Modern Algebra

Chapter IV. Modules

IV.2. Free Modules and Vector Spaces—Proofs of Theorems

Table of contents

- [Theorem IV.2.1](#page-2-0)
- 2 [Corollary IV.2.2](#page-21-0)
- [Lemma IV.2.3](#page-26-0)
- 4 [Theorem IV.2.4](#page-30-0)
- 5 [Theorem IV.2.5](#page-34-0)
- 6 [Theorem IV.2.6](#page-37-0)
- 7 [Theorem IV.2.7](#page-49-0)
	- [Theorem IV.2.13](#page-54-0)
- 9 [Corollary IV.2.14](#page-61-0)
- [Corollary IV.2.15](#page-66-0)
	- [Theorem IV.2.16](#page-73-0)
	- Exercise $IV.2.6(b)$
	- [Lemma IV.2.10](#page-83-0)
	- [Proposition IV.2.11](#page-91-0)
- [Corollary IV.2.12](#page-93-0)

Theorem IV.2.1

Theorem IV.2.1. Let R be a ring with identity. The following on a unitary R -module F are equivalent.

- (i) F has a nonempty basis.
- (i) F is the internal sum of a family of cyclic R-modules, each of which is isomorphic as a left R -module to R .
- (iii) F is R-module isomorphic to a direct sum of copies of the left R-module R.
- (iv) There exists a nonempty set X and a function $\iota: X \to F$ with the following property: given any unitary R -module A and function $f : X \to A$ there exists a unique R-module homomorphism $\overline{f}: F \to A$ such that $\overline{f}_l = f$. In other words, F is a free object in the category of unitary R -modules.

Proof. (i) \Rightarrow (ii). Suppose F has a nonempty basis X and let $x \in X$. The map $R \to x$ given by $r \mapsto rx$, is an R-module epimorphism by Theorem $IV.1.5(i)$.

Theorem IV₂₁

Theorem IV.2.1. Let R be a ring with identity. The following on a unitary R -module F are equivalent.

- (i) F has a nonempty basis.
- (i) F is the internal sum of a family of cyclic R-modules, each of which is isomorphic as a left R -module to R .
- (iii) F is R-module isomorphic to a direct sum of copies of the left R-module R.
- (iv) There exists a nonempty set X and a function $\iota: X \to F$ with the following property: given any unitary R-module A and function $f : X \to A$ there exists a unique R-module homomorphism $\overline{f}: F \to A$ such that $\overline{f}_l = f$. In other words, F is a free object in the category of unitary R -modules.

Proof. (i) \Rightarrow (ii). Suppose F has a nonempty basis X and let $x \in X$. The map $R \rightarrow x$ given by $r \mapsto rx$, is an R-module epimorphism by Theorem $IV.1.5(i).$

Theorem IV.2.1 (continued 1)

Proof (continued). If $r x = 0$ then $r = 0$ since X is a linearly independent set, whence the map is a monomorphism (one to one, by Theorem I.2.3; see the comment on page 170). Of course the mapping is onto (by the definition of Rx) and so $R \cong Rx$ as left modules.

By Theorem IV.1.5(iii), the elements of F are of the form $\sum_{i=1}^s r_i x_i$ where $s \in \mathbb{N}$, $r_i \in R$, and $x_i \in X$ (since basis X is a generating set of F). By Theorem IV.1.5(iv), the sum of family $\{Rx \mid x \in X\}$ consists of all finite sums $r_1x_1 + r_2x_2 + \cdots + r_nx_n$ where $r_ix_i \in Rx_i$ and $x_i \in X$. So F is the sum of the family $\{Rx \mid x \in X\}$. Denote as Rx_k^* the sum of the family $\{Rx \mid x \in X, x \neq x_k\}.$

Theorem IV.2.1 (continued 1)

Proof (continued). If $r x = 0$ then $r = 0$ since X is a linearly independent set, whence the map is a monomorphism (one to one, by Theorem I.2.3; see the comment on page 170). Of course the mapping is onto (by the definition of Rx) and so $R \cong Rx$ as left modules.

By Theorem IV.1.5(iii), the elements of F are of the form $\sum_{i=1}^s r_i x_i$ where $s \in \mathbb{N}$, $r_i \in R$, and $x_i \in X$ (since basis X is a generating set of F). By Theorem IV.1.5(iv), the sum of family $\{Rx \mid x \in X\}$ consists of all finite sums $r_1x_1 + r_2x_2 + \cdots + r_nx_n$ where $r_ix_i \in Rx_i$ and $x_i \in X$. So F is the sum of the family $\{Rx\mid x\in X\}$. Denote as Rx_k^* the sum of the family $\{Rx \mid x \in X, x \neq x_k\}$. By Theorem IV.1.5(iv), Rx_k^* consists of elements of the form $r_1x_1 + r_2x_2 + \cdots + r_nx_n$ where $x_i \neq x_k$, so Rx_k (which consists of elements of the form rx_k) intersects Rx_k^* only consists of 0 (since the x 's are distinct) Now Theorem IV.1.15 holds and so $\mathit{F} \cong \sum_{x \in \mathcal{X}} \mathit{Rx}$ (or $\mathcal{F} = \sum_{\mathsf{x} \in \mathsf{X}} \mathsf{R}_\mathsf{x}$; see Note IV.1.G) as claimed.

Theorem IV.2.1 (continued 1)

Proof (continued). If $r x = 0$ then $r = 0$ since X is a linearly independent set, whence the map is a monomorphism (one to one, by Theorem I.2.3; see the comment on page 170). Of course the mapping is onto (by the definition of Rx) and so $R \cong Rx$ as left modules.

By Theorem IV.1.5(iii), the elements of F are of the form $\sum_{i=1}^s r_i x_i$ where $s \in \mathbb{N}$, $r_i \in R$, and $x_i \in X$ (since basis X is a generating set of F). By Theorem IV.1.5(iv), the sum of family $\{Rx \mid x \in X\}$ consists of all finite sums $r_1x_1 + r_2x_2 + \cdots + r_nx_n$ where $r_ix_i \in Rx_i$ and $x_i \in X$. So F is the sum of the family $\{Rx\mid x\in X\}$. Denote as Rx_k^* the sum of the family $\{Rx \mid x \in X, x \neq x_k\}$. By Theorem IV.1.5(iv), Rx_k^* consists of elements of the form $r_1x_1 + r_2x_2 + \cdots + r_nx_n$ where $x_i \neq x_k$, so Rx_k (which consists of elements of the form rx_k) intersects Rx_k^* only consists of 0 (since the x 's are distinct) Now Theorem IV.1.15 holds and so $\mathit{F} \cong \sum_{x \in \mathcal{X}} \mathit{Rx}$ (or $\mathcal{F} = \sum_{\mathsf{x} \in \mathsf{X}} \mathsf{R}_\mathsf{x}$; see Note IV.1.G) as claimed.

Theorem IV.2.1 (continued 2)

Theorem IV.2.1. Let R be a ring with identity. The following on a unitary R -module F are equivalent.

- (i) F is the internal sum of a family of cyclic R-modules, each of which is isomorphic as a left R -module to R .
- (iii) F is R-module isomorphic to a direct sum of copies of the left R-module R.

Proof (continued). (ii) \Rightarrow (iii). Suppose F is the internal direct sum of a family of cyclic R-modules, each of which is isomorphic as a left R-module to R. Then, by Theorem IV.1.5, F is the sum of the family of cyclic *R*-modules, say $\mathcal{F} = \sum_{i \in I} R_i$. By Exercise IV.1.8 (which extends Theorem 1.8.10 to R-modules), since each $R_i \cong R$, then F is given as the internal direct sum $\mathcal{F} = \sum_{i \in I} R$ (Theorem I.8.10 deals with internal weak direct products, but these are equivalent to internal direct sums in additive notation).

Theorem IV.2.1 (continued 3)

Theorem IV.2.1. Let R be a ring with identity. The following on a unitary R -module F are equivalent.

- (i) F has a nonempty basis.
- (iii) F is R-module isomorphic to a direct sum of copies of the left R-module R.

Proof (continued). (iii) \Rightarrow (i). Suppose F is isomorphic to a direct sum of copies of R , say $\bar{F} \cong \sum_X \bar{R}$. For $x \in X$, let θ_x denote the element $\{r_i\} \in \sum_X R$ where $r_i = 0$ for $i \neq x$ and $r_x = 1_R$. Let $Y = \{\theta_x \mid x \in X\}$. Notice that $0\in \sum_{\mathcal{X}}R$ is the element $\{r_i\}\in \sum_{\mathcal{X}}R$ where $r_i=0$ for all $i \in \mathsf{X}$. Let distinct $\theta_{x_1}, \theta_{x_2}, \ldots, \theta_{x_n} \in Y$ and let $r_1, r_2, \ldots, r_n \in R$. Suppose $r_1\theta_{x_1} + r_2\theta_{x_2} + \cdots r_n\theta_{x_n} = 0$. If $r_1\theta_{x_1} + r_2\theta_{x_2} + \cdots r_n\theta_{x_n} = \{s_i\} \in \sum_{X} R$, then we have $s_1=r_i$ for $i=\mathsf{x}_i$ and $s_i=0$ if $i\neq \mathsf{x}_i.$ So we must have $r_i = 0$ for each *i*. That is, set Y is linearly independent.

Theorem IV.2.1 (continued 3)

Theorem IV.2.1. Let R be a ring with identity. The following on a unitary R -module F are equivalent.

- (i) F has a nonempty basis.
- (iii) F is R-module isomorphic to a direct sum of copies of the left R-module R.

Proof (continued). (iii) \Rightarrow (i). Suppose F is isomorphic to a direct sum of copies of R , say $\bar{F} \cong \sum_X \bar{R}$. For $x \in X$, let θ_x denote the element $\{r_i\} \in \sum_X R$ where $r_i = 0$ for $i \neq x$ and $r_x = 1_R$. Let $Y = \{\theta_x \mid x \in X\}$. Notice that $0\in \sum_{\mathcal{X}}R$ is the element $\{r_i\}\in \sum_{\mathcal{X}}R$ where $r_i=0$ for all $i \in X$. Let distinct $\theta_{x_1}, \theta_{x_2}, \ldots, \theta_{x_n} \in Y$ and let $r_1, r_2, \ldots, r_n \in R$. Suppose $r_1\theta_{x_1} + r_2\theta_{x_2} + \cdots r_n\theta_{x_n} = 0$. If $r_1\theta_{x_1} + r_2\theta_{x_2} + \cdots r_n\theta_{x_n} = \{s_i\} \in \sum_{X} R$, then we have $s_1=r_i$ for $i=x_i$ and $s_i=0$ if $i\neq x_i.$ So we must have $r_i = 0$ for each *i*. That is, set Y is linearly independent.

Theorem IV.2.1 (continued 4)

Proof (continued). To show that Y spans $\sum_{\mathcal{X}} R$ it suffices (by Note IV.2.A) to show that any $\mathsf{y}\in \sum_\mathcal{X} R$ is of the form $r_1\theta_{x_1}+r_2\theta_{x_2}+\cdots+r_{\mathsf{x}}\theta_{\mathsf{x}_n}$ for some $r_i\in R$ and $\theta_{\mathsf{x}_i}\in \mathsf{Y}.$ Since $\sum_{\mathsf{X}}R$ is a direct sum, then it is (in multiplicative notation) a weak direct product (see Definition I.8.3) so that $y_x = 0$ for all but finitely many $x \in X$. Say $y_x \neq 0$ for $x \in \{x_1, x_2, ..., x_n\}$ where $y_{x_i} = r_i \neq 0$. Then $y = r_1 \theta_{x_1} + r_2 \theta_{x_2} + \cdots + r_{x} \theta_{x_n}$. Therefore Y is a linearly independent spanning set of $\sum_{\mathsf X} R$; that is, $\mathsf Y$ is a basis of $\sum_{\mathsf X} R$.

Let $f:F\to \sum_X R$ be an isomorphism, and let A be the additive abelian group of R-module F. With B as the additive abelian group of R-module $\sum_{\mathcal{X}} R$, we have $f: \mathcal{A} \rightarrow \mathcal{B}$ satisfying $f\bigl(a+c \bigr) = f\bigl(a \bigr) + f\bigl(c \bigr)$ and $f(n) = rf(a)$ for all $a, c \in A$ and $r \in R$ by Definition IV.1.2; that is, f preserves linear combinations.

Theorem IV.2.1 (continued 4)

Proof (continued). To show that Y spans $\sum_{\mathcal{X}} R$ it suffices (by Note IV.2.A) to show that any $\mathsf{y}\in \sum_\mathcal{X} R$ is of the form $r_1\theta_{x_1}+r_2\theta_{x_2}+\cdots+r_{\mathsf{x}}\theta_{\mathsf{x}_n}$ for some $r_i\in R$ and $\theta_{\mathsf{x}_i}\in \mathsf{Y}.$ Since $\sum_{\mathsf{X}}R$ is a direct sum, then it is (in multiplicative notation) a weak direct product (see Definition I.8.3) so that $y_x = 0$ for all but finitely many $x \in X$. Say $y_x \neq 0$ for $x \in \{x_1, x_2, ..., x_n\}$ where $y_{x_i} = r_i \neq 0$. Then $y = r_1 \theta_{x_1} + r_2 \theta_{x_2} + \cdots + r_{x} \theta_{x_n}$. Therefore Y is a linearly independent spanning set of $\sum_{\mathsf X} R$; that is, $\mathsf Y$ is a basis of $\sum_{\mathsf X} R$.

