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Theorem IV.1.6

Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring R. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a + B) = rB for all r ∈ R, a ∈ A.

The map π : A → A/B given by a 7→ a + B is an R-module epimorphism
with kernel B.

Proof. By the definition of module, A is an additive abelian group, so
B < A is a normal subgroup and A \ B is defined and itself abelian. If
a + B = a′ + B (as cosets of B) then a− a′ ∈ B.

Since B is a submodule
then r(a− a′) ∈ B for all r ∈ R; that is, ra− ra′ ∈ B. So ra + B = ra′ + B
(by Corollary I.4.3) and the action (of “scalar multiplication”) of R on
A \ B is well defined (that is, independent of the representation a + B or
a′ + B of the coset).
We now check the three parts of the definition of R-module. First,
r((a + B) + (b + B)) = r((a + b) + B) = r(a + b) + B = (ra + rb) + B =
(ra + B) + (rb + B) = r(a + b) + r(b + B).
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Theorem IV.1.6

Theorem IV.1.6. Let B be a submodule A over a ring R. Then the
quotient group A/B is an R-module with the action of R on A/B given by

r(a + B) = rB for all r ∈ R, a ∈ A.

The map π : A → A/B given by a 7→ a + B is an R-module epimorphism
with kernel B.

Proof. Next, (r + s)(a + B) = (r + s)a + B = (ra + sa) + B =
(ra + B) + (sa + B) = r(a + B) + s(a + B). Finally,
r(s(a + B)) = r(sa + B) = r(sa) + B = (rs)a + B = rs(a + B). So A \ B
is an R-module.
Now to check π. Consider
π(a + b) = (a + b) + B − (a + B) + (b + B) = π(a) + π(b), and
π(ra) = (ra + B = r(a + B) = rπ(a), so π is a homomorphism. Since B is
the identity in A \ B an db + B = B if and only if b ∈ B, then
Ker(π) = B. Finally, π is clearly onto, so that π is an epimorphism.
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Theorem IV.1.12

Theorem IV.1.12

Theorem IV.1.12. If R is a ring, {Ai | i ∈ I} a family of R-modules, C
an R-module, and {ϕi : C → Ai | i ∈ I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism
ϕ : C →

∏
i∈I Ai such that πiϕ = ϕi for all i ∈ I .

∏
i∈I Ai is uniquely

determined up to isomorphism by this property. In other words,
∏

i∈I Ai is
a product in the category of R-modules.

Proof. By Theorem I.8.2 there is a unique group homomorphism
ϕ : C →

∏
Ai which has the desired property and ϕ is given by (as seen in

the proof of Theorem I.8.2) ϕ(c) = {ϕi (c)}i∈I .

Since each ϕi is an
R-module homomorphism then for all r ∈ R, x ∈ C , we have
ϕ(rc) = {ϕi (rc)}i∈I = {rϕi (c)}i∈I = f {ϕi (c)}i∈I = r{ϕi (c)} = rϕ(c)
and for c1, c2 ∈ C we have ϕ(c1 + c2) = {ϕi (c2 + c2)}i∈I =
{ϕi (c1) + ϕi (c2)}i∈I = {ϕi (c1)}i∈I + {ϕi (c2)}i∈I = ϕ(c1) + ϕ(c2) so ϕ is
an R-module homomorphism.
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Theorem IV.1.12

Theorem IV.1.12 (continued)

Theorem IV.1.12. If R is a ring, {Ai | i ∈ I} a family of R-modules, C
an R-module, and {ϕi : C → Ai | i ∈ I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism
ϕ : C →

∏
i∈I Ai such that πiϕ = ϕi for all i ∈ I .

∏
i∈I Ai is uniquely

determined up to isomorphism by this property. In other words,
∏

i∈I Ai is
a product in the category of R-modules.

Proof (continued). By Definition I.7.2 (with P =
∏

i∈I Ai , B = c ,
πi − πi , ϕi −ϕi , and ϕ = ϕ) we have that P =

∏
i∈I Ai is a product in the

category of R-modules. By Theorem I.7.3,
∏

i∈I Ai is uniquely determined
up to isomorphism (or “equivalence”).
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Theorem IV.1.13

Theorem IV.1.13

Theorem IV.1.13. If R is a ring, {Ai | i ∈ I} a family of R-modules, D
an R-module, and {ψi : Ai → D | i ∈ I} a family of R-module
homomorphisms, then there is a unique R-module homomorphism
ψ :

∑
i∈I Ai → D such that ψιi = ψi for all i ∈ I .

