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Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring R. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a+ B)=rBforallre Ryac A

The map 7 : A— A/B given by a+— a+ B is an R-module epimorphism
with kernel B.
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Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring R. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a+ B)=rBforallre Ryac A

The map 7 : A— A/B given by a+— a+ B is an R-module epimorphism
with kernel B.

Proof. By the definition of module, A is an additive abelian group, so
B < A'is a normal subgroup and A\ B is defined and itself abelian. If
a+ B =23 + B (as cosets of B) then a— a’ € B.
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Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring R. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a+ B)=rBforallre Ryac A

The map 7 : A— A/B given by a+— a+ B is an R-module epimorphism
with kernel B.

Proof. By the definition of module, A is an additive abelian group, so

B < A'is a normal subgroup and A\ B is defined and itself abelian. If
a+ B =34 + B (as cosets of B) then a— a’ € B. Since B is a submodule
then r(a—a') € Bforall r € R; thatis, ra—ra’ € B. Sora+B=ra +B
(by Corollary 1.4.3) and the action (of “scalar multiplication”) of R on

A\ B is well defined (that is, independent of the representation a + B or
a’ + B of the coset).
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Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring R. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a+ B)=rBforallre Ryac A

The map 7 : A— A/B given by a+— a+ B is an R-module epimorphism
with kernel B.

Proof. By the definition of module, A is an additive abelian group, so

B < A'is a normal subgroup and A\ B is defined and itself abelian. If
a+ B =34 + B (as cosets of B) then a— a’ € B. Since B is a submodule
then r(a—a') € Bforall r € R; thatis, ra—ra’ € B. Sora+B=ra +B
(by Corollary 1.4.3) and the action (of “scalar multiplication”) of R on

A\ B is well defined (that is, independent of the representation a + B or
a’ + B of the coset).

We now check the three parts of the definition of R-module. First,
r((@a+B)+(b+B))=r((a+b)+B)=r(a+b)+B=(ra+rb)+B=
(ra+ B)+ (rb+ B) =r(a+ b)+ r(b+ B).
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Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring R. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a+ B)=rBforallre Ryac A

The map 7 : A— A/B given by a+— a+ B is an R-module epimorphism
with kernel B.

Proof. Next, (r +s)(a+ B)=(r+s)a+ B=(ra+sa)+ B =

(ra+ B)+ (sa+ B) = r(a+ B) 4+ s(a+ B). Finally,
r(s(a+B))=r(sa+ B) =r(sa) + B=(rs)a+ B=rs(a+ B). So A\ B
is an R-module.
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Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring R. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a+ B)=rBforallre Ryac A

The map 7 : A— A/B given by a+— a+ B is an R-module epimorphism
with kernel B.

Proof. Next, (r +s)(a+ B)=(r+s)a+ B=(ra+sa)+ B =

(ra+ B)+ (sa+ B) = r(a+ B) 4+ s(a+ B). Finally,

r(s(a+B))=r(sa+ B) =r(sa) + B=(rs)a+ B=rs(a+ B). So A\ B

is an R-module.

Now to check 7. Consider

n(a+b)=(a+b)+B—(a+B)+(b+ B)=m(a)+n(b), and

m(ra) = (ra+ B = r(a+ B) = rm(a), so w is a homomorphism. Since B is

the identity in A\ B an db+ B = B if and only if b € B, then

Ker(m) = B. Finally, 7 is clearly onto, so that 7 is an epimorphism. O
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Theorem IV.1.12

Theorem IV.1.12. If R is a ring, {A; | i € I} a family of R-modules, C
an R-module, and {p; : C — A; | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

@ : C— J];cs Ai such that i = @; for all i € I. [];; Ai is uniquely
determined up to isomorphism by this property. In other words, [].., A; is
a product in the category of R-modules.

icl
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Theorem IV.1.12

Theorem IV.1.12. If R is a ring, {A; | i € I} a family of R-modules, C
an R-module, and {p; : C — A; | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

