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Theorem IV.2.1

Theorem IV.2.1. Let R be a ring with identity. The following on a
unitary R-module F are equivalent.
(i) F has a nonempty basis.
(i) F is the internal sum of a family of cyclic R-modules, each
of which is isomorphic as a left R-module to R.
(iii) F is R-module isomorphic to a direct sum of copies of the
left R-module R.
(iv) There exists a nonempty set X and a function ¢ : X — F
with the following property: given any unitary R-module A
and function f : X — A there exists a unique R-module
homomorphism f : F — A such that fv = f. In other words,
F is a free object in the category of unitary R-modules.
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Theorem IV.2.1

Theorem IV.2.1. Let R be a ring with identity. The following on a
unitary R-module F are equivalent.
(i) F has a nonempty basis.
(i) F is the internal sum of a family of cyclic R-modules, each
of which is isomorphic as a left R-module to R.
(iii) F is R-module isomorphic to a direct sum of copies of the
left R-module R.
(iv) There exists a nonempty set X and a function ¢ : X — F
with the following property: given any unitary R-module A
and function f : X — A there exists a unique R-module
homomorphism f : F — A such that fv = f. In other words,
F is a free object in the category of unitary R-modules.

Proof. (i) = (ii). Suppose F has a nonempty basis X and let x € X. The

map R — x given by r — rx, is an R-module epimorphism by Theorem
IV.1.5(i).
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Theorem IV.2.1 (continued 1)

Proof (continued). If rx = 0 then r = 0 since X is a linearly independent
set, whence the map is a monomorphism (one to one, by Theorem 1.2.3;
see the comment on page 170). Of course the mapping is onto (by the
definition of Rx) and so R = Rx as left modules.
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Theorem IV.2.1 (continued 1)

Proof (continued). If rx = 0 then r = 0 since X is a linearly independent
set, whence the map is a monomorphism (one to one, by Theorem 1.2.3;
see the comment on page 170). Of course the mapping is onto (by the
definition of Rx) and so R = Rx as left modules.

By Theorem IV.1.5(iii), the elements of F are of the form Y 7, rix; where
seN, r € R, and x; € X (since basis X is a generating set of F). By
Theorem IV.1.5(iv), the sum of family {Rx | x € X} consists of all finite
sums rixi + hxo + -+ + rpx, where rix; € Rx; and x; € X. So F is the
sum of the family {Rx | x € X}. Denote as Rx; the sum of the family
{Rx | x € X, x # xk}.
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Theorem IV.2.1 (continued 1)

Proof (continued). If rx = 0 then r = 0 since X is a linearly independent
set, whence the map is a monomorphism (one to one, by Theorem 1.2.3;
see the comment on page 170). Of course the mapping is onto (by the
definition of Rx) and so R = Rx as left modules.

By Theorem IV.1.5(iii), the elements of F are of the form Y 7, rix; where
seN, r € R, and x; € X (since basis X is a generating set of F). By
Theorem IV.1.5(iv), the sum of family {Rx | x € X} consists of all finite
sums rixi + hxo + -+ + rpx, where rix; € Rx; and x; € X. So F is the
sum of the family {Rx | x € X}. Denote as Rx; the sum of the family
{Rx | x € X, x # xx}. By Theorem IV.1.5(iv), Rx; consists of elements of
the form rixy + rxa + -+ + rax, where x; # xk, so Rxx (which consists of
elements of the form rxy) intersects Rx; only consists of 0 (since the x's
are distinct) Now Theorem IV.1.15 holds and so F =2 )" _, Rx (or

F =3 . cx Rx; see Note IV.1.G) as claimed.
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Theorem IV.2.1 (continued 2)

Theorem IV.2.1. Let R be a ring with identity. The following on a
unitary R-module F are equivalent.

(i) F is the internal sum of a family of cyclic R-modules, each
of which is isomorphic as a left R-module to R.

(iii) F is R-module isomorphic to a direct sum of copies of the
left R-module R.

Proof (continued). (ii) = (iii). Suppose F is the internal direct sum of a
family of cyclic R-modules, each of which is isomorphic as a left R-module
to R. Then, by Theorem IV.1.5, F is the sum of the family of cyclic
R-modules, say F = )., R;. By Exercise IV.1.8 (which extends Theorem
1.8.10 to R-modules), since each R; = R, then F is given as the internal
direct sum F =) ;.; R (Theorem 1.8.10 deals with internal weak direct
products, but these are equivalent to internal direct sums in additive

notation).
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Theorem 1V.2.1 (continued 3)

Theorem IV.2.1. Let R be a ring with identity. The following on a
unitary R-module F are equivalent.

(i) F has a nonempty basis.

(iii) F is R-module isomorphic to a direct sum of copies of the
left R-module R.

Proof (continued). (iii) = (i). Suppose F is isomorphic to a direct sum
of copies of R, say F =2 )"y R. For x € X, let 6 denote the element
{ri} € > x Rwhere r; =0 for i # x and r, = 1g. Let Y = {0, | x € X}.
Notice that 0 € ) R is the element {r;} € >y R where r; = 0 for all
ieX.
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Theorem 1V.2.1 (continued 3)

Theorem IV.2.1. Let R be a ring with identity. The following on a
unitary R-module F are equivalent.

(i) F has a nonempty basis.

(iii) F is R-module isomorphic to a direct sum of copies of the
left R-module R.

Proof (continued). (iii) = (i). Suppose F is isomorphic to a direct sum
of copies of R, say F =2 )"y R. For x € X, let 6 denote the element

{ri} € > x Rwhere r; =0 for i # x and r, = 1g. Let Y = {0, | x € X}.
Notice that 0 € ) R is the element {r;} € >y R where r; = 0 for all

i € X. Let distinct 0y,,0y,,...,0x, € Y and let ri,r,...,r, € R. Suppose
by + by, + - by, =0. If nby, + rby, +--- by, = {si} € > xR,
then we have s; = rj for i = x; and s; = 0 if i # x;. So we must have

r; = 0 for each i. That is, set Y is linearly independent.
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Theorem IV.2.1 (continued 4)

Proof (continued). To show that Y spans ), R it suffices (by Note
IV.2.A) to show that any y € >~y R is of the form

rnby + rby, + -+ rby, for some r; € R and 0, € Y. Since )y Ris a
direct sum, then it is (in multiplicative notation) a weak direct product
(see Definition 1.8.3) so that y, = 0 for all but finitely many x € X. Say
yx # 0 for x € {x1,x2,...,xn} where y,. = r; # 0. Then

y = nby, + nby, + -+ rby,. Therefore Y is a linearly independent
spanning set of " R; thatis, Y is a basis of ) R.
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Theorem IV.2.1 (continued 4)

Proof (continued). To show that Y spans ), R it suffices (by Note
IV.2.A) to show that any y € >~y R is of the form

rnby + rby, + -+ rby, for some r; € R and 0, € Y. Since )y Ris a
direct sum, then it is (in multiplicative notation) a weak direct product
(see Definition 1.8.3) so that y, = 0 for all but finitely many x € X. Say
yx # 0 for x € {x1,x2,...,xn} where y,. = r; # 0. Then

y = nby, + nby, + -+ rby,. Therefore Y is a linearly independent
spanning set of " R; thatis, Y is a basis of ) R.

