Modern Algebra

Chapter IV. Modules IV.7. Algebras—Proofs of Theorems (partial)

Table of contents

Theorem IV.7.A

Theorem IV.7.A. If A is a K-algebra and ring A has an identity, then a (left, right, two-sided) ideal of ring A is also a (left, right, two-sided, respectively) algebra ideal of K-algebra A.

Proof. Let J be a left (respectively, right) ideal of ring A. Then J is a subring of A and so J inherits properties (i) and (ii) of the definition of K-algebra (Definition IV.7.1). We just need to verify the left (right) closure $kj \in J$ ($jk \in J$) for all $k \in K$ and $j \in J$.

Theorem IV.7.A

Theorem IV.7.A. If A is a K-algebra and ring A has an identity, then a (left, right, two-sided) ideal of ring A is also a (left, right, two-sided, respectively) algebra ideal of K-algebra A.

Proof. Let *J* be a left (respectively, right) ideal of ring *A*. Then *J* is a subring of *A* and so *J* inherits properties (i) and (ii) of the definition of *K*-algebra (Definition IV.7.1). We just need to verify the left (right) closure $kj \in J$ ($jk \in J$) for all $k \in K$ and $j \in J$. Since *A* has identity, say 1_A , then for all $k \in K$ and $a \in A$ we have $ka = k(1_A a) = (k1_A)a$ by Definition IV.7.1(ii), and similarly $ak = (a1_A)k = a(1_Ak)$. Notice $k1_A \in A$ (respectively, $1_Ak \in A$) since (*A*, +) is a left (respectively, right) *K*-module. Consequently for $k \in K$ and *J* a left ideal,

$$kJ = k(1_A J) = (k1_A)J$$
 by Definition IV.7.1(ii)
 $\subset J$ since $k1_A \in A$ and J is a left ideal of A .

Theorem IV.7.A

Theorem IV.7.A. If A is a K-algebra and ring A has an identity, then a (left, right, two-sided) ideal of ring A is also a (left, right, two-sided, respectively) algebra ideal of K-algebra A.

Proof. Let *J* be a left (respectively, right) ideal of ring *A*. Then *J* is a subring of *A* and so *J* inherits properties (i) and (ii) of the definition of *K*-algebra (Definition IV.7.1). We just need to verify the left (right) closure $kj \in J$ ($jk \in J$) for all $k \in K$ and $j \in J$. Since *A* has identity, say 1_A , then for all $k \in K$ and $a \in A$ we have $ka = k(1_A a) = (k1_A)a$ by Definition IV.7.1(ii), and similarly $ak = (a1_A)k = a(1_Ak)$. Notice $k1_A \in A$ (respectively, $1_Ak \in A$) since (*A*, +) is a left (respectively, right) *K*-module. Consequently for $k \in K$ and *J* a left ideal,

$$kJ = k(1_A J) = (k1_A)J$$
 by Definition IV.7.1(ii)
 $\subset J$ since $k1_A \in A$ and J is a left ideal of A .

Theorem IV.7.A (continued)

Theorem IV.7.A. If A is a K-algebra and ring A has an identity, then a (left, right, two-sided) ideal of ring A is also a (left, right, two-sided, respectively) algebra ideal of K-algebra A.

Proof (continued). Similarly when J is a right ideal,

$$Jk = (J1_A)k = J(1_Ak)$$
 by Definition IV.7.1(ii)
 $\subset J$ since $1_Ak \in A$ and J is a right ideal of A .

Therefore, J is a left (respectively, right) algebra ideal of K-module A (and, of course, if J is a two-sided ideal of ring A then J is a two-sided algebra ideal of K-module A).