@ : C— J];cs Ai such that i = @; for all i € I. [];; Ai is uniquely
determined up to isomorphism by this property. In other words, [].., A; is
a product in the category of R-modules.

icl

Proof. By Theorem 1.8.2 there is a unique group homomorphism
¢ : C — [] Ai which has the desired property and ¢ is given by (as seen in
the proof of Theorem 1.8.2) ¢(c) = {pi(c)}ics-
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Theorem IV.1.12

Theorem IV.1.12. If R is a ring, {A; | i € I} a family of R-modules, C
an R-module, and {p; : C — A; | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

@ : C— J];cs Ai such that i = @; for all i € I. [];; Ai is uniquely
determined up to isomorphism by this property. In other words, [];, A; is
a product in the category of R-modules.

Proof. By Theorem 1.8.2 there is a unique group homomorphism

¢ : C — [] Ai which has the desired property and ¢ is given by (as seen in
the proof of Theorem 1.8.2) p(c) = {¢i(c)}ics. Since each ; is an
R-module homomorphism then for all r € R, x € C, we have

p(rc) = {pi(re)tier = {rei(c)}ier = f{pi(c)}bier = r{pi(c)} = ro(c)
and for ¢1, ¢ € C we have p(c1 + ) = {pi(c2 + @) }ie) =

{ei(a) + vi(e@2)}ier = {pi(cr)}ier + {pi()}ier = ¢(c1) + p(c2) so ¢ is
an R-module homomorphism.
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Theorem [V.1.12 (continued)

Theorem IV.1.12. If R is a ring, {A; | i € I} a family of R-modules, C
an R-module, and {¢; : C — A; | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

@ : C— [];cs Ai such that mjp = @; for all i € I. [[;c; Ai is uniquely
determined up to isomorphism by this property. In other words, [].., A; is
a product in the category of R-modules.

i€l
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Theorem [V.1.12 (continued)

Theorem IV.1.12. If R is a ring, {A; | i € I} a family of R-modules, C
an R-module, and {¢; : C — A; | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

@ : C— [];cs Ai such that mjp = @; for all i € I. [[;c; Ai is uniquely
determined up to isomorphism by this property. In other words, [, A is
a product in the category of R-modules.

Proof (continued). By Definition 1.7.2 (with P =[], Ai, B = c,

T — T, @i — @i, and ¢ = ) we have that P = [];., A; is a product in the
category of R-modules. By Theorem 1.7.3, T, A; is uniquely determined
up to isomorphism (or “equivalence”). O
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Theorem IV.1.13

Theorem IV.1.13. If R is a ring, {A; | i € I} a family of R-modules, D
an R-module, and {¢); : A — D | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

V1) ic; Ai — D such that ¢u; =4 for all i € 1. )7, A; is uniquely
determined up to isomorphism by this property. In other words, »_._, A; is
a coproduct in the category of R-modules.

iel
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Theorem IV.1.13

Theorem IV.1.13. If R is a ring, {A; | i € I} a family of R-modules, D
an R-module, and {¢); : A — D | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

Y1) e Ai — D such that i = ¢ forall ie l. Y.,
determined up to isomorphism by this property. In other words, >
a coproduct in the category of R-modules.

A; is uniquely

jer Ai s

Proof. By Theorem 1.8.5 there is a unique abelian group homomorphism
¥ Y Ai — D with the desired property and 1 is given by (as seen in the
proof of Theorem 1.8.5) ¥({aj}) = ", vi(aj), where the sum is taken over
the finite set of indices i such that g; # 0.
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Theorem IV.1.13

Theorem IV.1.13. If R is a ring, {A; | i € I} a family of R-modules, D
an R-module, and {¢); : A — D | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

Y1) e Ai — D such that i = ¢ forall ie l. Y.,
determined up to isomorphism by this property. In other words, .,
a coproduct in the category of R-modules.