Let $f: \digamma \rightarrow \sum_X R$ be an isomorphism, and let A be the additive abelian group of R -module $\digamma.$ With B as the additive abelian group of R -module $\sum_{\mathcal{X}} R$, we have $f: A \rightarrow B$ satisfying $f(a+c) = f(a) + f(c)$ and $f(n) = rf(a)$ for all $a, c \in A$ and $r \in R$ by Definition IV.1.2; that is, f preserves linear combinations.

Theorem IV.2.1 (continued 5)

Proof (continued). Define $A = \{f^{-1}(\theta_\mathsf{x}) \mid \theta_\mathsf{x} \in \mathsf{Y}\}$. Then for distinct $f^{-1}(\theta_{x_1}),f^{-1}(\theta_{x_2}),\ldots,f^{-1}(\theta_{x_n})\in\mathcal{Z}$ and any $r_2,r_2,\ldots,r_n\in\mathcal{R}$ with $r_1f^{-1}(\theta_{x_1})+r_2f^{-1}(\theta_{x_2})+\cdots+r_nf^{-1}(\theta_{x_n})=0$ we have (applying f to both sides of this equation) $r_1\theta_{x_1} + r_2\theta_{x_2} + \cdots + r_n\theta_{x_n} = f(0) = 0$. Since the θ_{x_i} are linearly independent in $\sum_{\mathsf{X}} R$, then we must have $r_1 = r_2 = \cdots = r_n = 0$. Therefore Z is a linearly independent set in F. For any $z \in F$, $f(z) \in \sum_{X} R$ so that $f(z) = r_1 \theta_{x_1} + r_2 \theta_{x_2} + \cdots + r_n \theta_{x_n}$ for some $\theta_{x_1}, \theta_{x_2}, \ldots, \theta_{x_n} \in Y$ and some $r_1, r_2, \ldots, r_n \in R$. Therefore $f(z) = r_1 \theta_{x_1} + r_2 \theta_{x_2} + \cdots + r_n \theta_{x_n}$ and $z=r_1f^{-1}(\theta_{x_1})+r_2f^{-1}(\theta_{x_2})+\cdots+r_nf^{-1}(\theta_{x_n}).$ Therefore Z is a linearly independent spanning set of F ; that is, F has a bases and (i) holds, as claimed.

Theorem IV.2.1 (continued 5)

Proof (continued). Define $A = \{f^{-1}(\theta_\mathsf{x}) \mid \theta_\mathsf{x} \in \mathsf{Y}\}$. Then for distinct $f^{-1}(\theta_{x_1}),f^{-1}(\theta_{x_2}),\ldots,f^{-1}(\theta_{x_n})\in\mathcal{Z}$ and any $r_2,r_2,\ldots,r_n\in\mathcal{R}$ with $r_1f^{-1}(\theta_{x_1})+r_2f^{-1}(\theta_{x_2})+\cdots+r_nf^{-1}(\theta_{x_n})=0$ we have (applying f to both sides of this equation) $r_1\theta_{x_1} + r_2\theta_{x_2} + \cdots + r_n\theta_{x_n} = f(0) = 0$. Since the θ_{x_i} are linearly independent in $\sum_{\mathsf{X}} R$, then we must have $r_1 = r_2 = \cdots = r_n = 0$. Therefore Z is a linearly independent set in F. For any $z\in F$, $f(z)\in \sum_X R$ so that $f(z)=r_1\theta_{x_1}+r_2\theta_{x_2}+\cdots+r_n\theta_{x_n}$ for some $\theta_{x_1}, \theta_{x_2}, \ldots, \theta_{x_n} \in Y$ and some $r_1, r_2, \ldots, r_n \in R$. Therefore $f(z) = r_1 \theta_{x_1} + r_2 \theta_{x_2} + \cdots + r_n \theta_{x_n}$ and $z=r_1f^{-1}(\theta_{\mathsf{x}_1})+r_2f^{-1}(\theta_{\mathsf{x}_2})+\cdots+r_nf^{-1}(\theta_{\mathsf{x}_n}).$ Therefore Z is a linearly independent spanning set of F ; that is, F has a bases and (i) holds, as claimed.

Theorem IV.2.1 (continued 6)

Theorem IV.2.1. Let R be a ring with identity. The following on a unitary R -module F are equivalent.

- (i) F has a nonempty basis.
- (iv) There exists a nonempty set X and a function $\iota: X \to F$ with the following property: given any unitary R -module A and function $f : X \to A$ there exists a unique R-module homomorphism $\overline{f}: F \to A$ such that $\overline{f}_l = f$. In other words, F is a free object in the category of unitary R -modules.

Proof (continued). (i) \Rightarrow (iv). Let X be a basis of F and $\iota : X \rightarrow F$ the inclusion map Let A be a unitary R-module and $f : X \to A$. For any $u \in F$ we have $u = \sum_{i=1}^n r_i x_i$ for some $r_i \in R$ and some $x_i \in X$, since X is a spanning set (see Note IV.2.A) and by Note IV.2.B this representation is unique. So the map $\bar{f}:F\to\hat{A}$ given by $\bar{f}(u) = \bar{f}\left(\sum_{i=1}^n r_i x_i\right) = \sum_{i=1}^n r_i f(x_i)$ is well-defined, and $\bar{f}\iota = f$.

Theorem IV.2.1 (continued 7)

Proof (continued). To show that \bar{f} is an R-module homomorphism, let $a, c \in A$. Then $a = \sum_{i=1}^{n} r_i x_i$ and $c = \sum_{i=1}^{m} r'_i x'_i$ for some $r_i, r'_i \in R$ and some $x_i, x'_i \in X$. In the notation of Note IV.2.B,

$$
a + c = \sum_{i=1}^{\ell} (r_i + r'_i)x_i + \sum_{i=\ell+1}^{n} r_i x_i + \sum_{i=\ell+1}^{m} r'_i x'_i
$$

and so

$$
\bar{f}(a+c) = \sum_{i=1}^{\ell} (r_i + r'_i) f(x_i) + \sum_{i=\ell+1}^{n} r_i f(x_i) + \sum_{i=\ell+1}^{m} r'_i r(f'_i)
$$
\n
$$
= \sum_{i=1}^{\ell} r_i f(x_i) + \sum_{i=1}^{\ell} r'_i f(x'_i) + \sum_{i=\ell+1}^{n} r_i f(x_i) + \sum_{i=\ell+1}^{m} r'_i f(x'_i)
$$
\nsince $x_i = x'_i$ for $1 \le i \le \ell$ \n
$$
= \sum_{i=1}^{n} r_i f(x_i) + \sum_{i=1}^{m} r'_i f(x'_i) = \bar{f}(a) + \bar{f}(c).
$$

Theorem IV.2.1 (continued 8)

Proof (continued). Also $\bar{f}(r a) = \bar{f}(r \sum_{i=1}^{n} r_i x_i) = \bar{f}(\sum_{i=1}^{n} r r_i x_i) =$ $\sum_{i=1}^n r_i f(x_i) = r \sum_{i=1}^n r_i f(x_i) = r \overline{f}(a)$. So \overline{f} is an R-module homomorphism by Definition IV.1.2.

Since X generates F (i.e., every element of A is a linear combination of elements of X by Note IV.2.A) then any R-module homomorphism mapping $F \to A$ is uniquely determined by its values on X. If $\bar{g}: F \to A$ is any R-module homomorphism such that $\bar{g}l = f$, then for all $x \in X$ we have $\bar{g}(x) = \bar{g}(\iota(x)) = f(x) = \bar{f}(x)$. Therefore $\bar{g} = \bar{f}$ and so \bar{f} is unique. By Note IV.1.D, the unitary R -modules form a concrete category. By the definition of "free object F on set X'' of a concrete category (Definition I.7.7), we see that F is a free object on set X where i is ι , A as a unitary *R*-module, and \bar{f} as the unique morphism $\bar{f}: F \to A$.

Theorem IV.2.1 (continued 8)

Proof (continued). Also $\bar{f}(r a) = \bar{f}(r \sum_{i=1}^{n} r_i x_i) = \bar{f}(\sum_{i=1}^{n} r r_i x_i) =$ $\sum_{i=1}^n r_i f(x_i) = r \sum_{i=1}^n r_i f(x_i) = r \overline{f}(a)$. So \overline{f} is an R-module homomorphism by Definition IV.1.2.

Since X generates F (i.e., every element of A is a linear combination of elements of X by Note IV.2.A) then any R-module homomorphism mapping $F \to A$ is uniquely determined by its values on X. If $\bar{g}: F \to A$ is any R-module homomorphism such that $\bar{g}l = f$, then for all $x \in X$ we have $\bar{g}(x) = \bar{g}(\iota(x)) = f(x) = \bar{f}(x)$. Therefore $\bar{g} = \bar{f}$ and so \bar{f} is unique. By Note IV.1.D, the unitary R-modules form a concrete category. By the definition of "free object F on set X'' of a concrete category (Definition 1.7.7), we see that F is a free object on set X where i is ι , A as a unitary *R*-module, and \bar{f} as the unique morphism $\bar{f}: F \to A$.

Theorem IV.2.1 (continued 9)

Theorem IV.2.1. Let R be a ring with identity. The following on a unitary R -module F are equivalent.

- (iii) F is R-module isomorphic to a direct sum of copies of the left R-module R.
- (iv) There exists a nonempty set X and a function $\iota: X \to F$ with the following property: given any unitary R -module A and function $f : X \to A$ there exists a unique R-module homomorphism $\bar{f}: F \to A$ such that $\bar{f}_l = f$. In other words, F is a free object in the category of unitary R -modules.

Proof (continued). (iv) \Rightarrow (iii). Let X be the nonempty set and $\iota: X \rightarrow F$ hypothesized to exist. Consider the direct sum $\sum_{X} R$ and let $Y = \{\theta - x \mid x \in X\}$ be the basis of the unitary R-module $\sum_{X} R$ given in the (iii) \Rightarrow (i) part of the proof above.

Theorem IV.2.1 (continued 10)

Proof (continued). We have established (iii) \Rightarrow (i) \Rightarrow (iv) so we have (replacing \digamma with $\sum_X R$ in (iii) and replacing X with Y in (i)) that $\sum_{\mathsf{x}} R$ is a free object on set Y in the category of unitary R -modules (with $Y \to \sum_X R$ by the inclusion map, as is done in the proof of (i) \Rightarrow (iv)). Since $|X| = |\{\theta_x \mid x \in X\}| = |Y|$, then by Theorem I.7.8 in [Section I.7.](https://faculty.etsu.edu/gardnerr/5410/notes/I-7.pdf) [Categories: Products, Coproducts, and Free Objects,](https://faculty.etsu.edu/gardnerr/5410/notes/I-7.pdf) \digamma and $\sum_{\mathsf{X}}R$ are **equivalent.** As shown in the proof of Theorem 1.7.8, equivalence is given between two objects F and F' as $\varphi : F \to F'$ and $\psi : F' \to F$ where $\psi \circ \varphi = 1_F$ and $\varphi \circ \psi = 1_F$. Since the morphisms in the category of unitary R-modules are R-module homomorphisms, then φ and ψ are R-module homomorphisms. By Theorem 0.3.1, φ and ψ are bijections, therefore we have that φ and ψ are R-module isomorphisms. Therefore, $F \cong \sum_X R$, as claimed.

Theorem IV.2.1 (continued 10)

Proof (continued). We have established (iii) \Rightarrow (i) \Rightarrow (iv) so we have (replacing \digamma with $\sum_X R$ in (iii) and replacing X with Y in (i)) that $\sum_{\mathsf{x}} R$ is a free object on set Y in the category of unitary R -modules (with $Y \to \sum_X R$ by the inclusion map, as is done in the proof of (i) \Rightarrow (iv)). Since $|X| = |\{\theta_x \mid x \in X\}| = |Y|$, then by Theorem I.7.8 in [Section I.7.](https://faculty.etsu.edu/gardnerr/5410/notes/I-7.pdf) [Categories: Products, Coproducts, and Free Objects,](https://faculty.etsu.edu/gardnerr/5410/notes/I-7.pdf) \digamma and $\sum_{\mathsf{X}}R$ are equivalent. As shown in the proof of Theorem I.7.8, equivalence is given between two objects F and F' as $\varphi : F \to F'$ and $\psi : F' \to F$ where $\psi \circ \varphi = 1_F$ and $\varphi \circ \psi = 1_F$. Since the morphisms in the category of unitary R-modules are R-module homomorphisms, then φ and ψ are R-module homomorphisms. By Theorem 0.3.1, φ and ψ are bijections, therefore we have that φ and ψ are R-module isomorphisms. Therefore, $F \cong \sum_{X} R$, as claimed.

Corollary IV.2.2

Corollary IV.2.2. Every unitary module A over a ring R (with identity) is the homomorphic image of a free R-module F . If A is finitely generated, then F may be chosen to be finitely generated.

Proof. Let X be a set of generators of A (A itself is a set of generators, so such a set exists). Let F be the free R-module on set X. Then X is a basis of F by the convention given in Note IV.2.F. As shown in the (i) \Rightarrow (iv) of Theorem IV.2.1, we see that set X satisfies the conditions of part (iv) of Theorem IV.2.1. We take function $f : X \rightarrow A$ of part (iv) to be the inclusion map (not to be confused with functions $\iota : X \to F$). Then part (iv) implies the existence of unique R-module homomorphism $\bar{f}: F \to A$. We just need to show \bar{f} is a surjection.

Corollary IV.2.2

Corollary IV.2.2. Every unitary module A over a ring R (with identity) is the homomorphic image of a free R -module F . If A is finitely generated, then F may be chosen to be finitely generated.