∑
i∈I Ai is uniquely

determined up to isomorphism by this property. In other words,
∑

i∈I Ai is
a coproduct in the category of R-modules.

Proof. By Theorem I.8.5 there is a unique abelian group homomorphism
ψ :

∑
Ai → D with the desired property and ψ is given by (as seen in the

proof of Theorem I.8.5) ψ({ai}) =
∑

i ψi (ai ), where the sum is taken over
the finite set of indices i such that qi 6= 0.

Since each ψi is an R-module
homomorphism, then for all r ∈ R and {ai} ∈

∑
Ai

ψ(c{ai}) = ψ({cai}) =
∑

i

ψi (cai ) =
∑

i

cψi (ai ) = s
∑

i

ψi (ai ) = sψ({ai})

. . .
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Proof (continued). . . . and for {ai}, {a′i} ∈∼i Ai we have

ψ({ai}+ {a′i}) = ψ({ai + a′i}) =
∑

i

ψi (ai + a′i )

=
∑

i

(ψi (ai ) + ψ(a′i )) =
∑

i

ψi (ai ) +
∑

i

ψi (a
′
i ) = ψ({ai}) + ψ({a′i}),

and ψ is an R-module homomorphism. By Definition I.7.4 (with
S =

∑
i Ai , B = D, ψi = ψi , ιi = ιi , and ψ = ψ),

∑
i Ai is a coproduct in

the category of R-modules. By Theorem I.7.5,
∑

i Ai is uniquely
determined up to isomorphism (or “equivalence”).
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Theorem IV.1.14

Theorem IV.1.14

Theorem IV.1.14. Let R be a ring and A,A1,A2, . . . ,An R-modules.
Then A ∼= Ai ⊕ A2 ⊕ · · · ⊕ An if and only if for each i = 1, 2, . . . , n there
are R-module homomorphisms πi : A → Ai and ιi : Ai → A such that

(i) πi ιi = 1Ai
for i = 1, 2, . . . , n;

(ii) πj ιi = 0 for i 6= j ;

(iii) ι1π1 + ι2π2 + · · ·+ ιnπn = 1A.

Proof. First, suppose A = A1 ⊕ A2 ⊕ · · · ⊕ An. We take πi as the
canonical projection and ιi the canonical injection.

Then for ai ∈ Ai we
have πi ιi (ai ) = πi (e1, e2, . . . , ai , . . . , en) = ai (where ei is the identity in
Ai ) and so πi ιi = 1Ai

and (i) holds. Also, for i 6= j ,
πj ιi (ai ) = πj(e1, e2, . . . , ai , . . . , en) = ej (with additive notation, ej = 0)
and (ii) holds.
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Theorem IV.1.14

Theorem IV.1.14 (continued 1)

Proof (continued). Also, for (a1, a2, . . . , an) ∈ A we have

(ι1π2 + ι2π2 + · · ·+ ιnπn)(a1, a2, . . . , an)

= ι1π1(a1, a2, . . . , an) + ι2π2(a1, a2, . . . , an) + · · ·+ ιnπn(a1, a2, . . . , an)

= ι1(a1) + ι2(a2) + · · ·+ ιn(an)

= (a1, e2, e2, . . . , en) + (e1, a2, e3, . . . , en) + · · ·+ (e1, e2, . . . , an)

= (a1, a2, . . . , an)

and ι1π1 + ι2π2 + · · ·+ ιnπn = 1A and (iii) holds. Similarly, if the
isomorphism is f : A → A1 ⊕ A2 ⊕ · · · ⊕ An, then replacing πi with
πi f : A → Ai and ιi with f −1ιi : Ai → A then (i) and (ii) still hold and
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ϕψ =
n∑

i=1

ιiπ
′
i

n∑
j=1

ι′jπj =
n∑

i=1

n∑
j=1

ιiπ
′
i ι
′
jπj

=
n∑

i=1

ιiπ
′
i ι
′
iπi since the canonical mappings satisfy

πi ιj = 0 for i 6= j as shown above

=
n∑

i=1

ιi1Ai
πi since π′i ι

′
i = 1Ai

by above

=
n∑

i=1

ιiπi = 1Ai
by (iii) above.
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Theorem IV.1.14 (continued 3)

Proof (continued). Similarly,

ψϕ =
n∑

i=1

n∑
j=1

ι′iπi ιjπ
′
j

=
n∑

i=1

ι′iπ
′
i since πi and ιi satisfy (i), (ii), (iii)

= 1A1⊕A2⊕···⊕An .