A; is uniquely
A,' is

Proof. By Theorem 1.8.5 there is a unique abelian group homomorphism
¥ Y Ai — D with the desired property and 1 is given by (as seen in the
proof of Theorem 1.8.5) ¥({aj}) = ", vi(aj), where the sum is taken over
the finite set of indices i such that g; # 0. Since each %); is an R-module
homomorphism, then for all r € R and {a;} € >_ A;

U(c{ai}) = v({cai}) = Z Yi(caj) Z cpi(ai) = s Z vi(ai) = s({ai})
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Theorem IV.1.13

Theorem IV.1.13. If R is a ring, {A; | i € I} a family of R-modules, D
an R-module, and {¢; : Aj — D | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

Y1) ic; Ai — D such that ¢u; =4 for all i € 1. )7, A; is uniquely
determined up to isomorphism by this property. In other words, >, , A; is
a coproduct in the category of R-modules.

Proof (continued). ...and for {a;},{a}} €~ A; we have

(e} + (&) = vl + o) = S vitar+ 4)
= (Wil + v(a) = 3 vila) + Zw,-(a,-) = v({ar) + V().

and v is an R-module homomorphism.
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Theorem IV.1.13

Theorem IV.1.13. If R is a ring, {A; | i € I} a family of R-modules, D
an R-module, and {¢; : Aj — D | i € I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism

Y1) ic; Ai — D such that ¢u; =4 for all i € 1. )7, A; is uniquely
determined up to isomorphism by this property. In other words, >
a coproduct in the category of R-modules.

Proof (continued). ...and for {a;},{a}} €~ A; we have

v({ai} +{aj}) =v({ai + 4}) = Zw aj + a;)

jer Ai s

= St = Sl + D uile) = it + wl(l)

and v is an R-module homomorphlsm. By Definition 1.7.4 (with
S=> A, B=D, =1, tj =1, and ) =), >, Aj is a coproduct in
the category of R-modules. By Theorem 1.7.5, }". A; is uniquely
determined up to isomorphism (or “equivalence”). O
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Theorem IV.1.14

Theorem IV.1.14. Let R be aring and A, A1, As, ..., A, R-modules.
Then AZA, @A ®--- B A, if and only if for each i =1,2,...,n there
are R-module homomorphisms 7; : A — A; and ¢; : A; — A such that

(i) miti =14, fori=1,2,...,nm;
(ii) mje; =0 for i # j;
(iii) 1T+ oo+ -+ LT = 14,
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Theorem IV.1.14

Theorem IV.1.14. Let R be aring and A, A1, As, ..., A, R-modules.
Then AZA, @A ®--- B A, if and only if for each i =1,2,...,n there
are R-module homomorphisms 7; : A — A; and ¢; : A; — A such that

(i) miti =14, fori=1,2,...,nm;
(ii) mje; =0 for i # j;
(iii) 1T+ oo+ -+ LT = 14,

Proof. First, suppose A=A DAy P --- D A,. We take 7; as the
canonical projection and ¢; the canonical injection.
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Theorem IV.1.14

Theorem IV.1.14. Let R be aring and A, A1, As, ..., A, R-modules.
Then AZA, @A ®--- B A, if and only if for each i =1,2,...,n there
are R-module homomorphisms 7; : A — A; and ¢; : A; — A such that

(i) miti =14, fori=1,2,...,nm;

(ii) mje; =0 for i # j;

(iii) 1T+ oo+ -+ LT = 14,
Proof. First, suppose A=A DAy P --- D A,. We take 7; as the
canonical projection and ¢; the canonical injection. Then for a; € A; we

have mti(a;) = mi(e1, e, ..., ai,...,en) = a; (where ¢; is the identity in
A;j) and so mjtj = 14, and (i) holds.
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Theorem IV.1.14

Theorem IV.1.14. Let R be aring and A, A1, As, ..., A, R-modules.
Then AZA, @A ®--- B A, if and only if for each i =1,2,...,n there
are R-module homomorphisms 7; : A — A; and ¢; : A; — A such that
(i) miti =14, fori=1,2,...,nm;
(i) mjei =0 for i # j;
(i) 171 + tam2 + -+ + gy = 1.