Proof. Let X be a set of generators of A (A itself is a set of generators, so such a set exists). Let F be the free R-module on set X . Then X is a basis of F by the convention given in Note IV.2.F. As shown in the (i) \Rightarrow (iv) of Theorem IV.2.1, we see that set X satisfies the conditions of part (iv) of Theorem IV.2.1. We take function $f : X \rightarrow A$ of part (iv) to be the inclusion map (not to be confused with functions $\iota : X \to F$). Then part (iv) implies the existence of unique R-module homomorphism $\bar{f}: F \to A$. We just need to show \bar{f} is a surjection. We also have by part (iv) that $\bar{f} \iota = f$. Since $\iota : X \to F$, $\bar{f} : F \to A$, and $X \subset A$ then $\text{Im}(\bar{f})$ includes $f(X) \subset A$ where $f(X) = X$ since $f : X \to A$ is just the inclusion mapping. That is, $X \subset \text{Im}(\overline{f}) \subset A$.

Corollary IV.2.2

Corollary IV.2.2. Every unitary module A over a ring R (with identity) is the homomorphic image of a free R -module F . If A is finitely generated, then F may be chosen to be finitely generated.

Proof. Let X be a set of generators of A (A itself is a set of generators, so such a set exists). Let F be the free R-module on set X . Then X is a basis of F by the convention given in Note IV.2.F. As shown in the (i) \Rightarrow (iv) of Theorem IV.2.1, we see that set X satisfies the conditions of part (iv) of Theorem IV.2.1. We take function $f : X \rightarrow A$ of part (iv) to be the inclusion map (not to be confused with functions $\iota : X \to F$). Then part (iv) implies the existence of unique R-module homomorphism $\bar{f}: F \to A$. We just need to show \bar{f} is a surjection. We also have by part (iv) that $\bar{f} \iota = f$. Since $\iota : X \to F$, $\bar{f} : F \to A$, and $X \subset A$ then $\textsf{Im}(\bar{f})$ includes $f(X) \subset A$ where $f(X) = X$ since $f : X \to A$ is just the inclusion mapping. That is, $X \subset \text{Im}(\overline{f}) \subset A$.

Corollary IV.2.2 (continued)

Corollary IV.2.2. Every unitary module A over a ring R (with identity) is the homomorphic image of a free R -module F . If A is finitely generated, then F may be chosen to be finitely generated.

Proof (continued). Since the homomorphic image of an R-module is an R-module (see Example IV.1.B), then $Im(\bar{f})$ is an R-module containing generating set X of A , and therefore ${\sf Im}(\bar{f})=A$. That is, arbitrary unitary module A over ring R is the homomorphic image of free R-module F , as claimed.

If A is finitely generated, then generating set X can be taken to be finite and hence free R-module F (which has X as a basis) is finitely generated, as claimed.

Corollary IV.2.2 (continued)

Corollary IV.2.2. Every unitary module A over a ring R (with identity) is the homomorphic image of a free R -module F . If A is finitely generated, then F may be chosen to be finitely generated.

Proof (continued). Since the homomorphic image of an R-module is an R-module (see Example IV.1.B), then $Im(\bar{f})$ is an R-module containing generating set X of A , and therefore ${\sf Im}(\bar{f})=A$. That is, arbitrary unitary module A over ring R is the homomorphic image of free R-module F , as claimed.

If A is finitely generated, then generating set X can be taken to be finite and hence free R-module F (which has X as a basis) is finitely generated, as claimed.

l emma N 2.3

Lemma IV.2.3. A maximal linearly independent subset X of a vector space V over a division ring D is a basis of V.

Proof. With X as a maximal linearly independent subset of V , let W be the subspace of V spanned by set X. Since X is linearly independent and spans W, then X is a basis of W. ASSUME $W \neq V$. Then there is a nonzero vector $a \in V$ with $a \in W$. Consider the set $X \cup \{a\}$.

l emma N 2.3

Lemma IV.2.3. A maximal linearly independent subset X of a vector space V over a division ring D is a basis of V.

Proof. With X as a maximal linearly independent subset of V, let W be the subspace of V spanned by set X. Since X is linearly independent and spans W, then X is a basis of W. ASSUME $W \neq V$. Then there is a nonzero vector $a \in V$ with $a \in W$. Consider the set $X \cup \{a\}$. If

 $ra + r_1x_1 + r_2x_2 + \cdots + r_nx_n = 0$ where $r, r_i \in D$ and $x_i \in X$ for each i. If $r \neq 0$, then $a = -r^{-1}r_1x_1 = r^{-1}r_2x_2 - \cdots - r^{-1}r_nx_n \in W$. But this CONTRADICTS the choice of nonzero $a \in V \setminus W$. So we must have $r = 0$.

Lemma IV.2.3

Lemma IV.2.3. A maximal linearly independent subset X of a vector space V over a division ring D is a basis of V.

Proof. With X as a maximal linearly independent subset of V, let W be the subspace of V spanned by set X. Since X is linearly independent and spans W, then X is a basis of W. ASSUME $W \neq V$. Then there is a nonzero vector $a \in V$ with $a \in W$. Consider the set $X \cup \{a\}$. If $ra + r_1x_1 + r_2x_2 + \cdots + r_nx_n = 0$ where $r, r_i \in D$ and $x_i \in X$ for each i. If $r \neq 0$, then $a = -r^{-1}r_1x_1 = r^{-1}r_2x_2 - \cdots - r^{-1}r_nx_n \in W$. But this CONTRADICTS the choice of nonzero $a \in V \setminus W$. So we must have $r = 0$. Then $ra + r_1x_1 + r_2x_2 + \cdots + r_xx_n = r_1x_1 + r_2x_2 + \cdots + r_nx_n = 0$ and hence $r_i = 0$ for all i since X is a linearly independent set. But this implies that the set $X \cup \{a\}$ is linearly independent, CONTRADICTING the maximality of linearly independent set X . So the assumption that $W \neq V$ is false, and hence $V = W$ and X is a basis for V, as claimed.

Lemma IV.2.3

Lemma IV.2.3. A maximal linearly independent subset X of a vector space V over a division ring D is a basis of V.

Proof. With X as a maximal linearly independent subset of V, let W be the subspace of V spanned by set X. Since X is linearly independent and spans W, then X is a basis of W. ASSUME $W \neq V$. Then there is a nonzero vector $a \in V$ with $a \in W$. Consider the set $X \cup \{a\}$. If $ra + r_1x_1 + r_2x_2 + \cdots + r_nx_n = 0$ where $r, r_i \in D$ and $x_i \in X$ for each i. If $r \neq 0$, then $a = -r^{-1}r_1x_1 = r^{-1}r_2x_2 - \cdots - r^{-1}r_nx_n \in W$. But this CONTRADICTS the choice of nonzero $a \in V \setminus W$. So we must have $r = 0$. Then $ra + r_1x_1 + r_2x_2 + \cdots + r_xx_n = r_1x_1 + r_2x_2 + \cdots + r_nx_n = 0$ and hence $r_i = 0$ for all i since X is a linearly independent set. But this implies that the set $X \cup \{a\}$ is linearly independent, CONTRADICTING the maximality of linearly independent set X . So the assumption that $W \neq V$ is false, and hence $V = W$ and X is a basis for V, as claimed. \Box

Theorem IV 24

Theorem IV.2.4. Every vector space V over a division ring D has a basis and is therefore a free D-module. More generally every linearly independent subset of V is contained in a basis of V .

Proof. Let X be any linearly independent subset of V. Let S be the set of all linearly independent subsets of V that contain X. Since $X \in S$ then $S \neq \emptyset$. Partially oder S by set theoretic inclusion; that is, $S_1 \leq S_2$ for $S_1 \subset S_2$. Let $\{C_i \mid i \in I\}$ be a chain in $\mathcal S$ (that is, for any c_i, c_k with $j,k\in I$ we have either $c_j\leq c_k$ or $c_k\leq c_j;$ see [Section 0.7. The Axiom of](https://faculty.etsu.edu/gardnerr/5410/notes/0-7.pdf) [Choice, Order, and Zorn's Lemma](https://faculty.etsu.edu/gardnerr/5410/notes/0-7.pdf) for more on this).

Theorem IV 24

Theorem IV.2.4. Every vector space V over a division ring D has a basis and is therefore a free D-module. More generally every linearly independent subset of V is contained in a basis of V .

Proof. Let X be any linearly independent subset of V. Let S be the set of all linearly independent subsets of V that contain X. Since $X \in \mathcal{S}$ then $S \neq \emptyset$. Partially oder S by set theoretic inclusion; that is, $S_1 \leq S_2$ for $\mathcal{S}_1 \subset \mathcal{S}_2$. Let $\{\mathcal{C}_i \mid i \in I\}$ be a chain in \mathcal{S} (that is, for any c_i, c_k with $j,k\in I$ we have either $c_j\leq c_k$ or $c_k\leq c_j;$ see [Section 0.7. The Axiom of](https://faculty.etsu.edu/gardnerr/5410/notes/0-7.pdf) [Choice, Order, and Zorn's Lemma](https://faculty.etsu.edu/gardnerr/5410/notes/0-7.pdf) for more on this).

Define $C = \cup_{i \in I} C_i$. Let $x_1, x_2, \ldots, x_n \in C$, $r_1, r_2, \ldots, r_n \in D$, and suppose $r_1x_1+r_2x_2+\cdots+r_nx_n=0.$ Then for each $1\leq i\leq n$ we have $x_i\in\mathcal{C}_j$ for some $j \in I$. Say, WLOG, $x_i \in \mathcal{C}_i$. Since all \mathcal{C}_i for $i \in I$ are comparable, then there is some C_1, C_2, \ldots, C_n , say C^* , such that $C_i \leq C^*$ or $C_i \subset C^*$ for each $1 \leq i \leq n$.

Theorem IV 24

Theorem IV.2.4. Every vector space V over a division ring D has a basis and is therefore a free D-module. More generally every linearly independent subset of V is contained in a basis of V .

Proof. Let X be any linearly independent subset of V. Let S be the set of all linearly independent subsets of V that contain X. Since $X \in \mathcal{S}$ then $S \neq \emptyset$. Partially oder S by set theoretic inclusion; that is, $S_1 \leq S_2$ for $\mathcal{S}_1 \subset \mathcal{S}_2$. Let $\{\mathcal{C}_i \mid i \in I\}$ be a chain in \mathcal{S} (that is, for any c_i, c_k with $j,k\in I$ we have either $c_j\leq c_k$ or $c_k\leq c_j;$ see [Section 0.7. The Axiom of](https://faculty.etsu.edu/gardnerr/5410/notes/0-7.pdf) [Choice, Order, and Zorn's Lemma](https://faculty.etsu.edu/gardnerr/5410/notes/0-7.pdf) for more on this).

Define $C=\cup_{i\in I}C_i$. Let $x_1,x_2,\ldots,x_n\in C$, $r_1,r_2,\ldots,r_n\in D$, and suppose $r_1x_1+r_2x_2+\cdots+r_nx_n=0.$ Then for each $1\leq i\leq n$ we have $x_i\in\mathcal{C}_j$ for some $j \in I$. Say, WLOG, $x_i \in \mathcal{C}_i$. Since all \mathcal{C}_i for $i \in I$ are comparable, then there is some $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_n$, say \mathcal{C}^* , such that $\mathcal{C}_i \leq \mathcal{C}^*$ or $\mathcal{C}_i \subset \mathcal{C}^*$ for each $1 \leq i \leq n$.

Theorem IV.2.4. Every vector space V over a division ring D has a basis and is therefore a free D-module. More generally every linearly independent subset of V is contained in a basis of V .

Proof (continued). Therefore $x_1, x_2, ..., x_n \in C^*$ and since $C^* \in S$ then C^* is a linearly independent subset of V, so $r_1x_1 + r_2x_2 + \cdots + r_nx_n = 0$ implies $r_i = 0$ for $1 \le i \le n$. Therefore C is a linearly independent subset of V and $C \in \mathcal{S}$. Of course $\mathcal{C}_i \leq C = \cup_{i \in I} \mathcal{C}_i$ is an upper bound for chain $\{\mathcal{C}_i \mid i \in I\}$. Since $\{\mathcal{C}_i \mid i \in I\}$ is an arbitrary chain, then we can apply Zorn's Lemma to conclude that S contains a maximal element B. Then B contains X and is a maximal linearity independent subset of V . That is, B contains X and is a basis of V by Lemma IV.2.3, as claimed.

Theorem IV 2.5

Theorem IV.2.5. If V is a vector space over a division ring D and X is a subset that spans V, then X contains a basis of V.

Proof. Similar to the proof of Theorem IV.2.4, let S be the set of all linearly independent subsets of X and partially order S by subset inclusion. S contains singletons of X, so $S \neq \emptyset$. As in the proof of Theorem IV.2.4, we have any chain $\{\mathcal{C}_i\mid i\in I\}$ of elements of $\mathcal S$ has $\mathcal C=\cup_{i\in I}\mathcal C_i$ as an upper bound so that we can apply Zorn's Lemma to S to get a maximal element Y of S. Every element of X is a linear combination of elements of Y, or else we could find $a \in X$ which is not in the span of Y.

Theorem IV.2.5

Theorem IV.2.5. If V is a vector space over a division ring D and X is a subset that spans V, then X contains a basis of V.

Proof. Similar to the proof of Theorem IV.2.4, let S be the set of all linearly independent subsets of X and partially order S by subset inclusion. S contains singletons of X, so $S \neq \emptyset$. As in the proof of Theorem IV.2.4, we have any chain $\{\mathcal{C}_i\mid i\in I\}$ of elements of $\mathcal S$ has $\mathcal C=\cup_{i\in I}\mathcal C_i$ as an upper bound so that we can apply Zorn's Lemma to S to get a maximal element Y of S. Every element of X is a linear combination of elements of Y, or else we could find $a \in X$ which is not in the span of Y. This then gives Y ∪ {a} as an element of S where Y \subseteq Y ∪ {a} so that Y is not maximal, contradicting the maximality of Y (this is the same argument as given in the proof of Lemma IV.2.3). Since X spans V and Y spans X, then Y spans V (a linear combination of linear combinations is itself a linear combination). Therefore Y is a linearly independent spanning set of V. That is, Y is a basis of V which is contained in X , as claimed.
Theorem IV.2.5. If V is a vector space over a division ring D and X is a subset that spans V, then X contains a basis of V.