By Theorem I.2.3(ii), ϕ is a group isomorphism and so
A ∼= A1 ⊕ A2 ⊕ · · · ⊕ An.
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Lemma IV.1.17. The Short Five Lemma

Lemma IV.1.17

Lemma IV.1.17. The Short Five Lemma.
Let R be a ring and

0 −→ A′ f ′
−→ B ′ g ′

−→ C ′ −→ 0

0 −→ A
f−→ B

g−→ C −→ 0

↓
α

↓
β

↓
γ

a commutative diagram of R-modules and R-module homomorphisms
such that each row is a short exact sequence. Then

(i) if α and γ are monomorphisms then β is a monomorphism;

(ii) if α and γ are epimorphisms then β is an epimorphism;

(iii) if α and γ are isomorphisms then β is an isomorphism.

Proof. (i) Let b ∈ B and suppose β(b) = 0. By Theorem I.2.3 (see the
comment on page 170) the result follows if we show that b = 0.
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Lemma IV.1.17. The Short Five Lemma

Lemma IV.1.17 (continued 1)

Proof (continued). (i) We have

γg(b) = g ′β(b) by the commutivity

= g ′(0) since β is a homomorphism

= 0 since g ′ is a homomorphism.

This implies g(b) = 0 since γ is hypothesized to be one to one. So
b ∈ Ker(g). Since the top row is a (short) exact sequence, then
Im(f ) = Ker(g) and so b = f (a) for some a ∈ A.

We have

f ′α(a) = βf (a) by commutivity

= β(b) since f (a) = b

= 0 by hypothesis.

Since the bottom row is a short exact sequence then, by the note above,
f ′ is one to one and so the only thing mapped to 0 by f ′ is 0 and we must
have α(a) = 0.
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Lemma IV.1.17. The Short Five Lemma

Lemma IV.1.17 (continued 2)

Proof (continued). (i) But α is one to one by hypothesis and so a = 0.
Hence b = f (a) = f (0) = 0 since f is a homomorphism. So b = 0 and β
is one to one and (i) follows.

(ii) Let b′ ∈ B ′. Then g ′(b′) ∈ C ′. Since γ is hypothesized to be onto
then g ′(b′) = γ(c) for some c ∈ C . Since the top row is a short exact
sequence then, by the not above, g is an epimorphism (onto). Hence
c = g(b) for some b ∈ B.

We have

g ′β(b) = γg(b) by commutivity

= γ(c) since c = g(b)

= g ′(b′) since g ′(b′) = γ(c).

Thus 0 = g ′β(b)− g ′(b′) = g ′(β(b)− b′) and
β(b)− b′ ∈ Ker(g ′) = Im(f ′) by the exactness of the bottom row. Say
f ′(a′)β(b)− b′ where a′ ∈ A. Since α is hypothesized to be onto, then
α(a) = a′ for some a ∈ A.
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Lemma IV.1.17. The Short Five Lemma

Lemma IV.1.17 (continued 3)

Proof (continued). (ii) Consider b − f (a) ∈ B:
β(b − f (a)) = β(b)− βf (a). We have

βf (a) = f ′α(a) by commutivity

= f ′(a′) since a′ = α(a)

= β(b)− b′ since f ′(a′) = β(b)− b′.

Hence

β(b − f (a)) = β(b)− βf (a)

= β(b)− (β(b)− b′) by the previous computation

= b′.

Since b′ ∈ B ′ was arbitrary, then β is onto (an epimorphism) and (ii)
follows.

