Lemma IX.1.A

Modern Algebra J

Chapter IX. The Structure of Rings
IX.1. Simple and Primitive Rings—Proofs of Theorems

Lemma IX.1.A. Every simple module A is cyclic. In fact, A= Ra for
every nonzero a € A.

Proof. First, Ra is a submodule of A by Theorem IV.1.5(i). Consider

B ={ce A| Rc=1{0}}. Notice that ci,c2 € B implies

R(ci — @) =Rc; — R, ={0} — {0} = {0}, soc1 —cx € Band Bis a
subgroup of A (by Theorem 1.2.5). By Definition IV.1.3, “submodule,” B
is a submodule of A (i.e., a sub-R-module of A). Since A is simple, then
Ra is either {0} of A and similarly for B. Also, since A is simple, then by
Definition IX.1.1, RA # {0}; but RB = {0} and we must have B # A.
This implies that B = {0} and so Ra = {0} only when a = 0. So for all

a € A where a # 0 we must have Ra = A, as claimed. Now the cyclic
submodule of A generated by a consists of {ra+ na|r € Rmb € Z} by
Theorem IV.1.5(ii). But Ra = A and so Ra includes all of

{ra+na|r € Rmb € Z} and hence R-module A is cyclic and generated by
a. [
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Lemma IX.1.B. Let A = Ra be a cyclic R-module. Define # : R — A as
O(r) = ra. Then R/Ker(#) (and hence A) has no proper submodules if and
only if Ker(#) is a maximal left ideal of R.

Proof. Define § : R — A as 0(r) = ra. By Theorem IV.1.5(i), 6 is an
R-module epimorphism (onto homomorphism). The kernel of 8 is its
kernel as a homomorphism of abelian groups (by definition, see Section
IV.1) and so the kernel of # determines a subgroup of the additive abelian
group of R by Exercise 1.2.9(a). For b € Ker(6) and r € R we have

rb € Ker(0) since 6(rb) = (rb)a = r(ba) = rf(b) = r0 = 0. So by
Definition 1V.1.3, | = Ker() is a submodule of A. By the First
Isomorphism Theorem (Theorem 1V.1.7), R/l = R/Ker(f) = A. By
Theorem 1V.1.10, every submodule of R/! is of the form J/I, where J is a
left ideal of R that contains / = Ker(#). So module R/Ker(#) = R/l (and
hence A since R/l = A) has no proper submodules if and only if / = Ker is
a maximal left ideal of R. O
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Theorem 1X.1.3. A left module A over ring R is simple if and only if A is
isomorphic to R/l for some regular maximal left ideal /. This holds also if
we replace “left” with “right.”

Proof. Suppose A is simple. Then by Note IX.1.A, A= Ra= R/l where
U is some maximal left ideal. Since A = Ra then a = ea for some e € R.
So for any r € R, ra=req or (r — re)a = 0, whence r — re € Ker(6) = |
where 6 : R — A is the epimorphism of Lemma 1X.1.B defined as

O(r) = ra. Therefore [ is regular.

Suppose [ is a regular maximal left ideal of R such that A= R// is of the
form J/I where J is a left ideal of R that contains /. So module R/ = A
has no proper submodules since / is a maximal left ideal. So to show that
A= R/l is simple we need to show that RA = R(R/I) # {0}.
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Theorem [X.1.3 (continued)

Theorem 1X.1.3. A left module A over ring R is simple if and only if A is
isomorphic to R/l for some regular maximal left ideal /. This holds also if
we replace “left” with “right.”

Proof (continued). ASSUME R(R/I) = {0}. Then for all r € R,
r(e+1) € R(R/I), where r — re € | by the regularity of /, and so

r(e + 1) =/ (the identity in R/I), or re+ 1 =1 or re € I. Since

r—rec |/, then r €/ and so R = /. But this CONTRADICTS the
definition maximal ideal (we need / # R; see Definition 111.2.7 of maximal
ideal). So the assumption that R(R//) = {0} is false and we must have
RA = R(R/1) # {0}. Therefore by Definition IX.1.1, A is simple. O
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Proposition IX.1.6

Proposition 1X.1.6. A simple ring R with identity is primitive.