Proof. Similar to the proof of Theorem IV.2.4, let S be the set of all linearly independent subsets of X and partially order S by subset inclusion. S contains singletons of X, so $S \neq \emptyset$. As in the proof of Theorem IV.2.4, we have any chain $\{\mathcal{C}_i\mid i\in I\}$ of elements of $\mathcal S$ has $\mathcal C=\cup_{i\in I}\mathcal C_i$ as an upper bound so that we can apply Zorn's Lemma to S to get a maximal element Y of S. Every element of X is a linear combination of elements of Y, or else we could find $a \in X$ which is not in the span of Y. This then gives Y ∪ {a} as an element of S where Y $\subset Y \cup \{a\}$ so that Y is not maximal, contradicting the maximality of Y (this is the same argument as given in the proof of Lemma IV.2.3). Since X spans V and Y spans X, then Y spans V (a linear combination of linear combinations is itself a linear combination). Therefore Y is a linearly independent spanning set of V. That is, Y is a basis of V which is contained in X , as claimed.

Theorem IV₂₆

Theorem IV.2.6. Let R be a ring with identity and F a free R-module with an infinite basis X. Then every basis of F has the same cardinality as X.

Proof. Let Y be a basis of F other than X. ASSUME that Y is finite. Since Y generates F and every element of Y is a linear combination of a finite number of elements of X (because X is a basis of F), then there is a finite subset $\{x_1, x_2, \ldots, x_m\}$ of X (namely, the x_i 's in the linear combinations that give the elements of Y) which generates F (because Y is assumed to be a basis of F). Since X is infinite then there exists $x \in X \setminus \{x_1, x_2, \ldots, x_m\}.$

Theorem IV.2.6. Let R be a ring with identity and F a free R-module with an infinite basis X. Then every basis of F has the same cardinality as X.

Proof. Let Y be a basis of F other than X. ASSUME that Y is finite. Since Y generates F and every element of Y is a linear combination of a finite number of elements of X (because X is a basis of F), then there is a finite subset $\{x_1, x_2, \ldots, x_m\}$ of X (namely, the x_i 's in the linear combinations that give the elements of Y) which generates F (because Y is assumed to be a basis of F). Since X is infinite then there exists $x \in X \setminus \{x_1, x_2, \ldots, x_m\}$. Then $x = r_1x_1 + r_2x_2 + \cdots + r_mx_m$ for some $r_i \in R$ since $\{x_1, x_2, \ldots, x_m\}$ generates F. Then $r_1x_1 + r_2x_1 + \cdots + r_mx_m \in X$ and not all coefficients are 0, CONTRADICTING the fact that X is linearly independent. Hence the assumption that Y is finite is false and, therefore, Y is infinite.

Theorem IV.2.6. Let R be a ring with identity and F a free R-module with an infinite basis X. Then every basis of F has the same cardinality as X.

Proof. Let Y be a basis of F other than X. ASSUME that Y is finite. Since Y generates F and every element of Y is a linear combination of a finite number of elements of X (because X is a basis of F), then there is a finite subset $\{x_1, x_2, \ldots, x_m\}$ of X (namely, the x_i 's in the linear combinations that give the elements of Y) which generates F (because Y is assumed to be a basis of F). Since X is infinite then there exists $x \in X \setminus \{x_1, x_2, \ldots, x_m\}$. Then $x = r_1x_1 + r_2x_2 + \cdots + r_mx_m$ for some $r_i \in R$ since $\{x_1, x_2, \ldots, x_m\}$ generates F. Then $r_1x_1 + r_2x_1 + \cdots + r_mx_m \in X$ and not all coefficients are 0, CONTRADICTING the fact that X is linearly independent. Hence the assumption that Y is finite is false and, therefore, Y is infinite.

Theorem IV.2.6 (continued 1)

Theorem IV.2.6. Let R be a ring with identity and F a free R-module with an infinite basis X. Then every basis of F has the same cardinality as X.

Proof (continued). Let $K(Y)$ be the set of all finite subsets of Y. Define $f: X \to F(Y)$ as $x \mapsto \{y_1, y_2, \ldots, y_n\}$ where $x = r_1y_1 + r_2y_2 + \cdots + r_ny_n$ for nonzero $r_i \in R$. Since Y is a basis of F, then set $\{y_1, y_2, \ldots, y_n\}$ is uniquely determined by x and f is well-defined. ASSUME $Im(f)$ is finite. Then $\cup_{S\in \text{Im}(f)} S$ is a finite subset of Y that generates set X. Since X is a basis for F, then this finite subset of Y generates F. But Y is a linearly independent set, so $\cup_{S\in \text{Im}(f)} S \subset Y$ is linearly independent and hence is a finite basis of F . But as shown above, a basis of F cannot be finite and so we have a CONTRADICTION. The assumption that $Im(f)$ is finite is false and hence we must have that $Im(f)$ is infinite.

Theorem IV.2.6 (continued 1)

Theorem IV.2.6. Let R be a ring with identity and F a free R-module with an infinite basis X. Then every basis of F has the same cardinality as X.

Proof (continued). Let $K(Y)$ be the set of all finite subsets of Y. Define $f: X \to F(Y)$ as $x \mapsto \{y_1, y_2, \ldots, y_n\}$ where $x = r_1y_1 + r_2y_2 + \cdots + r_ny_n$ for nonzero $r_i \in R$. Since Y is a basis of F, then set $\{y_1, y_2, \ldots, y_n\}$ is uniquely determined by x and f is well-defined. ASSUME $Im(f)$ is finite. Then $\cup_{S\in \text{Im}(f)} S$ is a finite subset of Y that generates set X. Since X is a basis for F , then this finite subset of Y generates F . But Y is a linearly independent set, so $\cup_{S\in \text{Im}(f)} S \subset Y$ is linearly independent and hence is a finite basis of F . But as shown above, a basis of F cannot be finite and so we have a CONTRADICTION. The assumption that $Im(f)$ is finite is false and hence we must have that $Im(f)$ is infinite.

Theorem IV.2.6 (continued 2)

Proof (continued). Let $T \in \text{Im}(f) \subset K(Y)$. Notice this means that T is a finite subset of basis Y . We'll show that $f^{-1}(\mathcal{T})$ is a finite subset of X . Now $T \subset Y$ generates some submodule F_T of F. By Theorem IV.1.5(iii), F_T consists of all possible linear combinations of elements of T. If $x\in f^{-1}(\mathcal{T})$ then x is a linear combination of the elements of $\mathcal{T},$ and $x\in\mathcal{F}_{\mathcal{T}}.$ That is, $f^{-1}(\mathcal{T})\subset\mathcal{F}_{\mathcal{T}}.$ Since \mathcal{T} is finite and each $y\in\mathcal{T}$ is a linear combination of a finite number of elements of basis X , then there is a finite subset S of X such that F_T is contained in the submodule F_5 $\mathsf{generated} \; \mathsf{by} \; \mathsf{set} \; \mathcal{S} \subset \mathcal{X}. \;$ So $\mathsf{x} \in f^{-1}(\mathcal{T})$ implies $\mathsf{x} \in \mathsf{F}_\mathcal{S}$ and (again by Theorem IV.1.5(iii)) x is a linear combination of elements of S. Since $S \subset X$ is a finite set, if $x \notin S$ then, as argued above when considering $x \in X \setminus \{x_1, x_2, \ldots, x_m\}$ at the beginning of the proof, a contradiction the the linear independence of X results. Hence, we must have $x \in S$. Since x is an arbitrary element of $f^{-1}(T)$ then we have $f^{-1}(T)\subset S$ and, since S is finite, then $f^{-1}(T)$ is finite.

Theorem IV.2.6 (continued 2)

Proof (continued). Let $T \in Im(f) \subset K(Y)$. Notice this means that T is a finite subset of basis Y . We'll show that $f^{-1}(\mathcal{T})$ is a finite subset of X . Now $T \subset Y$ generates some submodule F_T of F. By Theorem IV.1.5(iii), F_T consists of all possible linear combinations of elements of T. If $x\in f^{-1}(\mathcal{T})$ then x is a linear combination of the elements of $\mathcal{T},$ and $x\in\mathcal{F}_{\mathcal{T}}.$ That is, $f^{-1}(\mathcal{T})\subset\mathcal{F}_{\mathcal{T}}.$ Since \mathcal{T} is finite and each $y\in\mathcal{T}$ is a linear combination of a finite number of elements of basis X , then there is a finite subset S of X such that F_T is contained in the submodule F_5 generated by set $S\subset X.$ So $\mathsf{x}\in\mathit{f}^{-1}(\mathcal{T})$ implies $\mathsf{x}\in\mathit{F}_\mathcal{S}$ and (again by Theorem IV.1.5(iii)) x is a linear combination of elements of S. Since $S \subset X$ is a finite set, if $x \notin S$ then, as argued above when considering $x \in X \setminus \{x_1, x_2, \ldots, x_m\}$ at the beginning of the proof, a contradiction the the linear independence of X results. Hence, we must have $x \in S$. Since x is an arbitrary element of $f^{-1}(\mathcal{T})$ then we have $f^{-1}(\mathcal{T})\subset \mathcal{S}$ and, since \mathcal{S} is finite, then $f^{-1}(T)$ is finite.

Theorem IV.2.6 (continued 3)

Theorem IV.2.6. Let R be a ring with identity and F a free R-module with an infinite basis X. Then every basis of F has the same cardinality as X.

Proof (continued). For each $T \in \text{Im}(f)$, order the finite number of elements of $f^{-1}(\mathcal{T})$ as, say, x_1, x_2, \ldots, x_n . Define ${\mathsf g}_\mathcal{T}: f^{-1}(\mathcal{T}) \to {\sf Im}(f) \times \mathbb{N}$ as ${\mathsf x}_k \mapsto (\mathcal{T},k).$ Mapping ${\mathsf g}_\mathcal{T}$ is an injection (since for $i \neq j$, $g_T(x_i) = (T, i) \neq (T, j) = g_T(x_i)$. For $T = \{y_1, y_2, \ldots, y_n\} \in \mathsf{Im}(f)$, we only have $x \in f^{-1}(T)$ if $x \in X$ and x is some linear combination of y_1, y_2, \ldots, y_n with nonzero coefficients. For $T, T' \in \text{Im}(f)$, ASSUME $x \in f^{-1}(T) \cap f^{-1}(T')$. Then $x = r_1y_1 + r_2y_2 + \cdots + r_ny_n = r'_1y'_1 + r'_2y'_2 + \cdots + r'_my'_m$ where $T' = \{y'_1, y'_2, \ldots, y'_m\}$, $r_1, r'_i \in R$, $r_i \neq 0$ for $1 \leq i \leq n$, and $r'_i \neq 0$ for $1 \leq i \leq m$. But then x is written in two different ways as a linear combination of elements of X with nonzero coefficients, a CONTRADICTION to Note IV.2.B. Therefore $f^{-1}(T) \cap f^{-1}(T') = \emptyset$.

Theorem IV.2.6 (continued 3)

Theorem IV.2.6. Let R be a ring with identity and F a free R-module with an infinite basis X. Then every basis of F has the same cardinality as X.

Proof (continued). For each $T \in \text{Im}(f)$, order the finite number of elements of $f^{-1}(\mathcal{T})$ as, say, x_1, x_2, \ldots, x_n . Define ${\mathsf g}_\mathcal{T}: f^{-1}(\mathcal{T}) \to {\sf Im}(f) \times \mathbb{N}$ as ${\mathsf x}_k \mapsto (\mathcal{T},k).$ Mapping ${\mathsf g}_\mathcal{T}$ is an injection (since for $i \neq j$, $g_T(x_i) = (T, i) \neq (T, j) = g_T(x_i)$. For $T = \{y_1, y_2, \ldots, y_n\} \in \mathsf{Im}(f)$, we only have $x \in f^{-1}(T)$ if $x \in X$ and x is some linear combination of y_1, y_2, \ldots, y_n with nonzero coefficients. For $T, T' \in \text{Im}(f)$, ASSUME $x \in f^{-1}(T) \cap f^{-1}(T')$. Then $x = r_1y_1 + r_2y_2 + \cdots + r_ny_n = r'_1y'_1 + r'_2y'_2 + \cdots + r'_my'_m$ where $T' = \{y'_1, y'_2, \ldots, y'_m\}$, $r_1, r'_i \in R$, $r_i \neq 0$ for $1 \leq i \leq n$, and $r'_i \neq 0$ for $1 \le i \le m$. But then x is written in two different ways as a linear combination of elements of X with nonzero coefficients, a CONTRADICTION to Note IV.2.B. Therefore $f^{-1}(T) \cap f^{-1}(T') = \varnothing$.