(iii) This follows from (i) and (ii).
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Theorem IV.1.18

Theorem IV.1.18

Theorem IV.1.18. Let R be a ring and 0 → A1
f→ B

g→ A2 → 0 a short
exact sequence of R-module homomorphisms. Then the following
conditions are equivalent:

(i) There is an R-module homomorphism h : A2 → B with
gh = 1A2 ;

(ii) There is an R-module homomorphism k : B → A1 with
kf = 1A1 ;

(iii) the given sequence is isomorphic (with identity maps on A1

and A2) to the direct sum short exact sequence

{0} → A1
ι1−→ A1 ⊕ A2

π2−→ A2 → {0}; in particular
B ∼= A1 ⊕ A2.

Proof. (i)⇒(iii) Suppose there is an R-module homomorphism
h : A2 → B with gh = 1A2 . Then by Theorem IV.1.13 (with ψ1 = f and
ψ2 = h, where D = B) there is a unique module homomorphism
ϕ : A1 ⊕ A2 → B given by (see the proof of Theorem IV.1.13 where
ϕ({ai}) =

∑
i ψi (ai )) the mapping (a1, a2) 7→ f (a1) + h(a2).
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Theorem IV.1.18

Theorem IV.1.18 (continued 1)

Proof (continued). (i)⇒(iii) Consider the diagram:

0 −→ A1
ι1−→ A1 ⊕ A2

π2−→ A2 −→ 0

0 −→ A1
f−→ B

g−→ A2 −→ 0

↓
1A1

↓
ϕ

↓
1A2
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Proof (continued). (i)⇒(iii) Consider the diagram:

0 −→ A1
ι1−→ A1 ⊕ A2

π2−→ A2 −→ 0

0 −→ A1
f−→ B

g−→ A2 −→ 0

↓
1A1

↓
ϕ
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Theorem IV.1.18

Theorem IV.1.18 (continued 2)

Proof (continued). (i)⇒(iii) For a1 ∈ A1 we have
ϕι1(a1) = ϕ(a1, 0) = f (a1) + h(0) = f (a1) = f 1A1(a1) and so ϕι1 = faA1 .
For (a1, a2) ∈ A1 ⊕ A2 we have

1A2π2(a1, a2) = 1A2(a2) = a2 = 1A2(a2)

= gh(a2) since gh = 1A by hypothesis

= gf (a1) + gh(a2) since df = 0 by note above

(see Remark on p. 176)

= g(f (a1) + h(a1)) since g is a homomorphism

= gϕ((a1, a2)).

So 1A2π = gϕ and the diagram commutes. Since 1A1 and 1A2 are
isomorphisms, then by the Short Five Lemma (Lemma IV.1.17) ϕ is an
isomorphism and (iii) holds.

() Modern Algebra October 21, 2018 19 / 23



Theorem IV.1.18

Theorem IV.1.18 (continued 2)

Proof (continued). (i)⇒(iii) For a1 ∈ A1 we have
ϕι1(a1) = ϕ(a1, 0) = f (a1) + h(0) = f (a1) = f 1A1(a1) and so ϕι1 = faA1 .
For (a1, a2) ∈ A1 ⊕ A2 we have

1A2π2(a1, a2) = 1A2(a2) = a2 = 1A2(a2)

= gh(a2) since gh = 1A by hypothesis

= gf (a1) + gh(a2) since df = 0 by note above

(see Remark on p. 176)

= g(f (a1) + h(a1)) since g is a homomorphism

= gϕ((a1, a2)).

So 1A2π = gϕ and the diagram commutes. Since 1A1 and 1A2 are
isomorphisms, then by the Short Five Lemma (Lemma IV.1.17) ϕ is an
isomorphism and (iii) holds.

() Modern Algebra October 21, 2018 19 / 23



Theorem IV.1.18

Theorem IV.1.18 (continued 2)

Proof (continued). (i)⇒(iii) For a1 ∈ A1 we have
ϕι1(a1) = ϕ(a1, 0) = f (a1) + h(0) = f (a1) = f 1A1(a1) and so ϕι1 = faA1 .
For (a1, a2) ∈ A1 ⊕ A2 we have

1A2π2(a1, a2) = 1A2(a2) = a2 = 1A2(a2)

= gh(a2) since gh = 1A by hypothesis

= gf (a1) + gh(a2) since df = 0 by note above

(see Remark on p. 176)

= g(f (a1) + h(a1)) since g is a homomorphism

= gϕ((a1, a2)).