Proof. By Theorem 111.2.18, R contains a maximal left ideal /. Since R
has an identity then ideal / is regular (use e = 1g in Definition 1X.1.2,
“regular ideal”). Whence left R-module R/ is (isomorphic to) a simple
R-module by Theorem IX.1.3. Now the annihilator A(R//) is a (left) ideal
of R by Theorem 1X.1.4. Since R is simple by hypothesis, then A(R/I)
must be either {0} or R. Since / is a maximal ideal in R then | # R (see
Definition 111.2.17 of maximal ideal) and so R// # {0}. So 1g cannot be
in A(R/1); that is, A(R/!) # R. Hence it must be that A(R//) = {0}.
Therefore, left R-module R// is faithful and ring R is primitive by
Definition 1X.1.5. O
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Theorem 1X.1.4

Theorem I1X.1.4

Theorem 1X.1.4. Let B be a subset of a left module A over a ring R.
Then A(B) ={re R|rb=0forall b € B} is a left ideal of R. If B'is a
submodule of A, then A(B) is an (two sided) ideal.

Proof. Let r € R and s € A(B). Then sb =0 for all b € B and so
(rs)b=r(sb) =r0=0forall be B; ie., rs € A(B). So A(B) is a left
ideal of R.

Suppose B is a submodule of A. If r € R and s € A(B), then for every

b € B we have (sr)b = s(rb) = s0 = 0 since rb € B because B is a
submodule of A (see Definition IV.1.3). Consequently sr € A(B) and so
A(B) is also a right ideal and hence a (two sided) ideal. O
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Proposition IX.1.7

Proposition 1X.1.7. A commutative ring R is primitive if and only if R is
a field.

Proof. Suppose R is a field. Then R is a division ring and by the first
example in this section of class notes, R is simple. Since a field has an
identity, then by Proposition IX.1.6, R is primitive.

Suppose R is a commutative primitive ring. By Definition 1X.1.5, this
means there is a simple faithful (left) R-module A; that is, simple
R-module A satisfies A(A) = {0}. By Theorem IX.1.3, A= R// for some
regular maximal left ideal /. Since R is commutative then / is a (two
sided) ideal. Also I C A(R/I) = A(A) = {0}, so we must have / = {0}.
Since | = {0} is regular, by Definition IX.1.2 there is e € R such that
r—re=r—ercl,orr=re=erforallre R. Thatis, e =1g is an
identity for R. Since / = {0} is maximal by Corollary 111.2.21 (the (iii)
implies (i) part), R is a field. O
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Lemma IX.1.C

Lemma IX.1.C/Example. For V a vector space over a division ring D,
the endomorphism ring Homp(V, V) is a dense subring of itself.

Proof. Let n € N, {uy, up, ..., u,} be a linearly independent subset of V,
and {vi,va,...,v,} C V. By Theorem IV.2.4 there is a basis U of V that
contains uy, up, . .., u,. Define the map 6 : V — V by 0(u;) = v; for
i=1,2,....,nand O(u) =0 for u € U\ {v1,u2,...,un}. By Theorem
IV.2.4, V is a free D-module. By Theorem 1V.2.1(iv), 0 is a
homomorphism (see the proof of (i) implies (iv)). That is,

6 € Homp(V, V) and so Homp(V, V) is a dense subring of itself by
Definition 1V.1.8. 1

Theorem 1X.1.9

Theorem 1X.1.9 (continued)
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Proof (continued). But then /; D h D --- is a “properly descending”
chain and so R cannot be left Artinian, a CONTRADICTION. So the
assumption that dimp(V/) is finite is false. Hence if R is Artinian then
dimp(V) is finite.