Proof. First, suppose A=A DAy P --- D A,. We take 7; as the
canonical projection and ¢; the canonical injection. Then for a; € A; we

have mti(a;) = mi(e1, e, ..., ai,...,en) = a; (where ¢; is the identity in
A;j) and so m;t; = 14, and (i) holds. Also, for i # j,

mjti(a;) = mj(e1, e2,...,a,...,en) = ¢ (with additive notation, e; = 0)
and (ii) holds.
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Theorem IV.1.14 (continued 1)

Proof (continued). Also, for (a1, a2,...,a,) € A we have
(t1m2 + toma + -+ - + tamp)(a1, a2, - - -, an)
= um(a, a2, ..., an) + toma(ar, a,...,an) + -+ tpmn(ar, a2, ..., an)
= Ll(al) + Lz(ag) + -+ L,,(an)

= (31,62,62,...,6,7)+(el,82,e3,...,en)+"'+(€1762,...,an)

= (a1,a2,...,an)

and 371 + tpma + -+ + tpmn = 14 and (iii) holds.
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Theorem IV.1.14 (continued 1)

Proof (continued). Also, for (a1, a2,...,a,) € A we have

(tam2 4 tom2 4 -+ - + tpmp) (a1, @2, - .., an)

= L17T1(31, a, ..., a,,) + L27T2(21, a, ..., a,,) + -+ an,,(al, a, ..., a,,)
= Ll(al) + Lz(ag) + -+ L,,(an)
= (a1, e,€,...,en)+(e1,a2,€3,....en)+ -+ (e1,€2,...,an)
= (a1,a2,...,an)
and 371 + tpma + - -+ + tpn = 14 and (iii) holds. Similarly, if the
isomorphism is f : A — A1 G Ay @ - - -  Ap, then replacing 7; with
mif : A— A; and ¢; with f~1; : A; — A then (i) and (ii) still hold and
fY(uimy 4 tamo + - - + 1ymn)f = 14 implies (iii).
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Theorem [V.1.14 (continued 2)

Proof (continued). Second, suppose that R-module homomorphism
mi: A— Ajand 1 : Aj — A satisfy (i), (i), (iii).
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Theorem [V.1.14 (continued 2)

Proof (continued). Second, suppose that R-module homomorphism
mi: A— Ajand 1 : Aj — A satisfy (i), (i), (iii). Let the canonical
projections 7 : Ay @ Ay & - - - @ A, — A; and the canonical injections
Ui A= AGAd - BAyas o =Um +ihm+ -+ Uy
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Theorem [V.1.14 (continued 2)

Proof (continued). Second, suppose that R-module homomorphism
mi: A— Ajand 1 : Aj — A satisfy (i), (i), (iii). Let the canonical

projections 7 : Ay @ Ay & - - - @ A, — A; and the canonical injections
L:-:A;—>A1@A2@---@A,, asgsz’1m+L’27r2+-~-—|—L’,,7r,,. Then

pY = Zéﬂ' ZLWJ—ZZLFL
i=1 j=1

n

= Z 1imh i since the canonical mappings satisfy
i=1

mitj = 0 for i # j as shown above

n

= ZL,‘].AI.W,' since mit; = 14, by above
i=1

= ZL,‘W,‘ = 14, by (iii) above.
i=1
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Theorem 1V.1.14 (continued 3)

Proof (continued). Similarly,

n n
Yo = ZZL;-?T;LJTF}
i=1 j=1
n
= Zdﬂr; since 7; and ¢; satisfy (i), (ii), (iii)
i=1
= laese-eA,
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Theorem 1V.1.14 (continued 3)