Theorem IV.2.6 (continued 4)

Proof (continued). Also, for any $x \in X \subset F$, x is some linear combination of elements of Y with nonzero coefficients (since Y is a basis of F), say $x = r_1''y_1'' + r_2''y_2'' + \cdots + r_k''y_k''$ where $r_i'' \in R$ and $r_i'' \neq 0$ for $1 \leq i \leq k$. Let $\mathcal{T}'' = \{y''_1, y''_2, \ldots, y''_k\} \in K(Y)$ and then we have $x\in f^{-1}(\mathcal T'')$. Therefore the sets $f^{-1}(\mathcal T)$ for $\mathcal T\in \mathsf{Im}(f)$ partition $X.$

Define a map $X \to \text{Im}(f) \times \mathbb{N}$ as $x \mapsto g_T(x)$ where $x \in f^{-1}(T)$. Sw just showed that the $f^{-1}(\mathcal{T})$;s partition X , so the mapping $\mathsf{x} \mapsto \mathsf{g}_{\mathcal{T}}(\mathsf{x})$ takes $\mathsf{x},$ "associates" it with unique $f^{-1}(T)$ containing it, and then g_T takes this $f^{-1}(\mathcal{T})$ to $(\mathcal{T},x_k) \in \textsf{Im}(f) \times \mathbb{N}$ where the notation x_k is introduced above in the ordering of the finite set $f^{-1}(T)$. Now each $x\in X$ occurs in exactly one $f^{-1}(\mathcal{T})$ and each $x\in f^{-1}(\mathcal{T})$ is associated with exactly one x_k in the ordering of $f^{-1}(T)$. So the mapping $x \mapsto g_{\mathcal{T}}(x)$ is well-defined and injective. Hence, there is an injection from X to $Im(f) \times N$.

Theorem IV.2.6 (continued 4)

Proof (continued). Also, for any $x \in X \subset F$, x is some linear combination of elements of Y with nonzero coefficients (since Y is a basis of F), say $x = r_1''y_1'' + r_2''y_2'' + \cdots + r_k''y_k''$ where $r_i'' \in R$ and $r_i'' \neq 0$ for $1 \leq i \leq k$. Let $\mathcal{T}'' = \{y''_1, y''_2, \ldots, y''_k\} \in K(Y)$ and then we have $x\in f^{-1}(\mathcal T'')$. Therefore the sets $f^{-1}(\mathcal T)$ for $\mathcal T\in \mathsf{Im}(f)$ partition $X.$

Define a map $X \to {\sf Im}(f) \times {\mathbb N}$ as ${\sf x} \mapsto {\sf g}_{{\sf T}}({\sf x})$ where ${\sf x} \in f^{-1}({\sf T}).$ Sw just showed that the $f^{-1}(T)$;s partition X , so the mapping $\mathrm{x} \mapsto \mathrm{g}_\mathcal{T}(\mathrm{x})$ takes $\mathrm{x},$ "associates" it with unique $f^{-1}(T)$ containing it, and then g_T takes this $f^{-1}(\mathcal{T})$ to $(\mathcal{T},x_k)\in\mathsf{Im}(f)\times\mathbb{N}$ where the notation x_k is introduced above in the ordering of the finite set $f^{-1}(\mathcal{T}).$ Now each $x \in X$ occurs in exactly one $f^{-1}(\mathcal{T})$ and each $x\in f^{-1}(\mathcal{T})$ is associated with exactly one x_k in the ordering of $f^{-1}(\mathcal{T})$. So the mapping $\mathsf{x} \mapsto \mathsf{g}_\mathcal{T}(\mathsf{x})$ is well-defined and injective. Hence, there is an injection from X to $Im(f) \times N$.

Theorem IV.2.6 (continued 5)

Proof (continued). We now have by results from [Section 0.8. Cardinal](https://faculty.etsu.edu/gardnerr/5410/notes/0-8.pdf) [Numbers:](https://faculty.etsu.edu/gardnerr/5410/notes/0-8.pdf)

- $|X| \leq ||\mathsf{m}(f) \times \mathbb{N}||$ by Definition 0.8.4, since $x \mapsto g_T(x)$ is an injection
	- $=$ $|\text{Im}(f)||N|$ by Definition 0.8.3 of $|A \times B|$
	- $=$ $|\text{Im}(f)|\alpha_0$ since N is countable
	- $=$ $|\text{Im}(f)|$ by Theorem 0.8.11 with $\alpha = |\text{Im}(f)|$ and $\beta = \aleph_0$
	- \langle |K(Y)| since Im(f) \subset K(Y)
	- $=$ $|Y|$ by Corollary 0.8.13.

Now X and Y are any infinite bases of F, then we can interchange X and Y to conclude $|Y| < |X|$. Then by the Schroeder-Bernstein Theorem (Theorem 0.8.6) we have have $|X| = |Y|$, as claimed.

Theorem IV.2.7. If V is a vector space over a division ring D, then two bases of V have the same cardinality.

Proof. Let X and Y be bases of V. If either X or Y is infinite, then $|X| = |Y|$ by Theorem IV.2.6. So we can assume WLOG that both X and *Y* are finite, say $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_m\}$. Since *Y* is a basis then $y_m \neq 0$, then $y_m = r_1x_1 + r_2x_2 + \cdots + r_nx_n$ for some $r_i \in D$. Let r_k be the first nonzero r_i (under the ordering r_1, r_2, \ldots, t_n ; notice that not all x_i may be required to write $y + m$ as a linear combination of the elements of X). Then $x_k = r_k^{-1}$ $\frac{c-1}{k}y_m - r_k^{-1}$ r_k^{-1} r_{k+1}x_{k+1} – · · · – r_k⁻¹ $\kappa_k^{-1} r_n x_n$.

Theorem IV.2.7. If V is a vector space over a division ring D, then two bases of V have the same cardinality.

Proof. Let X and Y be bases of V. If either X or Y is infinite, then $|X| = |Y|$ by Theorem IV.2.6. So we can assume WLOG that both X and *Y* are finite, say $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_m\}$. Since *Y* is a basis then $y_m \neq 0$, then $y_m = r_1x_1 + r_2x_2 + \cdots + r_nx_n$ for some $r_i \in D$. Let r_k be the first nonzero r_i (under the ordering r_1, r_2, \ldots, t_n ; notice that not all x_i may be required to write $y + m$ as a linear combination of the elements of X). Then $x_k = r_k^{-1}$ r_k^{-1} y_m – r_k^{-1} $r_k^{-1}r_{k+1}x_{k+1}-\cdots-r_k^{-1}$ $\kappa_k^{-1} r_n x_n$. Therefore the set $x' = \{y_m, x_1, x_2, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n\}$ spans V (since X) spans V). We now iterate this process of replacing λ_i 's with y_j 's. Since X' spans V , we can write

 $y_{m-1} = s_m y_m + t_1 x_1 + t_2 x_2 + \cdots + t_{k-1} x_{k-1} + t_{k+1} x_{k+1} + \cdots + t_n x_n$ for some $s_m \in D$ and $x_i \in D.$ Not all of the t_i 's are zero (otherwise $y_{m-1} - s_m y_m = 0$, contradicting the linear independence of Y).

Theorem IV.2.7. If V is a vector space over a division ring D, then two bases of V have the same cardinality.

Proof. Let X and Y be bases of V. If either X or Y is infinite, then $|X| = |Y|$ by Theorem IV.2.6. So we can assume WLOG that both X and *Y* are finite, say $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_m\}$. Since *Y* is a basis then $y_m \neq 0$, then $y_m = r_1x_1 + r_2x_2 + \cdots + r_nx_n$ for some $r_i \in D$. Let r_k be the first nonzero r_i (under the ordering r_1, r_2, \ldots, t_n ; notice that not all x_i may be required to write $y + m$ as a linear combination of the elements of X). Then $x_k = r_k^{-1}$ r_k^{-1} y_m – r_k^{-1} $r_k^{-1}r_{k+1}x_{k+1}-\cdots-r_k^{-1}$ $\kappa_k^{-1} r_n x_n$. Therefore the set $x' = \{y_m, x_1, x_2, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n\}$ spans V (since X) spans V). We now iterate this process of replacing λ_i 's with y_j 's. Since X' spans V , we can write

 $y_{m-1} = s_m y_m + t_1 x_1 + t_2 x_2 + \cdots + t_{k-1} x_{k-1} + t_{k+1} x_{k+1} + \cdots + t_n x_n$ for some $s_m \in D$ and $x_i \in D.$ Not all of the t_i 's are zero (otherwise $y_{m-1} - s_m y_m = 0$, contradicting the linear independence of Y).

Theorem IV.2.7 (continued 1)

Theorem IV.2.7. If V is a vector space over a division ring D, then two bases of V have the same cardinality.

Proof (continued). If t_i is the first nonzero t_i (similar to the above argument) then x_j is a linear combination of y_{m-1},y_m , and the s_i for $i \neq j, k$. Then, as above, the set $\{y_{m-1}, y_m\} \cup \{x_i \mid 1 \leq i \leq n, i \neq j, k\}$ spans V (since X' spans V). Again, this implies that y_{m-2} is a linear combination of y_{m-1} , y_m , and the x_i with $1 \le i \le n$, $i \ne j$, k. Using the first nonzero coefficient of an x_i in this linear combination allows us to eliminate some x_i where $i \neq j$, k, and replace it with y_{m-2} to create a spanning set of V. After k applications of this replacement process, we have a set containing this replacement process, we have a set containing $y_m, y_{m-1}, \ldots, y_{m-k+1}$ and $n-k$ of the x_i which spans V.

Theorem IV.2.7 (continued 2)

Theorem IV.2.7. If V is a vector space over a division ring D , then two bases of V have the same cardinality.

Proof (continued). ASSUME $n < m$. Then after *n* steps we have that set $\{y_m, y_{m-1}, \ldots, y_{m-n+1}\}$ spans V. But with $n < m$ we have $m - n > 0$ or $m - n > 1$ or $m - n + 1 > 2$. Since $y_1 \in V$, then implies that y_1 is a linear combination of y_2, y_3, \ldots, y_m , CONTRADICTING the linear independence of set Y. So the assumption $n < m$ is false, and hence $n > m$. We can now interchange the roles of finite bases X and Y to conclude that $m \ge n$. Therefore $n = n$ and $|X| = |Y|$, as claimed.

Theorem IV.2.13. Let W be a subspace of a vector space V over a division ring D.

\n- (i)
$$
\dim_D(W) \leq \dim_D(V)
$$
;
\n- (ii) if $\dim_D(W) = \dim_D(V)$ and $\dim_D(V)$ is finite, then $W = V$;
\n- (iii) $\dim_D(V) = \dim_D(W) + \dim_D(V/W)$.
\n

Proof. Let Y be a basis of W (which exists by Theorem IV.2.4).

(i) By Theorem IV.2.4, there is a basis of X of V containing Y. Since $Y \subset X$ then $\dim_D(X) = |Y| \le |X| = \dim_D(V)$, as claimed.

Theorem IV.2.13. Let W be a subspace of a vector space V over a division ring D.

\n- (i)
$$
\dim_D(W) \leq \dim_D(V)
$$
;
\n- (ii) if $\dim_D(W) = \dim_D(V)$ and $\dim_D(V)$ is finite, then $W = V$;
\n- (iii) $\dim_D(V) = \dim_D(W) + \dim_D(V/W)$.
\n

Proof. Let Y be a basis of W (which exists by Theorem IV.2.4).

(i) By Theorem IV.2.4, there is a basis of X of V containing Y. Since $Y \subset X$ then $\dim_D(X) = |Y| \le |X| = \dim_D(V)$, as claimed.

(ii) If $|Y| = |X|$ and N is finite then since $Y \subset X$ we must have $Y = X$, whence(!) $W = V$, as claimed.

Theorem IV.2.13. Let W be a subspace of a vector space V over a division ring D.

\n- (i)
$$
\dim_D(W) \leq \dim_D(V)
$$
;
\n- (ii) if $\dim_D(W) = \dim_D(V)$ and $\dim_D(V)$ is finite, then $W = V$;
\n- (iii) $\dim_D(V) = \dim_D(W) + \dim_D(V/W)$.
\n

Proof. Let Y be a basis of W (which exists by Theorem IV.2.4).

(i) By Theorem IV.2.4, there is a basis of X of V containing Y. Since $Y \subset X$ then $\dim_D(X) = |Y| \le |X| = \dim_D(V)$, as claimed.

(ii) If $|Y| = |X|$ and N is finite then since $Y \subset X$ we must have $Y = X$, whence(!) $W = V$, as claimed.

Theorem IV.2.13 (continued 1)

Theorem IV.2.13. Let W be a subspace of a vector space V over a division ring D.

(iii) dim $_D(V) = \dim_D(W) + \dim_D(V/W)$.

Proof (continued). (iii) Notice W is a submodule of V and so by Theorem IV.1.6, V/W is also a module over D (and since D is an integral domain, then V/W is a vector space). We will show that $U = \{x + W \mid x \in X \setminus Y\}$ is a basis of V/W . If $v \in V$ then, because X is a basis, $v=\sum_i r_i y_i + \sum_j s_j x_j$ where $r_i,s_j\in D,$ $y_i\in Y,$ and $x_j\in X\setminus Y.$ Then

$$
v + W = \left(\sum_{i} r_{i}y_{i} + \sum_{j} s_{j}x_{j}\right) + W
$$

= $\left(\sum_{j} s_{j}x_{j}\right) + W$ since $y_{i} \in Y \subset W$ so that $\sum_{i} r_{i}y_{i} \in W$

Theorem IV.2.13 (continued 1)

Theorem IV.2.13. Let W be a subspace of a vector space V over a division ring D.

(iii) dim $_D(V) = \dim_D(W) + \dim_D(V/W)$.

Proof (continued). (iii) Notice W is a submodule of V and so by Theorem IV.1.6, V/W is also a module over D (and since D is an integral domain, then V/W is a vector space). We will show that $U = \{x + W \mid x \in X \setminus Y\}$ is a basis of V/W . If $v \in V$ then, because X is a basis, $v=\sum_i r_i y_i + \sum_j s_j x_j$ where $r_i,s_j\in D,$ $y_i\in Y,$ and $x_j\in X\setminus Y.$ Then

$$
v + W = \left(\sum_{i} r_i y_i + \sum_{j} s_j x_j\right) + W
$$

= $\left(\sum_{j} s_j x_j\right) + W$ since $y_i \in Y \subset W$ so that $\sum_{i} r_i y_i \in W$

Theorem IV.2.13 (continued 2)

Proof (continued). ...

$$
v + W = \sum_j s_j(x_j + W)
$$
 by Theorem IV.1.6.