So 1A2π = gϕ and the diagram commutes. Since 1A1 and 1A2 are
isomorphisms, then by the Short Five Lemma (Lemma IV.1.17) ϕ is an
isomorphism and (iii) holds.

() Modern Algebra October 21, 2018 19 / 23



Theorem IV.1.18

Theorem IV.1.18 (continued 3)

Proof. (ii)⇒(iii) Suppose there is an R-module homomorphism
k : B → A1 with kf = 1A1 . Then by Theorem IV.1.12 (with ϕ1 = k and
ϕ2 = g , where C = B) there is a unique ψ : B → A1 × A2 = A1 ⊕ A2 (the
second equality holding since the indexing set is finite; see page 173) given
by (see the proof of Theorem IV.1.12 where ϕ(c) = {ϕi (c)}i∈I ) the
mapping ϕ(b) = (k(b), g(b)).

Consider the diagram:

0 −→ A1
ι1−→ A1 ⊕ A2

π2−→ A2 −→ 0

0 −→ A1
f−→ B

g−→ A2 −→ 0

↓
1A1

↓
ϕ

↓
1A2
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ϕ2 = g , where C = B) there is a unique ψ : B → A1 × A2 = A1 ⊕ A2 (the
second equality holding since the indexing set is finite; see page 173) given
by (see the proof of Theorem IV.1.12 where ϕ(c) = {ϕi (c)}i∈I ) the
mapping ϕ(b) = (k(b), g(b)). Consider the diagram:

0 −→ A1
ι1−→ A1 ⊕ A2

π2−→ A2 −→ 0

0 −→ A1
f−→ B

g−→ A2 −→ 0

↓
1A1

↓
ϕ

↓
1A2
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Theorem IV.1.18

Theorem IV.1.18 (continued 4)

Proof. (ii)⇒(iii) For a1 ∈ A1 we have ϕf (a1) = (kf (a1), gf (a1)) = (a1, 0)
(since kf = 1A1 and since gf = 0 by the not above [see Remark on page
176]) and (a1, 0) = ι1(a1) = ι11A1(a1), and so ϕf = ι11A. For b ∈ B we
have 1A2g(b) = g(b) = π2(k(b), g(b)) = π2ϕ(b), and so 1A2g = π2ϕ and
the diagram commutes. Since 1A1 and 1A2 are isomorphisms, then by the
Short Five Lemma (Lemma IV.1.17) ψ is an isomorphism and (iii) holds.
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Theorem IV.1.18

Theorem IV.1.18 (continued 5)

Proof. (iii)⇒(i) and (ii) Suppose the given sequence

{0} → A1
f→ B

g→ A2 → {0} is isomorphic (with identity maps on A1 and

A2) to the short exact sequence {0} → A1
ι1→ A1 ⊕ A2

π2→ A2 → {0}. Let
ϕ : A1 ⊕ A2 → B be the “center” isomorphism. Consider the diagram:

0 −→ A1
ι1−→ A1 ⊕ A2

π2−→ A2 −→ 0

0 −→ A1
f−→ B

g−→ A2 −→ 0

↓
1A1

↓
ϕ

↓
1A2
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Theorem IV.1.18

Theorem IV.1.18 (continued 6)

Proof (continued). (iii)⇒(i) and (ii) By the definition of “isomorphic,”
the diagram commutes. Define h : A2 → B as h = ϕι2 and k : B → A1 as
k = π1ϕ

−1. Now πi ιi = 1Ai
and ϕ−1ϕ = 1A1⊕A2 . Since the diagram

commutes, we have

kf = (π1ϕ
−1)f = (π1ϕ

−1)(f 1A1)

= (π1ϕ
−1)(ϕι1) since f 1A1 = ϕι1 by the commutivity of the diagram

= π1ι1 = 1A1

and

gh = g(ϕι2) = (f ϕ)ι2

= (1A2π2)ι2 since gϕ = 1A2π2 by the commutivity of the diagram

= 1A2(π2ι2) = 1A21A2 = 1A2 .

So (i) and (ii) follow.
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