Proof (continued). Similarly,

n n
Yo = ZZL;-?T;LJTF}
i=1 j=1
n
= Zdﬂr; since 7; and ¢; satisfy (i), (ii), (iii)
i=1
= laoAo-0A,

By Theorem 1.2.3(ii), ¢ is a group isomorphism and so
AZALPAD - DA,
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Lemma IV.1.17

Lemma IV.1.17. The Short Five Lemma.
Let R be a ring and

0— A B £ C— 0

a B g

0— A" B & 0

a commutative diagram of R-modules and R-module homomorphisms
such that each row is a short exact sequence. Then
(i) if @ and ~y are monomorphisms then 3 is a monomorphism;
(ii) if a and y are epimorphisms then 3 is an epimorphism;
(iii) if o and ~y are isomorphisms then /3 is an isomorphism.
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Lemma IV.1.17

Lemma IV.1.17. The Short Five Lemma.
Let R be a ring and
f

0— A - B & C —o0

a B g

0— A" B & 0

a commutative diagram of R-modules and R-module homomorphisms
such that each row is a short exact sequence. Then
(i) if @ and ~y are monomorphisms then 3 is a monomorphism;
(ii) if a and y are epimorphisms then 3 is an epimorphism;
(iii) if o and ~y are isomorphisms then /3 is an isomorphism.

Proof. (i) Let b € B and suppose 3(b) = 0. By Theorem 1.2.3 (see the
comment on page 170) the result follows if we show that b = 0.
Modern Algebra October 21, 2018 13 /23



Lemma 1V.1.17 (continued 1)
Proof (continued). (i) We have

vg(b) = g'B(b) by the commutivity
= g'(0) since 3 is a homomorphism

= 0 since g’ is a homomorphism.
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Lemma IV.1.17. The Short Five Lemma

Lemma 1V.1.17 (continued 1)
Proof (continued). (i) We have

vg(b) = g'B(b) by the commutivity
= g'(0) since 3 is a homomorphism

0 since g’ is a homomorphism.

This implies g(b) = 0 since y is hypothesized to be one to one. So
b € Ker(g). Since the top row is a (short) exact sequence, then
Im(f) = Ker(g) and so b = f(a) for some a € A.
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Lemma IV.1.17. The Short Five Lemma

Lemma 1V.1.17 (continued 1)
Proof (continued). (i) We have

vg(b) = g'B(b) by the commutivity
= g'(0) since 3 is a homomorphism

0 since g’ is a homomorphism.

This implies g(b) = 0 since y is hypothesized to be one to one. So
b € Ker(g). Since the top row is a (short) exact sequence, then
Im(f) = Ker(g) and so b = f(a) for some a € A. We have

f'a(a) = pf(a) by commutivity
B(b) since f(a) = b
= 0 by hypothesis.
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Lemma 1V.1.17 (continued 1)

Proof (continued). (i) We have

vg(b) = g'B(b) by the commutivity
= g'(0) since 3 is a homomorphism
= 0 since g’ is a homomorphism.
This implies g(b) = 0 since y is hypothesized to be one to one. So

b € Ker(g). Since the top row is a (short) exact sequence, then
Im(f) = Ker(g) and so b = f(a) for some a € A. We have

f'a(a) = pf(a) by commutivity
B(b) since f(a) = b
= 0 by hypothesis.

Since the bottom row is a short exact sequence then, by the note above,
f’ is one to one and so the only thing mapped to 0 by ' is 0 and we must
have a(a) = 0.

Modern Algebra October 21, 2018 14 / 23



Lemma IV.1.17. The Short Five Lemma

Lemma 1V.1.17 (continued 2)

Proof (continued). (i) But « is one to one by hypothesis and so a = 0.

Hence b = f(a) = f(0) = 0 since f is a homomorphism. So b =0 and 3
is one to one and (i) follows.
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Lemma 1V.1.17 (continued 2)

Proof (continued). (i) But « is one to one by hypothesis and so a = 0.
Hence b = f(a) = f(0) = 0 since f is a homomorphism. So b =0 and 3
is one to one and (i) follows.