Suppose dimp(V) is finite. Then V has a finite basis {vi, vo, ..., vy} If f
is any element of homp(V, V) then f is completely determines by its
action on vy, va, ..., Vny. Since R is dense then, by Definition 1X.1.8, there
exists # € R such that 6(v;) = f(v;) for i =1,2,..., m. Whence

f =6 € R and so Homp(V, V) € R. But dense ring of endomorphisms R
is a subring of Homp(V/, V) (see Definition 1X.1.8 again), so Homp(V, V)
is isomorphic to the ring of all n X n matrices with entries from D. By
Corollary VII1.1.12, Mat,(D) is Artinian. Therefore, since R is a subring of
Homp(V, V) then R is Artinian. O
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Theorem 1X.1.9

Theorem 1X.1.9

Theorem 1X.1.9. Let R be a dense ring of endomorphisms of a vector
space V over a division ring D. Then R is left (respectively, right)
Artinian if and only if dimp(V) is finite, in which case R = Homp(V/, V).

Proof. Let R be Artinian. ASSUME dimp(V) is infinite. Then there
exists an infinite linearly independent subset {u1, up, ...} of V. By
Exercise IV.1.7(c), V is a left Homp(V/, V)-module; since R is a subring
of Homp(V, V) (by Definition IX.1.8, “dense ring of endomorphisms”)
then V is also a left R-module (see Definition IV.1., “R-module”). For
each n € N let I, be the left annihilator in R of the set {u1, up,...,u,}.
Then L D I D --- is a descending chain of left ideal. Let w be any
nonzero element of V. Since {uy, up, ..., ust1} is linearly independent for
each n € N and R is dense, then (by Definition 1X.1.8, “sense ring of
endomorphisms”) there is § € R such that 0(u;) =0 for i =1,2,...,n
and O(upy1) = w # 0. Then 0 € I, (since 0 annihilates {u1, up, ..., us})
but 0 & lh+1. So I, D I,11 and I # Inta.
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Lemma [X.1.10 (Schur)

Lemma 1X.1.10 (Schur)

Lemma 1X.1.10. (Schur) Let A be a simple module over a ring R and let
B be any R-module.

(i) Every nonzero R-module homomorphism f: A— B is a
monomorphism (one to one);

(ii) every nonzero R-module homomorphism f : B — A is an
epimorphism (onto);

(iii) the endomorphism ring D = Homg(A, A) is a division ring.

Proof. (i) The kernel of f is its kernel as a homomorphism of abelian
groups (by definition, see Section IV.1) and so the kernel of f determines a
subgroup of the additive abelian group of R by Exercise 1.2.9(a). For

c € Ker(f) and r € R we have rc € Ker(f) since f(rc) = rf(c)=r0=0
(see Definition 1V.1.2, “R-module homomorphism™). So by Definition
IV.1.3, Ker(f) is a submodule of A. Since f is nonzero then Ker(f) # A.
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Lemma IX.1.10 (Schur) continued

Proof (continued). Since A is simple then it must be that Ker(f) = {0}
and so f is a monomorphism (one to one) by Theorem 1.2.3 (see also page
170 of Hungerford and the example in the class notes after Definition
IV.1.3), as claimed.

(ii) Im(g) is a submodule of A by Exercise 1.2.9(b) (see also the example in
the class notes after Definition IV.1.3). Since g is nonzero, Im(g) # {0}.
So Im(g) is a nonzero submodule of A and since A is simple it must be
that Im(f) = A. That is, g is an epimorphism (onto), as claimed.

(iii) We use parts (i) and (ii). Let j € D = Homg(A, A) with h # 0. By
(i), h is onto to ne (injective) and by (ii) f is onto (surjective), so h is an
isomorphism. By Theorem 1.2.3(ii) (see also page 170 of Hungerford) h
has a two-sided inverse h~! € Homg(A, A) = D. Since h is an arbitrary
nonzero element of D, then D is a division ring. ]
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Lemma 1X.1.11 (continued 1)