Let f : F — > yx R be an isomorphism, and let A be the additive abelian
group of R-module F. With B as the additive abelian group of R-module
> x R, we have f : A — B satisfying f(a+ c¢) = f(a) + f(c) and

f(ra) = rf(a) for all a,c € A and r € R by Definition 1V.1.2; that is, f
preserves linear combinations.
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Theorem 1V.2.1 (continued 5)

Proof (continued). Define A= {f~1(6,) | 6 € Y}. Then for distinct
f1(0x), FY(0x),...,f1(0x,) € Zand any r2, 12, ..., 1y € R with
nf Y (0y) + rf1(0x) + -+ raf1(0,) = 0 we have (applying f to
both sides of this equation) rfy, + rbx, + -+ xpfx, = f(0) = 0. Since
the 6, are linearly independent in ), R, then we must have
n=r=---=1r,=0. Therefore Z is a linearly independent set in F.
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Theorem 1V.2.1 (continued 5)

Proof (continued). Define A= {f~1(0y) | 6x € Y}. Then for distinct
f1(0x), FY(0x),...,f1(0x,) € Zand any r2, 12, ..., 1y € R with
nf Y (0y) + rf1(0x) + -+ raf1(0,) = 0 we have (applying f to
both sides of this equation) rfy, + rbx, + -+ xpfx, = f(0) = 0. Since
the 6, are linearly independent in ), R, then we must have

n=r=---=1r,=0. Therefore Z is a linearly independent set in F. For
any z € F, f(z) € Y x R so that f(z) = by, + rnby, + - + raby, for
some Oy, ,0x,,...,0x, € Y and some ri,r,...,r, € R. Therefore

f(z) = nb + rby, + - + ryby, and

z= flffl(exl) + r2f71(9X2) + -+ raf 71(0y,). Therefore Z is a linearly
independent spanning set of F; thatis, F has a bases and (i) holds, as
claimed.
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Theorem IV.2.1 (continued 6)

Theorem I1V.2.1. Let R be a ring with identity. The following on a
unitary R-module F are equivalent.

(i) F has a nonempty basis.

(iv) There exists a nonempty set X and a function ¢ : X — F
with the following property: given any unitary R-module A
and function f : X — A there exists a unique R-module
homomorphism f: F — A such that fu = f. In other words,
F is a free object in the category of unitary R-modules.

Proof (continued). (i) = (iv). Let X be a basis of F and ¢ : X — F the
inclusion map Let A be a unitary R-module and f : X — A. Forany u € F
we have u = 27:1 rix; for some r; € R and some x; € X, since X is a
spanning set (see Note IV.2.A) and by Note IV.2.B this representation is
unique. So the map f : F — A given by

f(u) =F(O0 rixi) =30 rif(x;) is well-defined, and fi = f.
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Theorem IV.2.1 (continued 7)

Proof (continued). To show that f is an R-module homomorphism, let
a,ce€ A Thena=3 " rixiand c =Y " rix! for some r;,r/ € R and
some x,-,x,{ € X. In the notation of Note IV.2.B,

L n m
3+C=Z(ri+r;)x,-+ Z rixi + Z rix!

and so i=1 i=0+1 i=0+1
l n m
flatc) = Z(r,-—i— ) f(x) + Z rif (xi) + Z rir(f)
i=1 i=t+1 i=+1
l l n m
= > orfOa)+ Y )+ D nf(a)+ Y rf(x)
i=1 i=1 i=0+1 i=0+1
since x; = x! for 1 < i</
n m
= > rf(x)+ Y rif(x) = f(a) + f(c).
i=1 i=1
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Theorem 1V.2.1 (continued 8)

Proof (continued). Also f(ra) = f (r D iy fiXi) = O mmix) =

S rmif(x) = rY 1 rif(x) = rf(a). So f is an R-module
homomorphism by Definition I1V.1.2.
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Theorem 1V.2.1 (continued 8)

Proof (continued). Also f(ra) = f (r D iy fiXi) = O mmix) =

S rmif(x) = rY 1 rif(x) = rf(a). So f is an R-module
homomorphism by Definition I1V.1.2.

Since X generates F (i.e., every element of A is a linear combination of
elements of X by Note IV.2.A) then any R-module homomorphism
mapping F — A is uniquely determined by its valueson X. If g: F — A'is
any R-module homomorphism such that g¢ = f, then for all x € X we
have zZ(x) = z(1(x)) = f(x) = f(x). Therefore g = f and so f is unique.
By Note IV.1.D, the unitary R-modules form a concrete category. By the
definition of “free object F on set X" of a concrete category (Definition
1.7.7), we see that F is a free object on set X where i is ¢, A as a unitary
R-module, and f as the unique morphism f : F — A.
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Theorem 1V.2.1 (continued 9)

Theorem IV.2.1. Let R be a ring with identity. The following on a
unitary R-module F are equivalent.

(iii) F is R-module isomorphic to a direct sum of copies of the
left R-module R.

(iv) There exists a nonempty set X and a function ¢ : X — F
with the following property: given any unitary R-module A
and function f : X — A there exists a unique R-module
homomorphism f : F — A such that fv = f. In other words,
F is a free object in the category of unitary R-modules.

Proof (continued). (iv) = (iii). Let X be the nonempty set and

v : X — F hypothesized to exist. Consider the direct sum >y R and let
Y = {6 — x | x € X} be the basis of the unitary R-module )", R given in
the (iii) = (i) part of the proof above.
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Theorem 1V.2.1 (continued 10)

Proof (continued). We have established (iii) = (i) = (iv) so we have
(replacing F with >y R in (iii) and replacing X with Y in (i)) that >, R
is a free object on set Y in the category of unitary R-modules (with

Y — > x R by the inclusion map, as is done in the proof of (i) = (iv)).
Since |X| = |{0x | x € X}| =|Y|, then by Theorem 1.7.8 in Section |.7.
Categories: Products, Coproducts, and Free Objects, F and ZX R are
equivalent.
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Theorem 1V.2.1 (continued 10)

Proof (continued). We have established (iii) = (i) = (iv) so we have
(replacing F with >y R in (iii) and replacing X with Y in (i)) that >, R
is a free object on set Y in the category of unitary R-modules (with

Y — > x R by the inclusion map, as is done in the proof of (i) = (iv)).
Since |X| = |{0x | x € X}| =|Y|, then by Theorem 1.7.8 in Section |.7.
Categories: Products, Coproducts, and Free Objects, F and ZX R are
equivalent. As shown in the proof of Theorem 1.7.8, equivalence is given
between two objects F and F' as ¢ : F — F' and ¢ : F' — F where
ow =1 and p o = 1f/. Since the morphisms in the category of
unitary R-modules are R-module homomorphisms, then ¢ and v are
R-module homomorphisms. By Theorem 0.3.1, ¢ and 1 are bijections,
therefore we have that ¢ and ¢ are R-module isomorphisms. Therefore,

F =3 s« R, as claimed. O
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Corollary IV.2.2

Corollary IV.2.2

Corollary 1V.2.2. Every unitary module A over a ring R (with identity) is
the homomorphic image of a free R-module F. If A is finitely generated,
then F may be chosen to be finitely generated.
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Corollary IV.2.2

Corollary 1V.2.2. Every unitary module A over a ring R (with identity) is
the homomorphic image of a free R-module F. If A is finitely generated,
then F may be chosen to be finitely generated.

Proof. Let X be a set of generators of A (A itself is a set of generators, so
such a set exists). Let F be the free R-module on set X. Then X is a
basis of F by the convention given in Note IV.2.F. As shown in the (i) =
(iv) of Theorem IV.2.1, we see that set X satisfies the conditions of part
(iv) of Theorem IV.2.1. We take function f : X — A of part (iv) to be the
inclusion map (not to be confused with functions ¢ : X — F). Then part
(iv) implies the existence of unique R-module homomorphism f : F — A.
We just need to show f is a surjection.

Modern Algebra T



Corollary IV.2.2

Corollary 1V.2.2. Every unitary module A over a ring R (with identity) is
the homomorphic image of a free R-module F. If A is finitely generated,
then F may be chosen to be finitely generated.

Proof. Let X be a set of generators of A (A itself is a set of generators, so
such a set exists). Let F be the free R-module on set X. Then X is a
basis of F by the convention given in Note IV.2.F. As shown in the (i) =
(iv) of Theorem IV.2.1, we see that set X satisfies the conditions of part
(iv) of Theorem IV.2.1. We take function f : X — A of part (iv) to be the
inclusion map (not to be confused with functions ¢ : X — F). Then part
(iv) implies the existence of unique R-module homomorphism f : F — A.
We just need to show f is a surjection. We also have by part (iv) that
fu="F. Sincet: X —F, f:F— A and X C A then Im(?) includes
f(X) C A where f(X) = X since f : X — A is just the inclusion mapping.
That is, X C Im(f) C A.
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Corollary 1V.2.2 (continued)

Corollary 1V.2.2. Every unitary module A over a ring R (with identity) is
the homomorphic image of a free R-module F. If A is finitely generated,
then F may be chosen to be finitely generated.