(ii) Let ' € B’. Then g'(b') € C’. Since 7 is hypothesized to be onto
then g’(b') = (c) for some ¢ € C. Since the top row is a short exact
sequence then, by the not above, g is an epimorphism (onto). Hence
¢ = g(b) for some b € B.
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Lemma 1V.1.17 (continued 2)

Proof (continued). (i) But « is one to one by hypothesis and so a = 0.
Hence b = f(a) = f(0) = 0 since f is a homomorphism. So b =0 and 3
is one to one and (i) follows.

(ii) Let ' € B’. Then g'(b') € C’. Since 7 is hypothesized to be onto
then g’(b') = (c) for some ¢ € C. Since the top row is a short exact
sequence then, by the not above, g is an epimorphism (onto). Hence

c = g(b) for some b € B. We have

g'B(b) = ~g(b) by commutivity
= (c) since ¢ = g(b)
= g'(b') since g'(b') = 7(c).
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Lemma 1V.1.17 (continued 2)

Proof (continued). (i) But « is one to one by hypothesis and so a = 0.
Hence b = f(a) = f(0) = 0 since f is a homomorphism. So b =0 and 3
is one to one and (i) follows.

(ii) Let ' € B’. Then g'(b') € C’. Since 7 is hypothesized to be onto
then g’(b') = (c) for some ¢ € C. Since the top row is a short exact
sequence then, by the not above, g is an epimorphism (onto). Hence
c = g(b) for some b € B. We have

g'B(b) = ~g(b) by commutivity
= (c) since ¢ = g(b)
g'(b') since g'(b') = ~(c).
Thus 0 = g'3(b) — g'(b') = &'(B(b) — ) and
B(b) — b’ € Ker(g') = Im(f’) by the exactness of the bottom row. Say
f'(a")B(b) — b’ where &’ € A. Since « is hypothesized to be onto, then
a(a) = & for some a € A.
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Lemma IV.1.17 (continued 3)

Proof (continued). (ii) Consider b — f(a) € B:
B(b — f(a)) = B(b) — Bf(a).
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Lemma IV.1.17. The Short Five Lemma

Lemma IV.1.17 (continued 3)

Proof (continued). (ii) Consider b — f(a) € B:
B(b— f(a)) = B(b) — Bf(a). We have

pf(a)

f'a(a) by commutivity
f'(a') since & = a(a)
B(b) — b since /()

B(b) — b
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Lemma IV.1.17. The Short Five Lemma

Lemma IV.1.17 (continued 3)

Proof (continued). (ii) Consider b — f(a) € B:
B(b— f(a)) = B(b) — ff(a). We have
pf(a) = f'a(a) by commutivity
= f/(d') since & = a(a)
B(b) — b’ since f'(a') = B(b) — b'.
Hence
B(b—f(a)) = pB(b)—pf(a)
= B(b) — (B(b) — b') by the previous computation
= b

Since b’ € B’ was arbitrary, then 3 is onto (an epimorphism) and (ii)
follows.
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Lemma IV.1.17. The Short Five Lemma

Lemma IV.1.17 (continued 3)

Proof (continued). (ii) Consider b — f(a) € B:
B(b— f(a)) = B(b) — Bf(a). We have
pf(a) = f'a(a) by commutivity
= f/(d') since & = a(a)
B(b) — b’ since f'(a') = B(b) — b'.

Hence

B(b—f(a)) = pB(b)—pf(a)
= B(b) — (B(b) — b') by the previous computation
= b
Since b’ € B’ was arbitrary, then 3 is onto (an epimorphism) and (ii)
follows.