Proof (continued). Since {u1, us,...,u,_1,u} is a basis then it is
linearly independent and so W N Du = {0} (notice that Du itself is a
vector space; it is the span of {u}). So V = W & Du by Theorem IV.1.5.
The left annihilator / = A(W) in R of W is a left ideal o fR by Theorem
IX.1.4. By Exercise 1V.1.3(a), /u is an R-submodule of A. Since

ue A\ W and dimp(W) = n — 1 then by the induction hypothesis there
is r € R such that ru # 0 and rW = {0} (thatis, r € | = A(W)). This
implies 0 # ru € lu is a nonzero R-submodule of A then A = fu. Notice
that the induction hypothesis has given us that: for u € A we have that
ug W (where dimp(W) = n— 1) implies there is r € | = A(W) such
that ru # 0. The contrapositive of this is that:

For v € A, if forall r € I = A(W) we have rv =0 then ve W.  (¥)

We must find r € R such that ra # 0 and rV = {0}. ASSUME no such r
exists. Then define 6 : A — A as follows. For ru € lu= A let
O(ru) = ra € A.
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Lemma IX.1.11

Lemma IX.1.11

Lemma 1X.1.11. Let A be a simple module over a ring R. Consider A as
a vector space over the division ring D = Homg(A, A). If V is a finite
dimensional D-subspace of the D-vector space A and a € A\ V, then
there exists r € R such that ra# 0 and rV = 0.

Proof. We give an induction proof on n = dimp(V).

Let n=0. Then V = {0} and so a € A\ V implies a # 0. Since A is
simple, then by Lemma IX.1.A, A= Ra. So there is some r € R such that
ra=a#0and rV =v{0} = {0}, and the claim holds for

n=dimp(V) =0.

Now suppose dimp(V) = n € N and that the theorem holds for
dimensions 0,1,...,n— 1. Let {u1, up,...,u,_1,u} be a D-basis of V
(which exists by Theorem 1V.2.4) and let W be the (n — 1)-dimensional
D-subspace W = span{uy, w2, ..., up—1} (with W = {0} if n=1).
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Lemma 1X.1.11 (continued 2)

Proof (continued). We claim that 6 is well-defined (that is, if nu = rou
for ri,m € I = A(W), then (rn — rn)u = 0, whence

(n—n)V =(n—n)(W e Du) = {0} (since elements of W & Du are
sums of elements of W, which r; — rp annihilates, and multiples of u of
the form du = d(u) for d € D = Homg(A, A) so that
(n—r)du=(rn—r)d(u)=d({(n—r)u)=d0)=0). By the
assumption (that no r exists such that ra # 0 and rV = {0}; but here we
have (rn — )V = {0}) we must have (r; — rn)a = 0. Therefore rja = ra
or na=0(ru) = 0(nu) = rna, and 0 is well-defined. Let a;, a; € A.
Since A = lu then there is r, r» € | such that ay = nu and a = nu. So

O(a1+a2) = 0(rnu+nu) =0((n+r)u) = (n+n)a=natra=~0(rnu)+6(r
Also, for r' € R and a € A= lu (so that a = ru for some r € I) we have
0(r'a) = 0(r'(ru)) = 0((r'r)u) = (r'r)a=r'(ra) = r'O(ru) = r'6(a).
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Lemma 1X.1.11 (continued 3) Theorem [X.1.12. Jacobson Density Theorem

Theorem 1X.1.12. Jacobson Density Theorem.

Proof (continued). Therefore 6 is an R-module homomorphism mapping Let R be a primitive ring and A a faithful simple R-module. consider A as

A — A (by Definition IV.1.2); that is, § € Homg(A, A) = D. Then for a vector space over the division ring homg(A,A) = D. Then R is
every r € | T ' ’ ’ isomorphic to a dense ring of endomorphisms of the D-vector space A.

Proof. For each r € R the map «, : A — A given by «,(A) =rais a
D-endomorphism of A (for aj, ay € A we have

ar(a; + a2) = r(a1 + a2) = ra; + rax = a,(a1) + a,(a2) and for a € A and
6 € D = Homg(A, A) we have

0=ra—ra=0(ru) —ra=rf(u) — ra=r(6(u) — a).