Proof (continued). Since the homomorphic image of an R-module is an

R-module (see Example IV.1.B), then Im(f) is an R-module containing
generating set X of A, and therefore Im(f) = A. That is, arbitrary unitary
module A over ring R is the homomorphic image of free R-module F, as

claimed.

Modern Algebra T



Corollary 1V.2.2 (continued)

Corollary 1V.2.2. Every unitary module A over a ring R (with identity) is
the homomorphic image of a free R-module F. If A is finitely generated,
then F may be chosen to be finitely generated.

Proof (continued). Since the homomorphic image of an R-module is an

R-module (see Example IV.1.B), then Im(f) is an R-module containing
generating set X of A, and therefore Im(f) = A. That is, arbitrary unitary
module A over ring R is the homomorphic image of free R-module F, as

claimed.

If A is finitely generated, then generating set X can be taken to be finite
and hence free R-module F (which has X as a basis) is finitely generated,
as claimed. O
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Lemma IV.2.3

Lemma 1V.2.3. A maximal linearly independent subset X of a vector
space V over a division ring D is a basis of V.
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Lemma IV.2.3

Lemma 1V.2.3. A maximal linearly independent subset X of a vector
space V over a division ring D is a basis of V.

Proof. With X as a maximal linearly independent subset of V, let W be
the subspace of V spanned by set X. Since X is linearly independent and
spans W, then X is a basis of W. ASSUME W # V. Then there is a
nonzero vector a € V with a € W. Consider the set X U {a}.
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Lemma IV.2.3

Lemma 1V.2.3. A maximal linearly independent subset X of a vector
space V over a division ring D is a basis of V.

Proof. With X as a maximal linearly independent subset of V, let W be
the subspace of V spanned by set X. Since X is linearly independent and
spans W, then X is a basis of W. ASSUME W # V. Then there is a
nonzero vector a € V with a € W. Consider the set X U {a}. If

ra+ nxi+ nxo+ -+ rmx, =0 where r,r; € D and x; € X for each /. If
r#0,thena=—rtnx; =rtnx— - —rtrx, € W. But this
CONTRADICTS the choice of nonzero a € V \ W. So we must have
r=20.

Modern Algebra T



Lemma IV.2.3

Lemma 1V.2.3. A maximal linearly independent subset X of a vector
space V over a division ring D is a basis of V.

Proof. With X as a maximal linearly independent subset of V, let W be
the subspace of V spanned by set X. Since X is linearly independent and
spans W, then X is a basis of W. ASSUME W # V. Then there is a
nonzero vector a € V with a € W. Consider the set X U {a}. If

ra+ nxi+ nxo+ -+ rmx, =0 where r,r; € D and x; € X for each /. If
r#0,thena=—rtnx; =rtnx— - —rtrx, € W. But this
CONTRADICTS the choice of nonzero a € V \ W. So we must have
r=0. Thenra+nxy+mnx+- --+rxpn=nx1+nx+- -+rmx,=0
and hence r; = 0 for all i since X is a linearly independent set. But this
implies that the set X U {a} is linearly independent, CONTRADICTING
the maximality of linearly independent set X. So the assumption that

W #£ V is false, and hence V = W and X is a basis for V, as claimed. [
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Theorem IV.2.4

Theorem 1V.2.4. Every vector space V over a division ring D has a basis

and is therefore a free D-module. More generally every linearly
independent subset of V is contained in a basis of V.
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Theorem IV.2.4

Theorem 1V.2.4. Every vector space V over a division ring D has a basis
and is therefore a free D-module. More generally every linearly
independent subset of V is contained in a basis of V.

Proof. Let X be any linearly independent subset of V. Let S be the set of
all linearly independent subsets of V' that contain X. Since X € S then

S # &. Partially oder S by set theoretic inclusion; that is, 51 < S, for
S1C Sp. Let {C; | i€ I} beachainin S (that is, for any ¢;, cx with

J, k € 1 we have either ¢; < ¢, or ¢ < ¢j; see Section 0.7. The Axiom of
Choice, Order, and Zorn's Lemma for more on this).
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Theorem IV.2.4

Theorem 1V.2.4. Every vector space V over a division ring D has a basis
and is therefore a free D-module. More generally every linearly
independent subset of V is contained in a basis of V.

Proof. Let X be any linearly independent subset of V. Let S be the set of
all linearly independent subsets of V' that contain X. Since X € S then

S # &. Partially oder S by set theoretic inclusion; that is, 51 < S, for
S1C Sp. Let {C; | i€ I} beachainin S (that is, for any ¢;, cx with

J, k € 1 we have either ¢; < ¢, or ¢ < ¢j; see Section 0.7. The Axiom of
Choice, Order, and Zorn's Lemma for more on this).

Define C = U;¢;C;. Let x1,x0,...,x0 € C, r1,1,...,r, € D, and suppose
rixy + roxo + -+ -+ rpx, = 0. Then for each 1 </ < n we have x; € C; for
some j € |. Say, WLOG, x; € C;. Since all C; for i € | are comparable,
then there is some C1, Gy, ..., C,, say C*, such that (G < C* or GG C C*
foreach 1 < < n.
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Theorem IV.2.4 (continued)

Theorem 1V.2.4. Every vector space V over a division ring D has a basis
and is therefore a free D-module. More generally every linearly
independent subset of V is contained in a basis of V.

Proof (continued). Therefore xi,x2,...,x, € C* and since C* € S then
C* is a linearly independent subset of V, so rix3 +mnxao+ -+ rpx, =0
implies r; = 0 for 1 < i < n. Therefore C is a linearly independent subset
of Vand C € §. Of course C; < C = Uj¢;C; is an upper bound for chain
{Ci|iel}. Since {Cj| i€ I} is an arbitrary chain, then we can apply
Zorn's Lemma to conclude that S contains a maximal element B. Then B
contains X and is a maximal linearity independent subset of V. That is, B
contains X and is a basis of V by Lemma IV.2.3, as claimed. O
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Theorem IV.2.5

Theorem I1V.2.5. If V is a vector space over a division ring D and X is a
subset that spans V/, then X contains a basis of V.
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Theorem IV.2.5

Theorem I1V.2.5. If V is a vector space over a division ring D and X is a
subset that spans V/, then X contains a basis of V.

Proof. Similar to the proof of Theorem IV.2.4, let S be the set of all
linearly independent subsets of X and partially order S by subset inclusion.
S contains singletons of X, so § # @. As in the proof of Theorem 1V.2.4,
we have any chain {C; | i € I} of elements of S has C = Uj¢;C; as an
upper bound so that we can apply Zorn’s Lemma to S to get a maximal
element Y of S. Every element of X is a linear combination of elements of
Y, or else we could find a € X which is not in the span of Y.
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Theorem IV.2.5

Theorem I1V.2.5. If V is a vector space over a division ring D and X is a
subset that spans V/, then X contains a basis of V.

Proof. Similar to the proof of Theorem IV.2.4, let S be the set of all
linearly independent subsets of X and partially order S by subset inclusion.
S contains singletons of X, so § # @. As in the proof of Theorem 1V.2.4,
we have any chain {C; | i € I} of elements of S has C = Uj¢;C; as an
upper bound so that we can apply Zorn’s Lemma to S to get a maximal
element Y of S. Every element of X is a linear combination of elements of
Y, or else we could find a € X which is not in the span of Y. This then
gives Y U {a} as an element of S where Y C Y U {a} so that Y is not
maximal, contradicting the maximality of Y (this is the same argument as
given in the proof of Lemma 1V.2.3). Since X spans V and Y spans X,
then Y spans V (a linear combination of linear combinations is itself a
linear combination). Therefore Y is a linearly independent spanning set of
V. That is, Y is a basis of V which is contained in X, as claimed. O
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Theorem 1V.2.6

Theorem IV.2.6. Let R be a ring with identity and F a free R-module
with an infinite basis X. Then every basis of F has the same cardinality as
X.
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Theorem 1V.2.6

Theorem IV.2.6. Let R be a ring with identity and F a free R-module
with an infinite basis X. Then every basis of F has the same cardinality as
X.