(iii) This follows from (i) and (ii). O
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Theorem IV.1.18

Theorem I1V.1.18. Let R be aring and 0 — A; . BE A> — 0 a short
exact sequence of R-module homomorphisms. Then the following
conditions are equivalent:

(i) There is an R-module homomorphism h: Ay — B with

gh=1a,;
(i) There is an R-module homomorphism k : B — Aj with
kf = 1A1;

(iii) the given sequence is isomorphic (with identity maps on A;
and Ap) to the direct sum short exact sequence
{0} — A]_ L) Al D A2 E) A2 — {0}, in particular
B= A @ A.
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Theorem IV.1.18

Theorem I1V.1.18. Let R be aring and 0 — A; . BE A> — 0 a short
exact sequence of R-module homomorphisms. Then the following
conditions are equivalent:

(i) There is an R-module homomorphism h: Ay — B with

gh=1a,;
(i) There is an R-module homomorphism k : B — Aj with
kf = ].Al;

(iii) the given sequence is isomorphic (with identity maps on A;
and A) to the direct sum short exact sequence
{0} — A]_ L) Al D A2 E) A2 — {0}, in particular
B= A @ A.
Proof. (i)=(iii) Suppose there is an R-module homomorphism
h: Ay — B with gh =14,. Then by Theorem 1V.1.13 (with ¢; = f and
1o = h, where D = B) there is a unique module homomorphism
¢ : A1 @ Ay — B given by (see the proof of Theorem 1V.1.13 where
v({ai}) = >2;4i(ai)) the mapping (a1, a2) — f(a1) + h(a2).
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Theorem 1V.1.18 (continued 1)

Proof (continued). (i)=-(iii) Consider the diagram:
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Theorem 1V.1.18 (continued 1)

Proof (continued). (i)=-(iii) Consider the diagram:

0 — A1L> A1 @ A 2, A, — 0

I © 1a,

00— Ay, — B —= Ab— 0
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Theorem 1V.1.18 (continued 2)

Proof (continued). (i)=-(iii) For a; € A; we have
wi1(a1) = p(a1,0) = f(a1) + h(0) = f(a1) = fla,(a1) and so i1 = fay,.
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Theorem 1V.1.18 (continued 2)

Proof (continued). (i)=-(iii) For a; € A; we have
wi1(a1) = p(a1,0) = f(a1) + h(0) = f(a1) = fla,(a1) and so i1 = fay,.
For (a1, a2) € A1 @ Az we have

la,ma(ar,a2) = 1a(a2) = a2 = 1a,(a2)
= gh(az) since gh = 14 by hypothesis
= gf(a1) + gh(az) since df = 0 by note above
(see Remark on p. 176)
= g(f(a1) + h(a1)) since g is a homomorphism

= gp((a1, a2)).
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Theorem 1V.1.18 (continued 2)

Proof (continued). (i)=-(iii) For a; € A; we have
wi1(a1) = p(a1,0) = f(a1) + h(0) = f(a1) = fla,(a1) and so i1 = fay,.
For (a1, a2) € A1 @ Az we have

la,ma(ar,a2) = 1a(a2) = a2 = 1a,(a2)
= gh(az) since gh = 14 by hypothesis
= gf(a1) + gh(az) since df = 0 by note above
(see Remark on p. 176)
= g(f(a1) + h(a1)) since g is a homomorphism
= ge((a1,2)).
So 14,m = g¢ and the diagram commutes. Since 14, and 14, are

isomorphisms, then by the Short Five Lemma (Lemma IV.1.17) ¢ is an
isomorphism and (iii) holds.
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Theorem 1V.1.18 (continued 3)

Proof. (ii)=-(iii) Suppose there is an R-module homomorphism
k : B — A1 with kf = 1A1-
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Theorem 1V.1.18 (continued 3)

Proof. (ii)=-(iii) Suppose there is an R-module homomorphism

k : B — A; with kf = 14,. Then by Theorem IV.1.12 (with ¢; = k and
w2 = g, where C = B) there is a unique ¥ : B — A1 X Ay = A1 @ Ay (the
second equality holding since the indexing set is finite; see page 173) given
by (see the proof of Theorem IV.1.12 where ¢(c) = {¢i(c)}ics) the

mapping ©(b) = (k(b), g(b)).
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Theorem 1V.1.18 (continued 3)