 $\sum_{J} r_j(x_j + W) = 0$ where $r_j \in D$ and $x_j \in X \setminus Y$, then Since $x_i \in X \setminus Y$ then $U = \{x + W \mid x \in X \setminus Y\}$ spans V/W . If $0=\sum_j r_j({\mathsf x}_j +{\mathsf W})=\left(\sum_j r_j {\mathsf x}_j\right)+{\mathsf W}$ so that $\sum_j r_j {\mathsf x}_j\in {\mathsf W}$ (since ${\mathsf W}$ is the $\sum_j r_j x_j = \sum_k s_k y_k$ where $s_k \in D$ and $y_k \in Y$. But $X = Y \cup (X \setminus Y)$ is **additive identity in** V/W **).** Since Y is a basis for W, then linearly independent and we have two representations of the same element of V, a contradiction to Note IV.2.B, unless each $r_i = 0$ (and each $s_k = 0$). Therefore $U = \{x + W \mid x \in X \setminus Y\}$ and we have $|U| = |X \setminus Y|$. By Definition 0.8.3,

 $\dim_D(V) = |X| = |Y| + |X \setminus Y| = |Y| + |U| = \dim_D(W) + \dim_D(V/W)$,

as claimed.

Theorem IV.2.13 (continued 2)

Proof (continued). ...

$$
v + W = \sum_j s_j(x_j + W)
$$
 by Theorem IV.1.6.

 $\sum_{J} r_j(x_j + W) = 0$ where $r_j \in D$ and $x_j \in X \setminus Y$, then Since $x_i \in X \setminus Y$ then $U = \{x + W \mid x \in X \setminus Y\}$ spans V/W . If $0=\sum_j r_j({\mathsf x}_j +{\mathsf W})=\left(\sum_j r_j {\mathsf x}_j\right)+{\mathsf W}$ so that $\sum_j r_j {\mathsf x}_j\in {\mathsf W}$ (since ${\mathsf W}$ is the $\sum_j r_j x_j = \sum_k s_k y_k$ where $s_k \in D$ and $y_k \in Y$. But $X = Y \cup (X \setminus Y)$ is additive identity in V/W). Since Y is a basis for W, then linearly independent and we have two representations of the same element of V, a contradiction to Note IV.2.B, unless each $r_i = 0$ (and each $s_k = 0$). Therefore $U = \{x + W \mid x \in X \setminus Y\}$ and we have $|U| = |X \setminus Y|$. By Definition 0.8.3,

 $\dim_D(V) = |X| = |Y| + |X \setminus Y| = |Y| + |U| = \dim_D(W) + \dim_D(V/W)$, as claimed.

Corollary IV.2.14. If $f: V \to V'$ is a linear transformation of vector spaces over a division ring D, then there exists a basis X of V such that $X \cap \text{Ker}(f)$ is a basis of $\text{Ker}(f)$ and $\{f(x) \mid f(x) \neq 0, x \in X\}$ is a basis of $\text{Im}(f)$. In particular, $\dim_D(f) = \dim_D(\text{Ker}(f)) + \dim_D(\text{Im}(f)).$

Proof. By Example IV.1.B, $Ker(f)$ is a submodule of V (and, since D is a division ring, a subspace of V). Let $W = \text{Ker}(f)$ let Y be a basis of W (which exists by Theorem IV.2.4) and let X be a basis of V containing Y (which exists by Theorem IV.2.4). Then $X \cap \text{Ker}(f) = Y$ is a basis of $Ker(f)$, as claimed.

Corollary IV.2.14. If $f: V \to V'$ is a linear transformation of vector spaces over a division ring D , then there exists a basis X of V such that $X \cap \text{Ker}(f)$ is a basis of $\text{Ker}(f)$ and $\{f(x) \mid f(x) \neq 0, x \in X\}$ is a basis of $\text{Im}(f)$. In particular, $\dim_D(f) = \dim_D(\text{Ker}(f)) + \dim_D(\text{Im}(f)).$

Proof. By Example IV.1.B, $Ker(f)$ is a submodule of V (and, since D is a division ring, a subspace of V). Let $W = \text{Ker}(f)$ let Y be a basis of W (which exists by Theorem IV.2.4) and let X be a basis of V containing Y (which exists by Theorem IV.2.4). Then $X \cap \text{Ker}(f) = Y$ is a basis of $Ker(f)$, as claimed. By Theorem IV.1.7 (the "in particular" part), $\text{Im}(f) \cong V/W$. As shown in the proof of Theorem IV.2.13,

$$
U = \{x + W \mid x \in X \setminus Y\} = \{x + W \mid x \in X \setminus \text{Ker}(f)\}
$$

 $=\{x + W \mid x \in X, f(x) \neq 0\}$

is a basis of V/W .

Corollary IV.2.14. If $f: V \to V'$ is a linear transformation of vector spaces over a division ring D, then there exists a basis X of V such that $X \cap \text{Ker}(f)$ is a basis of $\text{Ker}(f)$ and $\{f(x) \mid f(x) \neq 0, x \in X\}$ is a basis of $\text{Im}(f)$. In particular, $\dim_D(f) = \dim_D(\text{Ker}(f)) + \dim_D(\text{Im}(f)).$

Proof. By Example IV.1.B, $Ker(f)$ is a submodule of V (and, since D is a division ring, a subspace of V). Let $W = \text{Ker}(f)$ let Y be a basis of W (which exists by Theorem IV.2.4) and let X be a basis of V containing Y (which exists by Theorem IV.2.4). Then $X \cap \text{Ker}(f) = Y$ is a basis of Ker(f), as claimed. By Theorem IV.1.7 (the "in particular" part), $\text{Im}(f) \cong V/W$. As shown in the proof of Theorem IV.2.13,

$$
U = \{x + W \mid x \in X \setminus Y\} = \{x + W \mid x \in X \setminus \text{Ker}(f)\}
$$

$$
= \{x+W \mid x \in X, f(x) \neq 0\}
$$

is a basis of V/W .

Corollary IV.2.14 (continued)

Corollary IV.2.14. If $f: V \to V'$ is a linear transformation of vector spaces over a division ring D, then there exists a basis X of V such that $X \cap \text{Ker}(f)$ is a basis of $\text{Ker}(f)$ and $\{f(x) \mid f(x) \neq 0, x \in X\}$ is a basis of $\text{Im}(f)$. In particular, $\dim_D(f) = \dim_D(\text{Ker}(f)) + \dim_D(\text{Im}(f)).$

Proof (continued). Also by Theorem IV.1.7, there is a unique D-module isomorphism $\bar{f}:V/W\to \mathsf{Im}(f)$ such that

$$
\bar{f}(U) = \{ \bar{f}(x + W) \mid x \in X, f(x) \neq 0 \} = \{ f(x) \mid f(x) \neq 0 \} \subset \text{Im}(f) \subset V'.
$$

Since \bar{f} is an isomorphism and U is a basis of V/W then $\bar{f}(U) = \{f(x) \mid f(x) \neq 0\}$ is a basis for $\text{Im}(f)$, as claimed.

Also, since $V/W \cong \text{Im}(r)$ then dim $_{\text{C}}(V/W) = \text{dim}_{\text{D}}(\text{Im}(f))$. By Theorem $IV.2.13(iii)$, dim $_D(V) = \dim_D(W) + \dim_D(V/W)$ or $\dim_D(V) = \dim_D(Ker(f)) + \dim_D(\text{Im}(f))$, as claimed.

Corollary IV.2.14 (continued)

Corollary IV.2.14. If $f: V \to V'$ is a linear transformation of vector spaces over a division ring D, then there exists a basis X of V such that $X \cap \text{Ker}(f)$ is a basis of $\text{Ker}(f)$ and $\{f(x) \mid f(x) \neq 0, x \in X\}$ is a basis of $\text{Im}(f)$. In particular, $\dim_D(f) = \dim_D(\text{Ker}(f)) + \dim_D(\text{Im}(f)).$

Proof (continued). Also by Theorem IV.1.7, there is a unique D-module isomorphism $\bar{f}:V/W\to \mathsf{Im}(f)$ such that

$$
\bar{f}(U) = \{ \bar{f}(x + W) \mid x \in X, f(x) \neq 0 \} = \{ f(x) \mid f(x) \neq 0 \} \subset \text{Im}(f) \subset V'.
$$

Since \bar{f} is an isomorphism and U is a basis of V/W then $\bar{f}(U) = \{f(x) \mid f(x) \neq 0\}$ is a basis for $\text{Im}(f)$, as claimed.

Also, since $V/W \cong Im(r)$ then dim $c(V/W) = dim_D(Im(f))$. By Theorem $IV.2.13(iii)$, dim_D $(V) = \dim_D(W) + \dim_D(V/W)$ or $\dim_D(V) = \dim_D(\text{Ker}(f)) + \dim_D(\text{Im}(f))$, as claimed.

Corollary IV.2.15. If V and W are finite dimensional subspaces of a vector space over a division ring D , then $\dim_D(V) + \dim_D(W) = \dim_D(V \cap W) + \dim_D(V + W)$.

Proof. First, the intersection $V \cap W$ is a submodule (see Definition IV.1.4), and the sum $V + W$ is defined in [Section IV.1. Modules,](https://faculty.etsu.edu/gardnerr/5410/notes/IV-1.pdf) [Homomorphisms, and Exact Sequences](https://faculty.etsu.edu/gardnerr/5410/notes/IV-1.pdf) as the submodule generated by $V \cap W$. All of these are modules over integral domain D, and so are vector spaces. Let X be a finite basis of $V \cap W$, Y a finite basis of V that contains X, and Z be a (finite) basis of W that contains X (each of these bases exist by Theorem IV.2.4).

Corollary IV.2.15. If V and W are finite dimensional subspaces of a vector space over a division ring D , then $\dim_D(V) + \dim_D(W) = \dim_D(V \cap W) + \dim_D(V + W)$.

Proof. First, the intersection $V \cap W$ is a submodule (see Definition IV.1.4), and the sum $V + W$ is defined in [Section IV.1. Modules,](https://faculty.etsu.edu/gardnerr/5410/notes/IV-1.pdf) [Homomorphisms, and Exact Sequences](https://faculty.etsu.edu/gardnerr/5410/notes/IV-1.pdf) as the submodule generated by $V \cap W$. All of these are modules over integral domain D, and so are vector spaces. Let X be a finite basis of $V \cap W$, Y a finite basis of V that contains X , and Z be a (finite) basis of W that contains X (each of these bases exist by Theorem IV.2.4).

We now show that $Y \cup Z = X \cup (Y \setminus X) \cup (Z \setminus X)$ is a basis of $V + W$. By Theorem IV.1.5(iv), $V + W$ consists of all elements of the form $v + w$ where $v \in V$ and $w \in W$.

Corollary IV.2.15. If V and W are finite dimensional subspaces of a vector space over a division ring D , then $\dim_D(V) + \dim_D(W) = \dim_D(V \cap W) + \dim_D(V + W)$.

Proof. First, the intersection $V \cap W$ is a submodule (see Definition IV.1.4), and the sum $V + W$ is defined in [Section IV.1. Modules,](https://faculty.etsu.edu/gardnerr/5410/notes/IV-1.pdf) [Homomorphisms, and Exact Sequences](https://faculty.etsu.edu/gardnerr/5410/notes/IV-1.pdf) as the submodule generated by $V \cap W$. All of these are modules over integral domain D, and so are vector spaces. Let X be a finite basis of $V \cap W$, Y a finite basis of V that contains X, and Z be a (finite) basis of W that contains X (each of these bases exist by Theorem IV.2.4).

We now show that $Y \cup Z = X \cup (Y \setminus X) \cup (Z \setminus X)$ is a basis of $V + W$. By Theorem IV.1.5(iv), $V + W$ consists of all elements of the form $v + w$ where $v \in V$ and $w \in W$.

Corollary IV.2.15 (continued 1)

Proof (continued). Since Y is a basis for V then $v = r_1v_1 + r_2v_2 + \cdots + r_nv_n$ for some $r_i \in D$ and $v_i \in V$; since Z is a basis of W then $z = s_1w_1 + s_2w_2 + \cdots + s_mw_m$ for some $s_i \in D$ and $w_i \in W$. Now $Y \subset X \cup (Y \setminus X) \cup (Z \setminus X)$ and $Z \subset X \cup (Y \setminus X) \cup (Z \setminus X)$, so $v + w$ is in the span of $X \cup (Y \setminus X) \cup (Z \setminus X)$ where $x_i \in X$, $u_i \in Y \setminus X$, and $z_i \in Z \setminus X$, and suppose

$$
(r_1x_1 + r_2x_2 + \cdots + r_jx_j) + (s_1y_1 + s_2 + \cdots + s_ky_k) + (t_1z_1 + t_2z_2 + \cdots + t_{\ell}z_{\ell}) = 0.
$$
 (*)

Then

 $u = (r_1x_1+r_2x_2+\cdots+r_ix_i)+(s_1y_1+s_2+\cdots+s_kv_k) = -(t_1z_1+t_2z_2+\cdots+t_1z_k).$

But then $u = -(t_1z_1 + t_2z_2 + \cdots + t_{\ell}z_{\ell}) \in W$ since $\{z_1, z_2, \ldots, z_{\ell}\} \subset Z$ and $u = (r_1x_1 + r_2x_2 + \cdots + r_ix_i) + (s_1y_1 + s_2 + \cdots + s_ky_k) \in V$ since $\{x_1, x_2, \ldots, x_j, y_1, y_2, \ldots, y_k\} \subset Y$ and hence vector u is in $V \cap W$.