Proof. Let Y be a basis of F other than X. ASSUME that Y is finite.
Since Y generates F and every element of Y is a linear combination of a
finite number of elements of X (because X is a basis of F), then there is a
finite subset {x1, x2,...,xm} of X (namely, the x;'s in the linear
combinations that give the elements of Y') which generates F (because Y
is assumed to be a basis of F). Since X is infinite then there exists

x € X\ {x1,x2,...,Xm}
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Theorem 1V.2.6

Theorem IV.2.6. Let R be a ring with identity and F a free R-module

with an infinite basis X. Then every basis of F has the same cardinality as
X.

Proof. Let Y be a basis of F other than X. ASSUME that Y is finite.
Since Y generates F and every element of Y is a linear combination of a
finite number of elements of X (because X is a basis of F), then there is a
finite subset {x1, x2,...,xm} of X (namely, the x;'s in the linear
combinations that give the elements of Y') which generates F (because Y
is assumed to be a basis of F). Since X is infinite then there exists

x € X\ {x1,x2,...,Xm}. Then x = nnxy + raxo + - - - + rmxm for some

ri € R since {x1, x2,...,Xm} generates F. Then

rnxiy+ rpx1 + -+ rmxm € X and not all coefficients are 0,
CONTRADICTING the fact that X is linearly independent. Hence the
assumption that Y is finite is false and, therefore, Y is infinite.
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Theorem 1V.2.6 (continued 1)

Theorem IV.2.6. Let R be a ring with identity and F a free R-module

with an infinite basis X. Then every basis of F has the same cardinality as
X.

Proof (continued). Let K(Y) be the set of all finite subsets of Y. Define
f:X—F(Y)asx+— {y1,¥2,...,¥n} Where x=ny1 + rny>+ -+ rmyns
for nonzero r; € R. Since Y is a basis of F, then set {y1,y2,...,yn} is
uniquely determined by x and f is well-defined. ASSUME Im(f) is finite.
Then Uscim(s)S is a finite subset of Y that generates set X. Since X is a
basis for F, then this finite subset of Y generates F.
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Theorem 1V.2.6 (continued 1)

Theorem IV.2.6. Let R be a ring with identity and F a free R-module

with an infinite basis X. Then every basis of F has the same cardinality as
X.

Proof (continued). Let K(Y) be the set of all finite subsets of Y. Define
f:X—F(Y)asx+— {y1,¥2,...,¥n} Where x=ny1 + rny>+ -+ rmyns
for nonzero r; € R. Since Y is a basis of F, then set {y1,y2,...,yn} is
uniquely determined by x and f is well-defined. ASSUME Im(f) is finite.
Then Uscim(s)S is a finite subset of Y that generates set X. Since X is a
basis for F, then this finite subset of Y generates F. But Y is a linearly
independent set, o Uscim(r)S C Y is linearly independent and hence is a
finite basis of F. But as shown above, a basis of F cannot be finite and so
we have a CONTRADICTION. The assumption that Im(f) is finite is false
and hence we must have that Im(f) is infinite.
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Theorem 1V.2.6 (continued 2)

Proof (continued). Let T € Im(f) C K(Y). Notice this means that T is
a finite subset of basis Y. We'll show that f~1(T) is a finite subset of X.
Now T C Y generates some submodule Fr of F. By Theorem IV.1.5(iii),
F1 consists of all possible linear combinations of elements of T. If

x € f~Y(T) then x is a linear combination of the elements of T, and

x € Fr. Thatis, f~1(T) C Fr. Since T is finite and each y € T is a
linear combination of a finite number of elements of basis X, then there is
a finite subset S of X such that Ft is contained in the submodule Fs
generated by set S C X.
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Theorem 1V.2.6 (continued 2)

Proof (continued). Let T € Im(f) C K(Y). Notice this means that T is
a finite subset of basis Y. We'll show that f~1(T) is a finite subset of X.
Now T C Y generates some submodule Fr of F. By Theorem IV.1.5(iii),
F1 consists of all possible linear combinations of elements of T. If

x € f~Y(T) then x is a linear combination of the elements of T, and

x € Fr. Thatis, f~1(T) C Fr. Since T is finite and each y € T is a
linear combination of a finite number of elements of basis X, then there is
a finite subset S of X such that Ft is contained in the submodule Fs
generated by set S C X. So x € f~1(T) implies x € Fs and (again by
Theorem 1V.1.5(iii)) x is a linear combination of elements of S. Since

S C X is a finite set, if x € S then, as argued above when considering

x € X\ {x1,x2,...,xm} at the beginning of the proof, a contradiction the
the linear independence of X results. Hence, we must have x € S. Since x
is an arbitrary element of f~1(T) then we have f~}(T) C S and, since S
is finite, then f=1(T) is finite.
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Theorem IV.2.6 (continued 3)

Theorem IV.2.6. Let R be a ring with identity and F a free R-module

with an infinite basis X. Then every basis of F has the same cardinality as
X.

Proof (continued). For each T € Im(f), order the finite number of
elements of f~1(T) as, say, xi, %2, ..., X,. Define

gr: fFYT)— Im(f) x N as xx — (T, k). Mapping g7 is an injection
(since for i # j, gr(xi) = (T,i) # (T,j) = g7(x;). For
T={y1,2,---,¥n} €Im(f), we only have x € f~1(T) if x € X and x is
some linear combination of y1, y»,...,y, with nonzero coefficients.
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Theorem IV.2.6 (continued 3)

Theorem IV.2.6. Let R be a ring with identity and F a free R-module

with an infinite basis X. Then every basis of F has the same cardinality as
X.

Proof (continued). For each T € Im(f), order the finite number of
elements of f~1(T) as, say, xi, %2, ..., X,. Define

gr: fFYT)— Im(f) x N as xx — (T, k). Mapping g7 is an injection
(since for i # j, gr(xi) = (T,i) # (T,j) = g7(x;). For
T={y1,2,---,¥n} €Im(f), we only have x € f~1(T) if x € X and x is
some linear combination of y1, y», ..., y, with nonzero coefficients. For
T, T’ €Im(f), ASSUME x € f~1(T)Nf~1(T’). Then

X=ny1+ nys+- 4 ryn=rny; + nys + -+ rpy, where

T ={yi,¥5, - Y} n,rl € R ri#0for1 <i<n,and rl #0 for

1 < i< m. But then x is written in two different ways as a linear
combination of elements of X with nonzero coefficients, a
CONTRADICTION to Note IV.2.B. Therefore f~H(T)Nf~Y(T') = .
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Theorem IV.2.6 (continued 4)

Proof (continued). Also, for any x € X C F, x is some linear
combination of elements of Y with nonzero coefficients (since Y is a basis
of F), say x =r{'y{ + rjyd +---+ rly where r” € R and r/ # 0 for
1<i<k Let T"={y{,y3,...,y/} € K(Y) and then we have

x € FY(T"). Therefore the sets f~(T) for T € Im(f) partition X.
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Theorem IV.2.6 (continued 4)

Proof (continued). Also, for any x € X C F, x is some linear
combination of elements of Y with nonzero coefficients (since Y is a basis
of F), say x =r{'y{ + rjyd +---+ rly where r” € R and r/ # 0 for
1<i<k Let T"={y{,y3,...,y/} € K(Y) and then we have

x € f7Y(T"). Therefore the sets f~1(T) for T € Im(f) partition X.