Proof. (ii)=-(iii) Suppose there is an R-module homomorphism
k : B — A; with kf = 14,. Then by Theorem IV.1.12 (with ¢; = k and
w2 = g, where C = B) there is a unique ¥ : B — A1 X Ay = A1 @ Ay (the
second equality holding since the indexing set is finite; see page 173) given
by (see the proof of Theorem IV.1.12 where ¢(c) = {¢i(c)}ics) the
mapping ¢(b) = (k(b),g(b)). Consider the diagram:

0— A £ A—0

1A1 ¥ 1A2

0 — AlL AL D As 2, A — 0
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Theorem 1V.1.18 (continued 4)

Proof. (ii)=-(iii) For a; € A; we have ¢f(a1) = (kf(a1),gf(a1)) = (a1,0)
(since kf = 14, and since gf = 0 by the not above [see Remark on page
176]) and (a1,0) = t1(a1) = t114,(a1), and so of = 1114.
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Theorem 1V.1.18 (continued 4)

Proof. (ii)=-(iii) For a1 € A; we have ¢f(a1) = (kf(a1),gf(a1)) = (a1,0)
(since kf = 14, and since gf = 0 by the not above [see Remark on page
176]) and (a1,0) = t1(a1) = t114,(a1), and so of = 1114. For b € B we
have 14,g(b) = g(b) = ma(k(b), g(b)) = maep(b), and so 14,8 = ¢ and
the diagram commutes. Since 14, and 14, are isomorphisms, then by the
Short Five Lemma (Lemma IV.1.17) ) is an isomorphism and (iii) holds.
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Theorem 1V.1.18 (continued 5)

Proof. (iii)=(i) and (ii) Suppose the given sequence
{0} — Ay L BE A — {0} is isomorphic (with identity maps on A; and
A,) to the short exact sequence {0} — A; 5 A; @ Ay 3 Ay — {0}.
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Theorem 1V.1.18 (continued 5)

Proof. (iii)=(i) and (ii) Suppose the given sequence

{0} — Ay L BE A — {0} is isomorphic (with identity maps on A; and
A;) to the short exact sequence {0} — A; -5 A; @ Ay 3 Ay — {0}. Let
@ : A1 ® Ay — B be the “center” isomorphism. Consider the diagram:

0 — A1L> A1 D As 2, A — 0
1a, @ 1a,

0— A —— £, A—0
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Theorem 1V.1.18 (continued 6)

Proof (continued). (iii)=-(i) and (ii) By the definition of “isomorphic,”
the diagram commutes. Define h: Ap — B as h= iy and k: B — A; as
k =mo . Now mji; = 14, and o lp = 1la,04,-
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Theorem 1V.1.18 (continued 6)
Proof (continued). (iii)=-(i) and (ii) By the definition of “isomorphic,”
the diagram commutes. Define h: Ap — B as h= iy and k: B — A; as

k =mo . Now mji; = 14, and o lp = 1a,@A,- Since the diagram
commutes, we have

ko= (mp N = (me 1)(fla,)
= (me Y)(pr1) since fla, = @i by the commutivity of the diagram

= w1 = 1a,
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Theorem 1V.1.18 (continued 6)

Proof (continued). (iii)=-(i) and (ii) By the definition of “isomorphic,”
the diagram commutes. Define h: Ap — B as h= iy and k: B — A; as
k =mo . Now mji; = 14, and o lp = 1a,@A,- Since the diagram
commutes, we have

ko= (mp N = (me 1)(fla,)
= (me Y)(pr1) since fla, = @i by the commutivity of the diagram

= w1 = 1a,
and

gh = glpr) = (fo)w
= (1a,m2)t2 since g = 1a,m by the commutivity of the diagram

= 1A2(7T2[,2) = 1A21A2 = 1A2-

So (i) and (ii) follow. O
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