Corollary IV.2.15 (continued 1)

Proof (continued). Since Y is a basis for V then $v = r_1v_1 + r_2v_2 + \cdots + r_nv_n$ for some $r_i \in D$ and $v_i \in V$; since Z is a basis of W then $z = s_1w_1 + s_2w_2 + \cdots + s_mw_m$ for some $s_i \in D$ and $w_i \in W$. Now $Y \subset X \cup (Y \setminus X) \cup (Z \setminus X)$ and $Z \subset X \cup (Y \setminus X) \cup (Z \setminus X)$, so $v + w$ is in the span of $X \cup (Y \setminus X) \cup (Z \setminus X)$ where $x_i \in X$, $u_i \in Y \setminus X$, and $z_i \in Z \setminus X$, and suppose

$$
(r_1x_1 + r_2x_2 + \cdots + r_jx_j) + (s_1y_1 + s_2 + \cdots + s_ky_k) + (t_1z_1 + t_2z_2 + \cdots + t_{\ell}z_{\ell}) = 0.
$$
 (*)

Then

$$
u=(r_1x_1+r_2x_2+\cdots+r_jx_j)+(s_1y_1+s_2+\cdots+s_ky_k)=-(t_1z_1+t_2z_2+\cdots+t_{\ell}z_{\ell}).
$$

But then $u = -(t_1z_1 + t_2z_2 + \cdots + t_{\ell}z_{\ell}) \in W$ since $\{z_1, z_2, \ldots, z_{\ell}\} \subset Z$ and $u = (r_1x_1 + r_2x_2 + \cdots + r_ix_i) + (s_1y_1 + s_2 + \cdots + s_ky_k) \in V$ since $\{x_1, x_2, \ldots, x_j, y_1, y_2, \ldots, y_k\} \subset Y$ and hence vector u is in $V \cap W$.

Corollary IV.2.15 (continued 2)

Corollary IV.2.15. If V and W are finite dimensional subspaces of a vector space over a division ring D , then $\dim_D(V) + \dim_D(W) = \dim_D(V \cap W) + \dim_D(V + W)$.

Proof (continued). So μ has a unique representation as a linear combination of elements of X (by Note IV.2.B). Also, since $Y = X \cup (Y \setminus X)$ is a basis of V then u can be written as a unique linear combination of elements of Y. But $X \subset Y$ so we must have $s_1 = s_2 = \cdots = s_k = 0$ above. Similarly, we must have $t_1 = t_2 = \cdots = t_\ell = 0$ above. So from $(*)$, we have $r_1x_1 + r_2x_2 + \cdots + r_ix_i = 0$ and, since X is a linearly independent set, we must have $r_1 = r_2 = \cdots = r_i = 0$. Therefore $X \cup (Y \setminus X) \cup (Z \setminus X)$ is linearly independent. That is, it is a basis for $V + W$, as claimed.
Corollary IV.2.15 (continued 3)

Corollary IV.2.15. If V and W are finite dimensional subspaces of a vector space over a division ring D , then $\dim_D(V) + \dim_D(W) = \dim_D(V \cap W) + \dim_D(V + W).$

Proof (continued). Therefore

$$
\dim_D(V + W) = |X \cup (Y \setminus X) \cup (Z \setminus X)| = |X| + |Y \setminus X| + |Z \setminus X|
$$

= |X| + (|Y| - |X|) + (|Z| - |X|) = |Y| + |Z| - |X|
= \dim_D(V) + \dim_D(W) - \dim_D(V \cap W),

or dim_D(V) + dim_D(W) = dim_D(V ∩ W) + dim_D(V + W), as claimed.

Theorem IV 2.16

Theorem IV.2.16. Let R, S, T be division rings such that $R \subseteq S \subseteq T$. Then dim_R(T) = (dim_S(T))(dim_R(S)). Furthermore, dim_R(T) is finite if and only if dim_S(T) and dim_R(S) are finite.

Proof. Let U be a basis of T over S, and let V be a basis of S over R. Consider the set $B = \{vu \mid v \in V, u \in U\}$. We'll show that B is a basis of T over R.

Theorem IV.2.16

Theorem IV.2.16. Let R, S, T be division rings such that $R \subset S \subset T$. Then dim_R(T) = (dim_S(T))(dim_R(S)). Furthermore, dim_R(T) is finite if and only if dim_S (T) and dim_R (S) are finite.

Proof. Let U be a basis of T over S, and let V be a basis of S over R. Consider the set $B = \{vu \mid v \in V, u \in U\}$. We'll show that B is a basis of T over R.

If $u \in \mathcal{T}$ then $u = \sum_{i=1}^{n} s_i u_i$ for some $s_i \in \mathcal{S}$ and some $u_i \in U$, since U is a basis of T as a vector space over S. Since S is a vector space over R with basis V then each s_i can be written in the form $s_i = \sum_{j=1}^{m_i} r_{ij} v_j$ for some $r_{ii} \in R$ and $v_i \in V$. Then

$$
u = \sum_{i=1}^n s_i u_i = \sum_{i=1}^n \left(\sum_{j=1}^{m_i} r_{ij} v_j \right) u_i = \sum_{i=1}^n \sum_{j=1}^{m_i} r_{ij} (v_j u_i).
$$

Theorem IV.2.16

Theorem IV.2.16. Let R, S, T be division rings such that $R \subseteq S \subseteq T$. Then dim_R(T) = (dim_S(T))(dim_R(S)). Furthermore, dim_R(T) is finite if and only if dim_S(T) and dim_R(S) are finite.

Proof. Let U be a basis of T over S, and let V be a basis of S over R. Consider the set $B = \{vu \mid v \in V, u \in U\}$. We'll show that B is a basis of T over R.

If $u \in \mathcal{T}$ then $u = \sum_{i=1}^{n} s_i u_i$ for some $s_i \in \mathcal{S}$ and some $u_i \in U$, since U is a basis of T as a vector space over S. Since S is a vector space over R with basis V then each s_i can be written in the form $s_i = \sum_{j=1}^{m_i} r_{ij} v_j$ for some $r_{ii} \in R$ and $v_i \in V$. Then

$$
u = \sum_{i=1}^n s_i u_i = \sum_{i=1}^n \left(\sum_{j=1}^{m_i} r_{ij} v_j \right) u_i = \sum_{i=1}^n \sum_{j=1}^{m_i} r_{ij} (v_j u_i).
$$

Theorem IV.2.16 (continued 1)

Proof (continued). So u is written as a linear combination of elements of $B - \{vu \mid v \in D, u \in U\}$ with coefficients from R. Since u is an arbitrary element of T, then B spans T as a vector space over R.

Now suppose

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij}(v_j u_i) = 0 \text{ for } r_{ij} \in R, v_j \in V, \text{ and } u_i \in U. \qquad (*)
$$

For each i let $s_i = \sum_{j=1}^m r_{ij} v_j \in S$. Then

$$
0 = \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij}(v_j u_i) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} r_{ij} v_j \right) u_i = \sum_{i=1}^{n} s_i u_i.
$$

Since U is a linearly independent set over S, then $s_i = 0$ for $1 \le i \le n$. So $s_i = \sum_{j=1}^m r_{ij} v_i = 0$ and the linear independence of V over R implies that $r_{ii} = 0$ for $1 \le i \le n$ and $1 \le j \le m$.

Theorem IV.2.16 (continued 1)

Proof (continued). So u is written as a linear combination of elements of $B - \{vu \mid v \in D, u \in U\}$ with coefficients from R. Since u is an arbitrary element of T, then B spans T as a vector space over R.

Now suppose

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij}(v_j u_i) = 0 \text{ for } r_{ij} \in R, v_j \in V, \text{ and } u_i \in U. \qquad (*)
$$

For each i let $s_i = \sum_{j=1}^m r_{ij} v_j \in S$. Then

$$
0 = \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij}(v_j u_i) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} r_{ij} v_j \right) u_i = \sum_{i=1}^{n} s_i u_i.
$$

Since U is a linearly independent set over S, then $s_i = 0$ for $1 \le i \le n$. So $\mathsf{s}_i = \sum_{j=1}^m r_{ij} \mathsf{v}_i = 0$ and the linear independence of V over R implies that $r_{ii} = 0$ for $1 \le i \le n$ and $1 \le j \le m$.

Theorem IV.2.16 (continued 2)

Theorem IV.2.16. Let R, S, T be division rings such that $R \subseteq S \subseteq T$. Then dim_R(T) = (dim_S(T))(dim_R(S)). Furthermore, dim_R(T) is finite if and only if dim_S (T) and dim_R (S) are finite.

Proof (continued). So from $(*)$ we have that B is a linearly independent set over R. Therefore $B = \{vu \mid v \in V, u \in U\}$ is a basis of T over R.

Next, the elements vu of B are all distinct since U is a linearly independent set over S and $V \subset S$. So dim_R $(T) = |B| = |U||V| = \dim_S (T)$ dim_R (S) , as claimed. If both dim_S (T) and dim_R (S) are finite then, of course, $\dim_B(S)$ is finite. If either dim_S (T) or $\dim_B(S)$ is infinite then, by Theorem $0/8/11$, dim_R(T) is infinite, as claimed.

Theorem IV.2.16 (continued 2)

Theorem IV.2.16. Let R, S, T be division rings such that $R \subseteq S \subseteq T$. Then dim_R(T) = (dim_S(T))(dim_R(S)). Furthermore, dim_R(T) is finite if and only if dim_S (T) and dim_R (S) are finite.

Proof (continued). So from $(*)$ we have that B is a linearly independent set over R. Therefore $B = \{vu \mid v \in V, u \in U\}$ is a basis of T over R.

Next, the elements vu of B are all distinct since U is a linearly independent set over S and $V \subset S$. So dim_R $(T) = |B| = |U||V| = \dim_S(T)$ dim_R (S) , as claimed. If both dim_S (T) and dim_R (S) are finite then, of course, $\dim_B(S)$ is finite. If either $\dim_S(T)$ or $\dim_B(S)$ is infinite then, by Theorem $0/8/11$, dim_R(T) is infinite, as claimed.

Exercise IV.2.6(b)

Exercise IV.2.6(b). There is no field K such that $\mathbb{R} \subsetneq K \subsetneq \mathbb{C}$.

Proof. ASSUME field K satisfies $\mathbb{R} \subset K \subset \mathbb{C}$. With $R = \mathbb{R}$, $S = F$, and $T = \mathbb{C}$ in Theorem V.2.6 (notice that R and \mathbb{C} are both division of rings) we have dim $_{\mathbb{R}}(\mathbb{C}) = \dim_{\mathbb{F}}(\mathbb{C})$ dim $_{\mathbb{R}}(F)$. So $2 = \dim_{\mathbb{F}}(\mathbb{C})$ dim $_{\mathbb{R}}(F)$ and either dim $_F(\mathbb{C}) = 1$ or dim $_{\mathbb{R}}(F) = 1$.

Exercise IV.2.6(b)

Exercise IV.2.6(b). There is no field K such that $\mathbb{R} \subsetneq K \subsetneq \mathbb{C}$.

Proof. ASSUME field K satisfies $\mathbb{R} \subseteq K \subseteq \mathbb{C}$. With $R = \mathbb{R}$, $S = F$, and $T = \mathbb{C}$ in Theorem V.2.6 (notice that $\mathbb R$ and $\mathbb C$ are both division of rings) we have dim $_{\mathbb{R}}(\mathbb{C}) = \dim_F(\mathbb{C}) \dim_{\mathbb{R}}(F)$. So $2 = \dim_F(\mathbb{C}) \dim_{\mathbb{R}}(F)$ and either dim $_F(\mathbb{C}) = 1$ or dim $_{\mathbb{R}}(F) = 1$.

If dim_F(\mathbb{C}) = 1, then by Theorem V.2.13(ii) with $D = W = F$ and $V = \mathbb{C}$ we have dim_F $(F) = \dim_F(\mathbb{C}) = 1$ so that $F = \mathbb{C}$, a CONTRADICTION. Similarly, if dim $_{\mathbb{R}}(F) = 1$ then, again, by Theorem V.2.13(ii) with $D = W = \mathbb{R}$ and $V = F$ we have $\dim_{\mathbb{R}}(\mathbb{R}) = \dim_{\mathbb{R}}(F) = 1$ so that $F = \mathbb{R}$, a CONTRADICTION. Therefore, no field F exists such that $\mathbb{R} \subset K \subset \mathbb{C}$, as claimed.

Exercise IV.2.6(b). There is no field K such that $\mathbb{R} \subsetneq K \subsetneq \mathbb{C}$.

Proof. ASSUME field K satisfies $\mathbb{R} \subset K \subset \mathbb{C}$. With $R = \mathbb{R}$, $S = F$, and $T = \mathbb{C}$ in Theorem V.2.6 (notice that \mathbb{R} and \mathbb{C} are both division of rings) we have dim $_{\mathbb{R}}(\mathbb{C}) = \dim_F(\mathbb{C}) \dim_{\mathbb{R}}(F)$. So $2 = \dim_F(\mathbb{C}) \dim_{\mathbb{R}}(F)$ and either dim $_F(\mathbb{C}) = 1$ or dim $_{\mathbb{R}}(F) = 1$.

If dim_F(\mathbb{C}) = 1, then by Theorem V.2.13(ii) with $D = W = F$ and $V = \mathbb{C}$ we have dim_F $(F) = \dim_F(\mathbb{C}) = 1$ so that $F = \mathbb{C}$, a CONTRADICTION. Similarly, if dim $_{\mathbb{R}}(F) = 1$ then, again, by Theorem V.2.13(ii) with $D = W = \mathbb{R}$ and $V = F$ we have $\dim_{\mathbb{R}}(\mathbb{R}) = \dim_{\mathbb{R}}(F) = 1$ so that $F = \mathbb{R}$, a CONTRADICTION. Therefore, no field F exists such that $\mathbb{R} \subsetneq K \subsetneq \mathbb{C}$, as claimed.