Define a map X — Im(f) x N as x — g7(x) where x € f~1(T). Sw just
showed that the f~1(T);s partition X, so the mapping x — g7(x) takes x,
“associates” it with unique f~1(T) containing it, and then g7 takes this
f~Y(T) to (T,xk) € Im(f) x N where the notation xi is introduced above
in the ordering of the finite set f~1(T). Now each x € X occurs in exactly
one f~1(T) and each x € f~1(T) is associated with exactly one xi in the
ordering of f~1(T). So the mapping x — g7(x) is well-defined and
injective. Hence, there is an injection from X to Im(f) x N.
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Theorem IV.2.6 (continued 5)

Proof (continued). We now have by results from Section 0.8. Cardinal
Numbers:

X

AT
3 3

|K(Y)| since Im(f) C K(Y)
= |Y| by Corollary 0.8.13.

Now X and Y are any infinite bases of F, then we can interchange X and
Y to conclude | Y| < |X|. Then by the Schroeder-Bernstein Theorem
(Theorem 0.8.6) we have have |X| = |Y/|, as claimed. O
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Theorem IV.2.7

Theorem IV.2.7. If V is a vector space over a division ring D, then two
bases of V' have the same cardinality.
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Theorem IV.2.7

Theorem IV.2.7. If V is a vector space over a division ring D, then two
bases of V' have the same cardinality.

Proof. Let X and Y be bases of V. If either X or Y is infinite, then

|X| =1|Y]| by Theorem IV.2.6. So we can assume WLOG that both X and
Y are finite, say X = {x1,x2,...,xp} and Y = {y1,¥2,...,¥Ym}. Since Y
is a basis then y,, # 0, then y,, = nxy + nxo + -+ -+ ryx, for some r; € D.

Let rx be the first nonzero r; (under the ordering r1, ra, . .., t,; notice that
not all x; may be required to write y + m as a linear combination of the
elements of X). Then xx = rk_lym — rk_lrk+1xk+1 — = rk_lrnxn.
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Theorem IV.2.7

Theorem IV.2.7. If V is a vector space over a division ring D, then two
bases of V' have the same cardinality.

Proof. Let X and Y be bases of V. If either X or Y is infinite, then

|X| =1|Y]| by Theorem IV.2.6. So we can assume WLOG that both X and
Y are finite, say X = {x1,x2,...,xp} and Y = {y1,¥2,...,¥Ym}. Since Y
is a basis then y,, # 0, then y,, = nxy + nxo + -+ -+ ryx, for some r; € D.
Let rx be the first nonzero r; (under the ordering r1, ra, . .., t,; notice that
not all x; may be required to write y + m as a linear combination of the
elements of X). Then xx = rk_lym — rk_lrk+1xk+1 — = rk_lrnxn.
Therefore the set x = {ym, x1,%2, ..., Xk—1, Xk+1, - - - Xn} Spans V (since X
spans V). We now iterate this process of replacing X;'s with y;'s. Since
X' spans V, we can write

Ym—1 = SmYm + tixy + taxo + -+ - + tg_1Xk—1 + b1 Xpq1 + -+ tax, for
some s, € D and x; € D. Not all of the t;'s are zero (otherwise

Ym—1 — Smym = 0, contradicting the linear independence of Y).
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Theorem IV.2.7 (continued 1)

Theorem IV.2.7. If V is a vector space over a division ring D, then two
bases of V' have the same cardinality.

Proof (continued). If t; is the first nonzero t; (similar to the above
argument) then x; is a linear combination of y;,—1, ym, and the s; for

i # j, k. Then, as above, the set {ym—1,ym} U{xi |1 <i<n,i+#j, k}
spans V (since X’ spans V). Again, this implies that y,_» is a linear
combination of y;,_1, ¥m, and the x; with 1 </ < n, i # j, k. Using the
first nonzero coefficient of an x; in this linear combination allows us to
eliminate some x; where i # j, k, and replace it with y,,_» to create a
spanning set of V. After k applications of this replacement process, we
have a set containing this replacement process, we have a set containing
Yms Ym—1, - -+, Ym—k+1 and n — k of the x; which spans V.
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Theorem IV.2.7 (continued 2)

Theorem IV.2.7. If V is a vector space over a division ring D, then two
bases of V' have the same cardinality.

Proof (continued). ASSUME n < m. Then after n steps we have that
set {Yms ¥Ym—1,---sYm—n+1} spans V. But with n < m we have m—n >0
orm—n>1lorm—n+12>2. Since y; € V, then implies that y; is a
linear combination of y», y3,...,yn, CONTRADICTING the linear
independence of set Y. So the assumption n < m is false, and hence

n > m. We can now interchange the roles of finite bases X and Y to
conclude that m > n. Therefore ,= n and |X| = |Y|, as claimed. O
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Theorem IV.2.13

Theorem 1V.2.13. Let W be a subspace of a vector space V over a
division ring D.
(i) dimp(W) < dimp(V);
(i) if dimp(W) = dimp(V) and dimp(V) is finite, then W = V;
(i) dimp(V) = dimp(W) + dimp(V/W).
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Theorem 1V.2.13

Theorem IV.2.13

Theorem 1V.2.13. Let W be a subspace of a vector space V over a
division ring D.

(i) dimp(W) < dimp(V);
(i) if dimp(W) = dimp(V) and dimp(V) is finite, then W = V;
(iii) dimp(V) = dimp(W) + dimp(V/W).
Proof. Let Y be a basis of W (which exists by Theorem IV.2.4).

(i) By Theorem IV.2.4, there is a basis of X of V containing Y. Since
Y C X then dimp(X) = |Y| < |X| =dimp(V), as claimed.
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Theorem IV.2.13

Theorem 1V.2.13. Let W be a subspace of a vector space V over a
division ring D.
(i) dimp(W) < dimp(V);
(i) if dimp(W) = dimp(V) and dimp(V) is finite, then W = V;
(i) dimp(V) = dimp(W) + dimp(V/W).

Proof. Let Y be a basis of W (which exists by Theorem IV.2.4).

(i) By Theorem IV.2.4, there is a basis of X of V containing Y. Since
Y C X then dimp(X) = |Y| < |X| =dimp(V), as claimed.

(ii) If |Y] = |X| and N is finite then since Y C X we must have Y = X,
whence(!) W =V, as claimed.
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Theorem 1V.2.13 (continued 1)

Theorem 1V.2.13. Let W be a subspace of a vector space V over a
division ring D.
(iii) dimD(V) = dimD(W) + dimD(V/W).

Proof (continued). (iii) Notice W is a submodule of V and so by
Theorem IV.1.6, V /W is also a module over D (and since D is an integral
domain, then V /W is a vector space). We will show that
U={x+W|xeX\Y}isa basis of V/W. If v € V then, because X is
a basis, v=>,;riyi + Ej sixj where ri;s; € D, y; € Y, and x; € X\ Y.
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Theorem 1V.2.13 (continued 1)

Theorem 1V.2.13. Let W be a subspace of a vector space V over a
division ring D.
(iii) dimD(V) = dimD(W) + dimD(V/W).

Proof (continued). (iii) Notice W is a submodule of V and so by
Theorem IV.1.6, V /W is also a module over D (and since D is an integral
domain, then V /W is a vector space). We will show that
U={x+W|xeX\Y}isa basis of V/W. If v € V then, because X is
a basis, v=>,;riyi + Ej sixj where ri;s; € D, y; € Y, and x; € X\ Y.
Then

v+ W

Zr,-y,-—i—Zijj + W
i J

= ZSJ'XJ' + W since y; € Y C W so that Zr,-y,'EW
j i
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Theorem 1V.2.13 (continued 2)

Proof (continued). ...

v+ W =>"s(xj+ W) by Theorem IV.1.6.
J
Since x; € X\ Y then U= {x+ W | x € X\ Y} spans V/W. If
>, ri(xj+ W) =0 where r; € D and x; € X \ Y, then
0=>r(x+W)= (Zj rjxj> + W so that 3~ rix; € W (since W is the
additive identity in V/W).

