

Theorem IV.1.18 (continued 2)

Proof (continued). (i) \Rightarrow (iii) For $a_1 \in A_1$ we have $\varphi \iota_1(a_1) = \varphi(a_1, 0) = f(a_1) + h(0) = f(a_1) = f \mathbf{1}_{A_1}(a_1)$ and so $\varphi \iota_1 = f a_{A_1}$. For $(a_1, a_2) \in A_1 \oplus A_2$ we have

$$\begin{aligned} 1_{A_2}\pi_2(a_1,a_2) &= 1_{A_2}(a_2) = a_2 = 1_{A_2}(a_2) \\ &= gh(a_2) \text{ since } gh = 1_A \text{ by hypothesis} \\ &= gf(a_1) + gh(a_2) \text{ since } df = 0 \text{ by note above} \\ & (\text{see Remark on p. 176}) \\ &= g(f(a_1) + h(a_1)) \text{ since } g \text{ is a homomorphism} \\ &= g\varphi((a_1,a_2)). \end{aligned}$$

So $1_{A_2}\pi = g\varphi$ and the diagram commutes. Since 1_{A_1} and 1_{A_2} are isomorphisms, then by the Short Five Lemma (Lemma IV.1.17) φ is an isomorphism and (iii) holds.

Theorem IV.1.18 (continued 3)

Proof. (ii) \Rightarrow (iii) Suppose there is an *R*-module homomorphism $k: B \rightarrow A_1$ with $kf = 1_{A_1}$. Then by Theorem IV.1.12 (with $\varphi_1 = k$ and $\varphi_2 = g$, where C = B) there is a unique $\psi: B \rightarrow A_1 \times A_2 = A_1 \oplus A_2$ (the second equality holding since the indexing set is finite; see page 173) given by (see the proof of Theorem IV.1.12 where $\varphi(c) = \{\varphi_i(c)\}_{i \in I}$) the mapping $\varphi(b) = (k(b), g(b))$.

Theorem IV.1.18 (continued 3)

Proof. (ii) \Rightarrow (iii) Suppose there is an *R*-module homomorphism $k : B \rightarrow A_1$ with $kf = 1_{A_1}$. Then by Theorem IV.1.12 (with $\varphi_1 = k$ and $\varphi_2 = g$, where C = B) there is a unique $\psi : B \rightarrow A_1 \times A_2 = A_1 \oplus A_2$ (the second equality holding since the indexing set is finite; see page 173) given by (see the proof of Theorem IV.1.12 where $\varphi(c) = \{\varphi_i(c)\}_{i \in I}$) the mapping $\varphi(b) = (k(b), g(b))$. Consider the diagram:

Theorem IV.1.18 (continued 3)

Proof. (ii) \Rightarrow (iii) Suppose there is an *R*-module homomorphism $k: B \rightarrow A_1$ with $kf = 1_{A_1}$. Then by Theorem IV.1.12 (with $\varphi_1 = k$ and $\varphi_2 = g$, where C = B) there is a unique $\psi: B \rightarrow A_1 \times A_2 = A_1 \oplus A_2$ (the second equality holding since the indexing set is finite; see page 173) given by (see the proof of Theorem IV.1.12 where $\varphi(c) = \{\varphi_i(c)\}_{i \in I}$) the mapping $\varphi(b) = (k(b), g(b))$. Consider the diagram:

Theorem IV.1.18 (continued 4)

Proof. (ii) \Rightarrow (iii) For $a_1 \in A_1$ we have $\varphi f(a_1) = (kf(a_1), gf(a_1)) = (a_1, 0)$ (since $kf = 1_{A_1}$ and since gf = 0 by the not above [see Remark on page 176]) and $(a_1, 0) = \iota_1(a_1) = \iota_1 1_{A_1}(a_1)$, and so $\varphi f = \iota_1 1_A$. For $b \in B$ we have $1_{A_2}g(b) = g(b) = \pi_2(k(b), g(b)) = \pi_2\varphi(b)$, and so $1_{A_2}g = \pi_2\varphi$ and the diagram commutes. Since 1_{A_1} and 1_{A_2} are isomorphisms, then by the Short Five Lemma (Lemma IV.1.17) ψ is an isomorphism and (iii) holds.

Theorem IV.1.18 (continued 4)

Proof. (ii) \Rightarrow (iii) For $a_1 \in A_1$ we have $\varphi f(a_1) = (kf(a_1), gf(a_1)) = (a_1, 0)$ (since $kf = 1_{A_1}$ and since gf = 0 by the not above [see Remark on page 176]) and $(a_1, 0) = \iota_1(a_1) = \iota_1 1_{A_1}(a_1)$, and so $\varphi f = \iota_1 1_A$. For $b \in B$ we have $1_{A_2}g(b) = g(b) = \pi_2(k(b), g(b)) = \pi_2\varphi(b)$, and so $1_{A_2}g = \pi_2\varphi$ and the diagram commutes. Since 1_{A_1} and 1_{A_2} are isomorphisms, then by the Short Five Lemma (Lemma IV.1.17) ψ is an isomorphism and (iii) holds.