Lemma IV₂₁₀

Lemma IV.2.10. Let R be a ring with identity, $I \neq R$ an ideal of R, F a free R-module with basis X and $\pi : F \to F/I$ the canonical epimorphism. Then F/I F is a free R/I -module with basis $\pi(X)$ and $|\pi(X)| = |X|$.

Proof. Recall that $IF = \{ \sum_{i=1}^{n} r_i a_i \mid r_i \in I, a_i \in F, n \in \mathbb{N} \}$ by Theorem IV.1.5, and the action of R/I on F/I is given by $(r + 1)(a + 1F) = ra + 1F$ by Exercise IV.1.3(b). If $u + 1F \in F/1F$ then $u = \sum_{j=1}^n r_j x_j$ for some $r_j \in R$ and $x_j \in X$ since $u \in F$ and X is a basis of F by hypothesis. Consequently,

$$
u + lF = \left(\sum_{j=1}^{n} r_j x_j\right) + lF
$$
 (*)
= $\sum_{j=1}^{n} (r_j x_j + lF)$ by the definition of addition
in the additive quotient group

L emma IV 2.10

Lemma IV.2.10. Let R be a ring with identity, $I \neq R$ an ideal of R, F a free R-module with basis X and $\pi : F \to F/I$ the canonical epimorphism. Then F/I F is a free R/I -module with basis $\pi(X)$ and $|\pi(X)| = |X|$.

Proof. Recall that $IF = \{ \sum_{i=1}^{n} r_i a_i \mid r_i \in I, a_i \in F, n \in \mathbb{N} \}$ by Theorem IV.1.5, and the action of R/I on F/I F is given by $(r + 1)(a + 1F) = ra + 1F$ by Exercise IV.1.3(b). If $u + 1F \in F/1F$ then $u = \sum_{j=1}^n r_j x_j$ for some $r_j \in R$ and $x_j \in X$ since $u \in F$ and X is a basis of F by hypothesis. Consequently,

$$
u + I F = \left(\sum_{j=1}^{n} r_j x_j\right) + I F
$$
 (*)
=
$$
\sum_{j=1}^{n} (r_j x_j + I F)
$$
 by the definition of addition

in the additive quotient group

Lemma IV.2.10 (continued 1)

Proof (continued). ...

$$
u + lF = \sum_{j=1}^{n} (r_j + l)(x_j + lF)
$$
 by Exercise IV.1.3(b)
=
$$
\sum_{j=1}^{n} (r_j + l)\pi(x_j)
$$
 by the definition of π .

Since u is an arbitrary element of F/IF , then $\pi(X)$ generates F/IF as an R/I -module (so that the coefficients are cosets of *I* in *R*). On the other hand, if $\sum_{k=1}^{m} (r_k + I)\pi(x_k) = 0$ for some $r_k \in R$ and distinct x_1, x_2, \ldots, x_m in X, then

$$
0 = \sum_{k=1}^{m} (r_k + l)\pi(x_k) = \sum_{k=1}^{m} (r_k + l)(x_k + F)
$$
 by the definition of π
= $\sum_{k=1}^{m} (r_k x_k + lF)$ by Exercise IV.1.3(b)

Lemma IV.2.10 (continued 1)

Proof (continued). ...

$$
u + lF = \sum_{j=1}^{n} (r_j + l)(x_j + lF)
$$
 by Exercise IV.1.3(b)
=
$$
\sum_{j=1}^{n} (r_j + l)\pi(x_j)
$$
 by the definition of π .

Since u is an arbitrary element of F/IF , then $\pi(X)$ generates F/IF as an R/I -module (so that the coefficients are cosets of I in R). On the other hand, if $\sum_{k=1}^m (r_k + I)\pi(x_k) = 0$ for some $r_k \in R$ and distinct x_1, x_2, \ldots, x_m in X, then

$$
0 = \sum_{k=1}^{m} (r_k + l)\pi(x_k) = \sum_{k=1}^{m} (r_k + l)(x_k + F)
$$
 by the definition of π
= $\sum_{k=1}^{m} (r_k x_k + lF)$ by Exercise IV.1.3(b)

Lemma IV.2.10 (continued 2)

Proof (continued). ...

 $0 = \left(\sum_{m=1}^{m} \right)$ $k=1$ $r_k x_k$ \setminus $+$ IF by the definition of addition

in the additive quotient group.

Since IF is the additive identity in F/IF then we have $\sum_{k=1}^{m} r_k x_k \in IF$. Then $\sum_{k=1}^m r_k x_k = \sum_j s_j u_j$ for some $s_i \in I$ and $u_j \in F$ by Theorem IV.1.5, as mentioned above. Since X is a basis for \digamma and $u_j \in \digamma$, then each u_j is a linear combination of elements of X with coefficients from R. Since $s_i \in I$ where I is an ideal of R, then the coefficients from R multiplied by s_i give another element of I (by the definition of "ideal," Definition III.2.1). So $\sum_{k=1}^m r_k x_k = \sum_j s_j u_j = \sum_{t=1}^d c_t y_t$ for some $c_y \in I \subset R$ and $t_t \in X.$ Since the x_k and y_t are all from X, and X is a linearly independent set (over R) then ("after reindexing and inserting $0x_k$ and $0y_t$ if necessary," as Hungerford says on page 186) then we can take $m = d$, $x_k = y_k$, and $r_k = c_k \in I$ for every k.

Lemma IV.2.10 (continued 2)

Proof (continued). ...

 $0 = \left(\sum_{m=1}^{m} \right)$ $k=1$ $r_k x_k$ \setminus $+$ IF by the definition of addition

in the additive quotient group.

Since IF is the additive identity in F/IF then we have $\sum_{k=1}^{m} r_k x_k \in IF$. Then $\sum_{k=1}^m r_k x_k = \sum_j s_j u_j$ for some $s_i \in I$ and $u_j \in F$ by Theorem IV.1.5, as mentioned above. Since X is a basis for \digamma and $u_j \in \digamma$, then each u_j is a linear combination of elements of X with coefficients from R. Since $s_i \in I$ where I is an ideal of R, then the coefficients from R multiplied by s_i give another element of I (by the definition of "ideal," Definition III.2.1). So $\sum_{k=1}^m r_k x_k = \sum_j s_j u_j = \sum_{t=1}^d c_t y_t$ for some $c_y \in I \subset R$ and $t_t \in X.$ Since the x_k and y_t are all from X, and X is a linearly independent set (over R) then ("after reindexing and inserting $0x_k$ and $0y_t$ if necessary," as Hungerford says on page 186) then we can take $m = d$, $x_k = y_k$, and $r_k = c_k \in I$ for every k.

Lemma IV.2.10 (continued 3)

Proof (continued). Hence $r_k + l = 0$ (since $r_k \in l$) in R/I for every k. Therefore in the equation $0 = \sum_{k=1}^m (r_k + I) \pi({\mathsf x}_k)$ we must have $r_k + I = 0$ (in R/I). Therefore $\pi(X)$ is a linearly independent set over R/I . We now have that $\pi(X)$ is a linearly independent generating set of F/IF over R/I. That is, $\pi(X)$ is a basis of F/IF over R/I. hence F/IF is a free R/I -module by Theorem IV.2.1(i), as claimed.

Finally, for the cardinality claim. We know the canonical epimorphism restricted to basis $X, \pi : X \to \pi(X)$ is surjective. Let $x, x' \in X$ with $\pi(x) = \pi(x')$ in F/IF . Then $(1_R + I)\pi(x) = \pi(x) + I$ and $(1_R + I)\pi(x') = \pi(x') + I$. So $(1_r + I)\pi(x) - (1_r + I)|pi(x') = 0$ in F.IF. If $x \neq x'$ then the same argument as given above in $(*)$ (where it is shown that $r_k \in I$) implies that $1_R \in I$. But then $I = R$, contradicting the hypothesis that $I \neq R$. Therefore $x = x'$ and $\pi : X \to \pi(X)$ is injective. That is, $\pi : X \to \pi(X)$ is a bijection and hence $|X| = |\pi(X)|$, as claimed.

Lemma IV.2.10 (continued 3)

Proof (continued). Hence $r_k + l = 0$ (since $r_k \in l$) in R/I for every k. Therefore in the equation $0 = \sum_{k=1}^m (r_k + I) \pi({\mathsf x}_k)$ we must have $r_k + I = 0$ (in R/I). Therefore $\pi(X)$ is a linearly independent set over R/I . We now have that $\pi(X)$ is a linearly independent generating set of F/IF over R/I. That is, $\pi(X)$ is a basis of F/IF over R/I. hence F/IF is a free R/I -module by Theorem IV.2.1(i), as claimed.

Finally, for the cardinality claim. We know the canonical epimorphism restricted to basis $X, \pi : X \to \pi(X)$ is surjective. Let $x, x' \in X$ with $\pi(x) = \pi(x')$ in F/H . Then $(1_R + I)\pi(x) = \pi(x) + I$ and $(1_R + I)\pi(x') = \pi(x') + I$. So $(1_r + I)\pi(x) - (1_r + I)|pi(x') = 0$ in F.IF. If $x \neq x'$ then the same argument as given above in $(*)$ (where it is shown that $r_k \in I$) implies that $1_R \in I$. But then $I = R$, contradicting the hypothesis that $I \neq R$. Therefore $x = x'$ and $\pi : X \to \pi(X)$ is injective. That is, $\pi : X \to \pi(X)$ is a bijection and hence $|X| = |\pi(X)|$, as claimed. П

Proposition IV.2.11

Proposition IV.2.11. Let $f : R \rightarrow S$ be a nonzero epimorphism of rings with identity. If S has the invariant dimension property, then so does R .

Proof. Let $I = \text{Ker}(f)$. Then by the First Isomorphism Theorem (for rings; Corollary III.2.10) $S \cong R/I$. Let F be a free R-module with X as a basis. Also let Y be a basis of F and let $\pi : F \to F/H$ be the canonical epimorphism. By Lemma IV.2.10, $F/I\overline{F}$ is a free R/I -module (and hence is a free S-module... well, up to isomprophism) with bases $\pi(X)$ and $\pi(Y)$, where $|X| = |\pi(X)|$ and $|Y| = |\pi(Y)|$. Since S has the invariant property then $|\pi(X)| = |\pi(Y)|$ and hence $|X| = |Y|$. That is, R has the invariant dimension property also, as claimed.

Proposition IV.2.11

Proposition IV.2.11. Let $f : R \rightarrow S$ be a nonzero epimorphism of rings with identity. If S has the invariant dimension property, then so does R .

Proof. Let $I = \text{Ker}(f)$. Then by the First Isomorphism Theorem (for rings; Corollary III.2.10) $S \cong R/I$. Let F be a free R-module with X as a basis. Also let Y be a basis of F and let $\pi : F \to F/H$ be the canonical epimorphism. By Lemma IV.2.10, F/I F is a free R/I -module (and hence is a free S-module... well, up to isomprophism) with bases $\pi(X)$ and $\pi(Y)$, where $|X| = |\pi(X)|$ and $|Y| = |\pi(Y)|$. Since S has the invariant property then $|\pi(X)| = |\pi(Y)|$ and hence $|X| = |Y|$. That is, R has the invariant dimension property also, as claimed.

Corollary IV.2.12

Corollary IV.2.12. If R is a ring with identity that has a homomorphic image which is a division ring, then R has the invariant dimension property. In particular, every commutative ring with identity has the invariant dimension property.

Proof. Suppose homomorphism $f: R \to S'$ where $S - \text{Im}(f)$ is a division ring. Then S is an epimorphic image of f. If V is a free S-module, then V is a vector space. Then S has the invariant dimension property by Theorem IV.2.7. Now by Proposition IV.2.11, R also has the invariant dimension property, as claimed.

Corollary IV.2.12

Corollary IV.2.12. If R is a ring with identity that has a homomorphic image which is a division ring, then R has the invariant dimension property. In particular, every commutative ring with identity has the invariant dimension property.

Proof. Suppose homomorphism $f: R \to S'$ where $S - \text{Im}(f)$ is a division ring. Then S is an epimorphic image of f. If V is a free S-module, then V is a vector space. Then S has the invariant dimension property by Theorem IV.2.7. Now by Proposition IV.2.11, R also has the invariant dimension property, as claimed.

If R is a commutative ring with identity, then R contains a maximal ideal M by Theorem III.2.18. Then by Theorem III2.20, R/M is a field. Since a filed is a commutative division ring, then we have that R has the invariant dimension property by the first part of the proof (we can take the homomorphism as the identity in this case, so that R is the homomorphic image of itself), as claimed.

Corollary IV.2.12

Corollary IV.2.12. If R is a ring with identity that has a homomorphic image which is a division ring, then R has the invariant dimension property. In particular, every commutative ring with identity has the invariant dimension property.

Proof. Suppose homomorphism $f: R \to S'$ where $S - \text{Im}(f)$ is a division ring. Then S is an epimorphic image of f. If V is a free S-module, then V is a vector space. Then S has the invariant dimension property by Theorem IV.2.7. Now by Proposition IV.2.11, R also has the invariant dimension property, as claimed.

If R is a commutative ring with identity, then R contains a maximal ideal M by Theorem III.2.18. Then by Theorem III2.20, R/M is a field. Since a filed is a commutative division ring, then we have that R has the invariant dimension property by the first part of the proof (we can take the homomorphism as the identity in this case, so that R is the homomorphic image of itself), as claimed.