So by (%), 0(u) —a=60u—aec W and a— 60u € W. Notice that
Ou = 6(u) € Du since 8 € D = Homg(A, A). Consequently

a=(a—0u)+0uec W Du= V. But this isa CONTRADICTION to ar(fa) = ar(0(a)) = ro(a)

the fact that a € A\ V. So the assumption that no such r exists is false, = 0(ra) since 6 € Homg(A, A)
and hence there exists r € R such that ra # 0 and rV = {0}. That is, the — 0(ar(a))

result holds for dimp(V) = n and so holds for all n € NU {0} by e

induction. [ so by Definition I1V.1.2 a, is a homomorphism). That is,

a, € Homp(A, A). Furthermore, for all r,s € R we have a,4s = a, + s
and s = a,as.
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Theorem [X.1.12. Jacobson Density Theorem (continued Theorem [X.1.12. Jacobson Density Theorem (continued
1) 2)

Proof (continued). Consequently, the map o : R — Homp(A, A) defined Proof (continued). Applying Lemm:a IX.1.11 to D-subspace V = {0} of

. . . . . . A and nonzero riu; € A\ V, there exists s; € R such that s;rju; # 0 and
by a(r) = «, is a homomorphism of rings. Since A is a faithful R-module : ) _
(that is, A(A) = {0}), a, = 0 € Homp(A, A) if an only if r € A(A) = {0}. si0 = 0. Since il Uj # 0, the R-submodule Rr;u; of A is nonzero. But A is
So Ker(a) = {0} and a is a monomorphism (one to one; by Theorem simple (by the definition of “primitive ring” R), so it must be that

1.2.3(i)). Whence R is isomorphic to the subring Im(a) of Homp(A, A). fiu’tlzi t-zl_r:e:_ef.".r.ejhterre zx';fs éiyedgir?ili(i::ntf;?t\;irwé :a\\;g flc?refl_lr;:j
= nn - o

Now we show that Im(«) is a dense subring of Homp(A, A). So given any that u; € V; and so for i # j we also have tjrju; € tj(r;Vj) = t;{0} = {0}

D-linearly independent subset U = {uy, Ua,...,un} of A and any subset (since r;V; = {0} by the choice of r; above). Consequently for each

{v1,va,...,vp} of A, we must find a, € Im(a) such that a,(u;) = v; for i=1,2,...,n we have

i=1,2,...,n Here we go. Foreachi=1,2,...,n, let V; be the

D-subspace of A spanned by {u1,uo,...,uj_1,Uj11,...Up}. Since U is ar(uj) = ruj = (tin + tar2 + -+ - + taly)uj = tirju; = v;.

D-linearly independent then u; € V;. Consequently (since A is simple by o ) ) ) ., )

Definition IX.1.5 of “primitive ring"), by Lemma IX.1.11 there exists S_O’ by Definition I?<'1'8' dense ring of endomorph.lsms, 'Im.(a) 15 a c.iense

r: € R such that rju; # 0 and r;V; = {0}. ring of endom(_)rph|sms.of the D—vecto_r space A. Since R is isomorphic to
Im(c) (under isomorphism «), the claim follows. O
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Corollary IX.1.13

Corollary 1X.1.13. If R is a primitive ring, then for some division ring D
either R is isomorphic to the endomorphism ring of a finite dimensional
vector space over D or for every m € N there is subring R, of R and an
epimorphism of rings mapping R, — Homp(Vp,, Vi) where V, is an
n-dimensional vector space over D.

Proof. In the notation of the Jacobson Density Theorem (Theorem
IX.1.12) with A as the faithful simple R-module and D = Homg(A, A), we
have a: R — Homp(A, A) is a monomorphism such that R = Im(«) and
Im(«) is dense in Homp(A, A). If dimp(A) = n is finite, then

Im(a) = Homp(A, A) by Theorem [X.1.9 (this also gives that Im(«) is left
Artinian). So the first conclusion holds.

If dimp(A) is infinite and {u1, up, ...} is an infinite linearly independent
set, then let V), be the m-dimensional D-subspace of A spanned by
{u1,up,...,un}. Define R, ={re R| rV, C Vy}.