Theorem IV.1.18 (continued 5)

Proof. (iii) \Rightarrow (i) and (ii) Suppose the given sequence {0} $\rightarrow A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \rightarrow \{0\}$ is isomorphic (with identity maps on A_1 and A_2) to the short exact sequence $\{0\} \rightarrow A_1 \xrightarrow{\iota_1} A_1 \oplus A_2 \xrightarrow{\pi_2} A_2 \rightarrow \{0\}$. Let $\varphi : A_1 \oplus A_2 \rightarrow B$ be the "center" isomorphism. Consider the diagram:

Theorem IV.1.18 (continued 5)

Proof. (iii) \Rightarrow (i) and (ii) Suppose the given sequence {0} $\rightarrow A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \rightarrow \{0\}$ is isomorphic (with identity maps on A_1 and A_2) to the short exact sequence $\{0\} \rightarrow A_1 \xrightarrow{\iota_1} A_1 \oplus A_2 \xrightarrow{\pi_2} A_2 \rightarrow \{0\}$. Let $\varphi: A_1 \oplus A_2 \rightarrow B$ be the "center" isomorphism. Consider the diagram:

Theorem IV.1.18 (continued 6)

Proof (continued). (iii) \Rightarrow (i) and (ii) By the definition of "isomorphic," the diagram commutes. Define $h: A_2 \rightarrow B$ as $h = \varphi \iota_2$ and $k: B \rightarrow A_1$ as $k = \pi_1 \varphi^{-1}$. Now $\pi_i \iota_i = 1_{A_i}$ and $\varphi^{-1} \varphi = 1_{A_1 \oplus A_2}$. Since the diagram commutes, we have

$$kf = (\pi_1 \varphi^{-1})f = (\pi_1 \varphi^{-1})(f \mathbf{1}_{A_1})$$

= $(\pi_1 \varphi^{-1})(\varphi \iota_1)$ since $f \mathbf{1}_{A_1} = \varphi \iota_1$ by the commutivity of the diagram
= $\pi_1 \iota_1 = \mathbf{1}_{A_1}$

Theorem IV.1.18 (continued 6)

Proof (continued). (iii) \Rightarrow (i) and (ii) By the definition of "isomorphic," the diagram commutes. Define $h: A_2 \rightarrow B$ as $h = \varphi \iota_2$ and $k: B \rightarrow A_1$ as $k = \pi_1 \varphi^{-1}$. Now $\pi_i \iota_i = 1_{A_i}$ and $\varphi^{-1} \varphi = 1_{A_1 \oplus A_2}$. Since the diagram commutes, we have

$$kf = (\pi_1 \varphi^{-1})f = (\pi_1 \varphi^{-1})(f \mathbf{1}_{A_1})$$

= $(\pi_1 \varphi^{-1})(\varphi \iota_1)$ since $f \mathbf{1}_{A_1} = \varphi \iota_1$ by the commutivity of the diagram
= $\pi_1 \iota_1 = \mathbf{1}_{A_1}$

and

$$gh = g(\varphi\iota_2) = (f\varphi)\iota_2$$

= $(1_{A_2}\pi_2)\iota_2$ since $g\varphi = 1_{A_2}\pi_2$ by the commutivity of the diagram
= $1_{A_2}(\pi_2\iota_2) = 1_{A_2}1_{A_2} = 1_{A_2}$.

So (i) and (ii) follow.

Theorem IV.1.18 (continued 6)

Proof (continued). (iii) \Rightarrow (i) and (ii) By the definition of "isomorphic," the diagram commutes. Define $h: A_2 \rightarrow B$ as $h = \varphi \iota_2$ and $k: B \rightarrow A_1$ as $k = \pi_1 \varphi^{-1}$. Now $\pi_i \iota_i = 1_{A_i}$ and $\varphi^{-1} \varphi = 1_{A_1 \oplus A_2}$. Since the diagram commutes, we have

$$kf = (\pi_1 \varphi^{-1})f = (\pi_1 \varphi^{-1})(f \mathbf{1}_{A_1})$$

= $(\pi_1 \varphi^{-1})(\varphi \iota_1)$ since $f \mathbf{1}_{A_1} = \varphi \iota_1$ by the commutivity of the diagram
= $\pi_1 \iota_1 = \mathbf{1}_{A_1}$

and

$$\begin{array}{lll} gh &=& g(\varphi \iota_2) = (f\varphi)\iota_2 \\ &=& (1_{A_2}\pi_2)\iota_2 \text{ since } g\varphi = 1_{A_2}\pi_2 \text{ by the commutivity of the diagram} \\ &=& 1_{A_2}(\pi_2\iota_2) = 1_{A_2}1_{A_2} = 1_{A_2}. \end{array}$$

So (i) and (ii) follow.