Modern Algebra T



Theorem 1V.2.13 (continued 2)

Proof (continued). ...

v+ W =>"s(xj+ W) by Theorem IV.1.6.
J

Since x; € X\ Y then U= {x+ W | x € X\ Y} spans V/W. If
>, ri(xj+ W) =0 where r; € D and x; € X \ Y, then
0=>r(x+W)= (Zj rjxj> + W so that 3~ rix; € W (since W is the
additive identity in V/W). Since Y is a basis for W, then
221X = >k Skyk where sy € D and yx € Y. But X = Y U(X\Y)is
linearly independent and we have two representations of the same element
of V/, a contradiction to Note I1V.2.B, unless each r; = 0 (and each
sk = 0). Therefore U= {x+ W | x € X\ Y} and we have |[U| = | X\ Y]|.
By Definition 0.8.3,

dimp(V) = X[ = [Y|+ X\ Y[ = [Y]+ |U] = dimp(W) + dimp(V /W),

as claimed. ]
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Corollary 1V.2.14

Corollary IV.2.14

Corollary 1IV.2.14. If f : V — V' is a linear transformation of vector
spaces over a division ring D, then there exists a basis X of V such that
X NKer(f) is a basis of Ker(f) and {f(x) | f(x) # 0,x € X} is a basis of
Im(f). In particular, dimp(f) = dimp(Ker(f)) + dimp(Im(f)).
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Corollary IV.2.14

Corollary 1IV.2.14. If f : V — V' is a linear transformation of vector
spaces over a division ring D, then there exists a basis X of V such that
X NKer(f) is a basis of Ker(f) and {f(x) | f(x) # 0,x € X} is a basis of
Im(f). In particular, dimp(f) = dimp(Ker(f)) + dimp(Im(f)).

Proof. By Example IV.1.B, Ker(f) is a submodule of V (and, since D is a
division ring, a subspace of V). Let W = Ker(f) let Y be a basis of W
(which exists by Theorem 1V.2.4) and let X be a basis of V containing Y
(which exists by Theorem 1V.2.4). Then X N Ker(f) = Y is a basis of
Ker(f), as claimed.
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Corollary IV.2.14

Corollary 1IV.2.14. If f : V — V' is a linear transformation of vector
spaces over a division ring D, then there exists a basis X of V such that
X NKer(f) is a basis of Ker(f) and {f(x) | f(x) # 0,x € X} is a basis of
Im(f). In particular, dimp(f) = dimp(Ker(f)) + dimp(Im(f)).

Proof. By Example IV.1.B, Ker(f) is a submodule of V (and, since D is a
division ring, a subspace of V). Let W = Ker(f) let Y be a basis of W
(which exists by Theorem 1V.2.4) and let X be a basis of V containing Y
(which exists by Theorem 1V.2.4). Then X N Ker(f) = Y is a basis of
Ker(f), as claimed. By Theorem IV.1.7 (the “in particular” part),

Im(f) = V/W. As shown in the proof of Theorem 1V.2.13,

U={x+W|xeX\Y}={x+W|xeX\Ker(f)}

={x+ W |xeX,f(x)#0}
is a basis of V/W.
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Corollary 1V.2.14 (continued)

Corollary IV.2.14. If f : V — V' is a linear transformation of vector
spaces over a division ring D, then there exists a basis X of V such that
X N Ker(f) is a basis of Ker(f) and {f(x) | f(x) # 0,x € X} is a basis of
Im(f). In particular, dimp(f) = dimp(Ker(f)) + dimp(Im(f)).

Proof (continued). Also by Theorem IV.1.7, there is a unique D-module
isomorphism £ : V /W — Im(f) such that

f(U)={f(x+W)|xeX,f(x)#0}={f(x)] f(x) #0} CIm(f) c V"

Since f is an isomorphism and U is a basis of V/W then
f(U) ={f(x) | f(x) # 0} is a basis for Im(f), as claimed.
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Corollary 1V.2.14 (continued)

Corollary IV.2.14. If f : V — V' is a linear transformation of vector
spaces over a division ring D, then there exists a basis X of V such that
X N Ker(f) is a basis of Ker(f) and {f(x) | f(x) # 0,x € X} is a basis of
Im(f). In particular, dimp(f) = dimp(Ker(f)) + dimp(Im(f)).

Proof (continued). Also by Theorem IV.1.7, there is a unique D-module
isomorphism £ : V /W — Im(f) such that

f(U)={f(x+W)|xeX,f(x)#0}={f(x)] f(x) #0} CIm(f) c V"

Since f is an isomorphism and U is a basis of V/W then

f(U) ={f(x) | f(x) # 0} is a basis for Im(f), as claimed.

Also, since V//W = Im(r) then dimc(V /W) = dimp(Im(f)). By Theorem
IV.2.13(iii), dimp(V) = dimp(W) + dimp(V/W) or

dimp (V) = dimp(Ker(f)) 4+ dimp(Im(f)), as claimed. O
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Corollary 1V.2.15

Corollary IV.2.15

Corollary 1V.2.15. If V and W are finite dimensional subspaces of a
vector space over a division ring D, then

dimD(V) + dimD(W) = dimD(V N W) + dimD(V + W)
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Corollary IV.2.15

Corollary 1V.2.15. If V and W are finite dimensional subspaces of a
vector space over a division ring D, then
dimD(V) + dimD(W) = dimD(V N W) + dimD(V + W)

Proof. First, the intersection V N W is a submodule (see Definition
IV.1.4), and the sum V + W is defined in Section IV.1. Modules,
Homomorphisms, and Exact Sequences as the submodule generated by

V N W. All of these are modules over integral domain D, and so are
vector spaces. Let X be a finite basis of VN W, Y a finite basis of V that
contains X, and Z be a (finite) basis of W that contains X (each of these
bases exist by Theorem [V.2.4).
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Corollary IV.2.15

Corollary 1V.2.15. If V and W are finite dimensional subspaces of a

vector space over a division ring D, then
dimD(V) + dimD(W) = dimD(V N W) + dimD(V + W)

Proof. First, the intersection V N W is a submodule (see Definition
IV.1.4), and the sum V + W is defined in Section IV.1. Modules,
Homomorphisms, and Exact Sequences as the submodule generated by

V N W. All of these are modules over integral domain D, and so are
vector spaces. Let X be a finite basis of VN W, Y a finite basis of V that
contains X, and Z be a (finite) basis of W that contains X (each of these
bases exist by Theorem [V.2.4).

We now show that Y UZ = XU (Y \ X)U(Z\ X) is a basis of V + W.
By Theorem IV.1.5(iv), V + W consists of all elements of the form v + w
where v € V and w € W.
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Corollary 1V.2.15 (continued 1)

Proof (continued). Since Y is a basis for V then

Vv=nrvi+hnvw+- --+ryv, forsome r; € D and v; € V; since Z is a basis
of W then z = sywq + sowo + -+ - + spuWy, for some s; € D and w; € W.
Now Y C XU(Y\X)U(Z\X)and ZC XU (Y\X)U(Z\ X), so
v+ w is in the span of X U (Y \ X) U (Z \ X) where x; € X, uj € Y\ X,
and z; € Z\ X, and suppose

(nx1+rxo+ -+ rx;) + (swy1 + 5o+ -+ + skyk)

+(tiz1 + tozo + - - + tzp) = 0. (%)
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Corollary 1V.2.15 (continued 1)

Proof (continued). Since Y is a basis for V then

Vv=nrvi+hnvw+- --+ryv, forsome r; € D and v; € V; since Z is a basis
of W then z = sywq + sowo + -+ - + spuWy, for some s; € D and w; € W.
Now Y C XU(Y\X)U(Z\X)and ZC XU (Y\X)U(Z\ X), so
v+ w is in the span of X U (Y \ X) U (Z \ X) where x; € X, uj € Y\ X,
and z; € Z\ X, and suppose

(nx1+rxo+ -+ rx;) + (swy1 + 5o+ -+ + skyk)
+(tizy + tozo + -+ - + tyzy) = 0. (%)
Then
u= (rnxitrxot - +rpg)+(syitst - +siye) = —(tizittz+ - +tez).

But then u = —(t1z1 + tpzp + -+ - + tyzy) € W since {z1,22,...,2} C Z
and u = (nx1+ nxo+ -+ rxj) + (siy1 + 2 + - - + skyk) € V since
{x1,x2,..., X, ¥1,¥2, ..., ¥k} C Y and hence vector uisin VN W.
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Corollary 1V.2.15 (continued 2)

Corollary 1V.2.15. If V and W are finite dimensional subspaces of a
vector space over a division ring D, then
dimD(V) + dimD(W) = dimD(V N W) + dimD(V + W)

Proof (continued). So u has a unique representation as a linear
combination of elements of X (by Note I1V.2.B). Also, since

Y = XU (Y \ X) is a basis of V then u can be written as a unique linear
combination of elements of Y. But X C Y so we must have

s1 = s =--- = s, = 0 above. Similarly, we must have

tj =tp=---=t; = 0 above. So from (x), we have

rixy + rpxp + -+ -+ rix; = 0 and, since X is a linearly independent set, we
must have 1 = =--- =r; = 0. Therefore X U (Y \ X)U(Z\ X) is

linearly independent. That is, it is a basis for V + W, as claimed.
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Corollary 1V.2.15

Corollary 1V.2.15 (continued 3)

Corollary 1V.2.15. If V and W are finite dimensional subspaces of a
vector space over a division ring D, then

dimD(V) + dimD(W) = dimD(V N W) + dimD(V + W)
Proof (continued). Therefore

dimp(V+ W) = | XU(Y\X)U(Z\X)|=|X|+|Y\X|+|Z\X]
= XI+(YI=1X)+ 2] = 1X]) = Y[+ 2] = |X]
= dimD(V)+dimD(W) *dimD(\/ﬂ W),

or dimp(V) + dimp(W) = dimp(V N W) + dimp(V + W), as
claimed. ]
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Theorem IV.2.16

Theorem I1V.2.16. Let R, S, T be division rings such that RC S C T.
Then dimg(T) = (dims(T))(dimg(S)). Furthermore, dimg(T) is finite if
and only if dimg(T) and dimg(S) are finite.
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Theorem 1V.2.16

Theorem IV.2.16

Theorem I1V.2.16. Let R, S, T be division rings such that RC S C T.

Then dimg(T) = (dims(T))(dimg(S)). Furthermore, dimg(T) is finite if
and only if dimg(T) and dimg(S) are finite.

Proof. Let U be a basis of T over S, and let V be a basis of S over R.

Consider the set B = {vu | v € V,u € U}. We'll show that B is a basis of
T over R.
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Theorem IV.2.16

Theorem I1V.2.16. Let R, S, T be division rings such that RC S C T.
Then dimg(T) = (dims(T))(dimg(S)). Furthermore, dimg(T) is finite if
and only if dimg(T) and dimg(S) are finite.

Proof. Let U be a basis of T over S, and let V be a basis of S over R.
Consider the set B = {vu | v € V,u € U}. We'll show that B is a basis of
T over R.

If ue T then u= Z,’-’:l s;u; for some s; € S and some u; € U, since U is
a basis of T as a vector space over S. Since S is a vector space over R
with basis V' then each s; can be written in the form s; = ZJ’":‘I rijv; for
some r;j € R and v; € V. Then

n n m; n.m
u= E silj = E E rivi | ui = E E rij(vjuj).
i=1

i=1 \ j=1 i=1 j=1
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Theorem 1V.2.16 (continued 1)

Proof (continued). So u is written as a linear combination of elements of
B —{vu|v e D,uec U} with coefficients from R. Since u is an arbitrary
element of T, then B spans T as a vector space over R.
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Theorem 1V.2.16 (continued 1)

Proof (continued). So u is written as a linear combination of elements of
B —{vu|v e D,uec U} with coefficients from R. Since u is an arbitrary
element of T, then B spans T as a vector space over R.

Now suppose

ZZ ri(vjui) =0 for rj € R,v; € V, and u; € U. (*)
i=1 j=1

. . m
Foreach ilets;=3_";rjv; €S. Then
n m n m n
0= E E r,-j(\/ju;) = E E rijvi | Ui = E Siuj.
i=1 j=1 i=1 \j=1 i=1

Since U is a linearly independent set over S, then s; =0for 1 </ <n. So
s; = ijzl rijvi = 0 and the linear independence of V' over R implies that
ri=0for1<i<nand1<;<m.
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Theorem 1V.2.16 (continued 2)

Theorem 1V.2.16. Let R, S, T be division rings such that RC S C T.
Then dimg(T) = (dims(T))(dimg(S)). Furthermore, dimg(T) is finite if
and only if dims(T) and dimg(S) are finite.

Proof (continued). So from (*) we have that B is a linearly independent
set over R. Therefore B ={vu|v € V,u € U} is a basis of T over R.
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Theorem 1V.2.16 (continued 2)

Theorem 1V.2.16. Let R, S, T be division rings such that RC S C T.
Then dimg(T) = (dims(T))(dimg(S)). Furthermore, dimg(T) is finite if
and only if dims(T) and dimg(S) are finite.

Proof (continued). So from (*) we have that B is a linearly independent
set over R. Therefore B ={vu|v € V,u € U} is a basis of T over R.

Next, the elements vu of B are all distinct since U is a linearly independent
set over S and V C S. So dimg(T) = |B| = |U||V| = dims(T)dimg(S),
as claimed. If both dimg(T) and dimg(S) are finite then, of course,
dimg(S) is finite. If either dims(T) or dimg(S) is infinite then, by
Theorem 0/8/11, dimg(T) is infinite, as claimed. O
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Exercise 1V.2.6(b)

Exercise IV.2.6(b)

Exercise 1V.2.6(b). There is no field K such that R C K C C.
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Exercise 1V.2.6(b)

Exercise IV.2.6(b)

Exercise 1V.2.6(b). There is no field K such that R C K C C.

Proof. ASSUME field K satisfies R C K C C. With R=R, S=F, and
T = C in Theorem V.2.6 (notice that R and C are both division of rings)
we have dimg(C) = dimg(C) dimg(F). So 2 = dimg(C) dimg(F) and
either dimg(C) =1 or dimg(F) = 1.
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Exercise 1V.2.6(b)

Exercise IV.2.6(b)

Exercise 1V.2.6(b). There is no field K such that R C K C C.

Proof. ASSUME field K satisfies R C K C C. With R=R, S=F, and
T = C in Theorem V.2.6 (notice that R and C are both division of rings)
we have dimg(C) = dimg(C) dimg(F). So 2 = dimg(C) dimg(F) and
either dimg(C) =1 or dimg(F) = 1.

If dimg(C) =1, then by Theorem V.2.13(ii) with D =W = F and V =C
we have dimg(F) = dimg(C) = 1 so that F = C, a CONTRADICTION.
Similarly, if dimg(F) = 1 then, again, by Theorem V.2.13(ii) with

D =W =R and V = F we have dimg(R) = dimg(F) = 1 so that F =R,
a CONTRADICTION. Therefore, no field F exists such that R C K C C,
as claimed. O
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Lemma IV.2.10

Lemma IV.2.10

Lemma IV.2.10. Let R be a ring with identity, / (# R) an ideal of R, F a
free R-module with basis X and 7w : F — F/IF the canonical epimorphism.
Then F/IF is a free R/I-module with basis 7(X) and |7 (X)| = | X].
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Lemma IV.2.10

Lemma IV.2.10

Lemma IV.2.10. Let R be a ring with identity, / (# R) an ideal of R, F a
free R-module with basis X and 7w : F — F/IF the canonical epimorphism.
Then F/IF is a free R/I-module with basis 7(X) and |7 (X)| = | X].

Proof. Recall that IF = {3 ! ria; | ri € |,a; € F,n € N} by Theorem
IV.1.5, and the action of R/l on F/IF is given by

(r+1)(a+ IF) = ra+ IF by Exercise IV.1.3(b). If u+ IF € F/IF then
u= 3" rx for some r; € R and x; € X since u € F and X is a basis of
F by hypothesis. Consequently,

n
u+IF = erxj + IF (%)
j=1
n
= Z(QXJ + IF) by the definition of addition
j=1
in the additive quotient group
Modern Algebra
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Lemma IV.2.10

Lemma IV.2.10 (continued 1)
Proof (continued). .. .

u+IF = 2(0 + 1)(xj + IF) by Exercise IV.1.3(b)
j=1

= Z(rj + I)m(x;) by the definition of .
j=1

Since u is an arbitrary element of F/IF, then 7(X) generates F/IF as an
R/I-module (so that the coefficients are cosets of / in R).
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Lemma IV.2.10

Lemma IV.2.10 (continued 1)
Proof (continued). .. .

utIF = ) (rj+1)(x + IF) by Exercise IV.1.3(b)
j=1
= Z(rj + I)m(x;) by the definition of .

j=1
Since u is an arbitrary element of F/IF, then 7(X) generates F/IF as an
R/I-module (so that the coefficients are cosets of / in R). On the other
hand, if >3 ;(rk + I)7(xx) = O for some r, € R and distinct
X1,X2,...,Xm in X, then

0 = Z(rk + D Z re + 1)(xx + F) by the definition of 7
k=1 k=1
= Z(rkxk + IF) by Exercise IV.1.3(b)
k=1
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Lemma IV.2.10 (continued 2)

Proof (continued). ...

0 = (Z rkxk> + IF by the definition of addition
k=1
in the additive quotient group.

Since IF is the additive identity in F/IF then we have > ;" ; rixk € IF.
Then 3770, nkxk = > sju; for some s; € I and u; € F by Theorem IV.1.5,
as mentioned above. Since X is a basis for F and u; € F, then each u; is a
linear combination of elements of X with coefficients from R. Since s; € /
where [ is an ideal of R, then the coefficients from R multiplied by s; give
another element of / (by the definition of “ideal,” Definition I11.2.1).
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Lemma IV.2.10 (continued 2)

Proof (continued). ...

0 = (Z rkxk> + IF by the definition of addition
k=1
in the additive quotient group.

Since IF is the additive identity in F/IF then we have > ;" ; rixk € IF.
Then 3770, nkxk = > sju; for some s; € I and u; € F by Theorem IV.1.5,
as mentioned above. Since X is a basis for F and u; € F, then each u; is a
linear combination of elements of X with coefficients from R. Since s; € /
where [ is an ideal of R, then the coefficients from R multiplied by s; give
another element of | (by the definition of “ideal,” Definition I1.2.1). So
Do TkXk = ZJ- sjuj = Z?:l cty: for some ¢, € I C R and t; € X. Since
the xx and y; are all from X, and X is a linearly independent set (over R)
then (“after reindexing and inserting Oxx and Oy; if necessary,” as
Hungerford says on page 186) then we can take m = d, xx = yx, and

re = ck € | for every k.
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Lemma IV.2.10

Lemma IV.2.10 (continued 3)

Proof (continued). Hence ry + | =0 (since rx € 1) in R/I for every k.
Therefore in the equation 0 = > ;(rk + /)m(xx) we must have

re +1 =0 (in R/I). Therefore m(X) is a linearly independent set over
R/I. We now have that 7(X) is a linearly independent generating set of

F/IF over R/I. That is, w(X) is a basis of F/IF over R/I. hence F/IF is
a free R/I-module by Theorem IV.2.1(i), as claimed.
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Lemma IV.2.10 (continued 3)

Proof (continued). Hence ry + | =0 (since rx € 1) in R/I for every k.
Therefore in the equation 0 = > ;(rk + /)m(xx) we must have

re +1 =0 (in R/I). Therefore m(X) is a linearly independent set over
R/I. We now have that 7(X) is a linearly independent generating set of
F/IF over R/I. That is, w(X) is a basis of F/IF over R/I. hence F/IF is
a free R/I-module by Theorem IV.2.1(i), as claimed.

Finally, for the cardinality claim. We know the canonical epimorphism
restricted to basis X, m : X — m(X) is surjective. Let x,x’ € X with

m(x) = w(x’) in F/IF. Then (1g + I)7(x) = 7(x) + | and

(I + Nmw(x") =w(x")+ 1. So (1, + Nw(x) — (1, + 1)|pi(x") =0 in F.IF.
If x # x” then the same argument as given above in (x) (where it is shown
that ry € /) implies that 1g € /. But then | = R, contradicting the
hypothesis that / £ R. Therefore x = x’ and 7 : X — 7(X) is injective.
That is, 7 : X — 7w(X) is a bijection and hence | X| = |7(X)|, as

claimed. O
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Proposition 1V.2.11

Proposition 1V.2.11. Let f : R — S be a nonzero epimorphism of rings
with identity. If S has the invariant dimension property, then so does R.

Modern Algebra T



Proposition 1V.2.11

Proposition 1V.2.11. Let f : R — S be a nonzero epimorphism of rings
with identity. If S has the invariant dimension property, then so does R.

Proof. Let /| = Ker(f). Then by the First Isomorphism Theorem (for
rings; Corollary 111.2.10) S = R/I. Let F be a free R-module with X as a
basis. Also let Y be a basis of F and let 7 : F — F/IF be the canonical
epimorphism. By Lemma IV.2.10, F/IF is a free R/I-module (and hence
is a free S-module. .. well, up to isomprophism) with bases 7(X) and
7m(Y), where | X| = |7(X)| and |Y| = |7(Y)|. Since S has the invariant
property then |7(X)| = |7(Y)| and hence |X| = |Y|. That is, R has the
invariant dimension property also, as claimed. O
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Corollary 1V.2.12

Corollary IV.2.12

Corollary 1V.2.12. If R is a ring with identity that has a homomorphic
image which is a division ring, then R has the invariant dimension

property. In particular, every commutative ring with identity has the
invariant dimension property.
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Corollary IV.2.12

Corollary 1V.2.12. If R is a ring with identity that has a homomorphic
image which is a division ring, then R has the invariant dimension
property. In particular, every commutative ring with identity has the
invariant dimension property.

Proof. Suppose homomorphism f : R — S’ where S — Im(f) is a division
ring. Then S is an epimorphic image of f. If V is a free S-module, then V
is a vector space. Then S has the invariant dimension property by
Theorem 1V.2.7. Now by Proposition IV.2.11, R also has the invariant
dimension property, as claimed.
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Corollary IV.2.12

Corollary 1V.2.12. If R is a ring with identity that has a homomorphic
image which is a division ring, then R has the invariant dimension
property. In particular, every commutative ring with identity has the
invariant dimension property.

Proof. Suppose homomorphism f : R — S’ where S — Im(f) is a division
ring. Then S is an epimorphic image of f. If V is a free S-module, then V
is a vector space. Then S has the invariant dimension property by
Theorem 1V.2.7. Now by Proposition IV.2.11, R also has the invariant
dimension property, as claimed.

If R is a commutative ring with identity, then R contains a maximal ideal
M by Theorem 111.2.18. Then by Theorem 1112.20, R/M is a field. Since a
filed is a commutative division ring, then we have that R has the invariant
dimension property by the first part of the proof (we can take the
homomorphism as the identity in this case, so that R is the homomorphic
image of itself), as claimed. O
Modern Algebra January 2, 2024 47 / 47



	Theorem IV.2.1
	Corollary IV.2.2
	Lemma IV.2.3
	Theorem IV.2.4
	Theorem IV.2.5
	Theorem IV.2.6
	Theorem IV.2.7
	Theorem IV.2.13
	Corollary IV.2.14
	Corollary IV.2.15
	Theorem IV.2.16
	Exercise IV.2.6(b)
	Lemma IV.2.10
	Proposition IV.2.11
	Corollary IV.2.12