Corollary 1X.1.13 (continued)

Corollary 1X.1.13. If R is a primitive ring, then for some division ring D
either R is isomorphic to the endomorphism ring of a finite dimensional
vector space over D or for every m € N there is subring R, of R and an
epimorphism of rings mapping R, — Homp(Vp,, Vi) where V, is an
n-dimensional vector space over D.

Proof (continued). If r,» € Ry, then (n 4+ n)Vn=nVn+nV, C Vy
since r1 Vi, and rpV,, are subset of V,, (and V), is closed under addition),
and (rnn)Vm = n(rnVns) C Vi since nVy, C Vi, and 1V, C Vi, So Ry,
is a subring of R. Define 8 : Ry, — Homp( Vi, Vin) as the restriction of «,
to Vit B(r) = arly,,- By Exercise IX.1.A, § is a well-defined ring

epimorphism and the second claim holds. O

Theorem 1X.1.14. The Wedderburn-Artin Theorem for
Simple Artinian Rings
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Theorem 1X.1.14. The Wedderburn-Artin Theorem for
Simple Artinian Rings (continued)
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Theorem 1X.1.14. The Wedderburn-Artin Theorem for Simple
Artinian Rings.
The following conditions on a left Artinian ring R are equivalent:
(i) R is simple;
(i) R is primitive;
(iii) R is isomorphic to the endomorphism ring of a nonzero finite
dimensional space V over a division ring D;

(iv) for some b € N, R is isomorphic to the ring of all n x n
matrices over a division ring.

Proof. (i)=(ii). Let | = {r € R| Rr ={0}}. Then / is the right
annihilator of R (treating ring R as an R-module) and since R is a
submodule of itself then / is an ideal of R by Theorem 1X.1.4. Since R is
hypothesized to be simple then either / = R or | = {0}.
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Proof (continued). Since R is a simple ring then (by Definition IX.1.1)
R? # {0} and we cannot have / = R (or else Rr = {0} for all r € R; that
is, R2 = {0}). Hence / = {0}. Since R is left Artinian by hypothesis, the
set of all nonzero left ideals of R contains a minimal left ideal J by
Theorem VIII.1.4. Now J has no proper R-submodules (notice that an
R-submodule of J would be a left ideal of R). We claim that annihilator
A(J) = {0} in R. ASSUME A(J) # {0}. By Theorem IX.1.4, the left
annihilator A(J) is a left ideal of R. Since R is simple then we must have
A(J) = R. Then Ru = 0 for every nonzero u € J. Consequently, each such
nonzero u is in / = {0}, a CONTRADICTION. Therefore A(J) = {0}.
Also RJ # {0} (or else A(J) = R # {0}). Thus J is a faithful simple
R-module and so by Definition IX.1.5, “primitive ring,” R is primitive.
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Theorem 1X.1.14. The Wedderburn-Artin Theorem for
Simple Artinian Rings (continued)

Proof (continued). (ii)=-(iii). Since R is primitive by hypothesis, then by
the Jacobson Density Theorem (Theorem [X.1.12) R is isomorphic to a
dense ring T of endomorphisms of a vector space V over a division ring D.
Since R is left Artinian by hypothesis then R = T = Homp(V, V) and
dimp(V) is finite, as claimed.

(iii)<(iv). By Theorem VII.1.4, Homp(V, V) is isomorphic to a ring of
n X n matrices with entries from a division ring.

(iv)=(i). Exercise 111.2.9(a) implies R has no proper ideals and so, by
Definition 1X.1.1, R is simple. ]

Lemma IX.1.16

Lemma 1X.1.16
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Lemma 1X.1.16. Let V be a nonzero vector space over a division ring D
and let R be the endomorphism ring Homp(V,V). If g: V — Vis a
homomorphism of additive groups such that gr = rg for all r € R, then
there exists d € D such that g(v) = dv for all v € V.

Proof. Let u be a nonzero element of V. We claim that v and g(u) are
linearly independent over D. If dimp(V) = 1 then this is trivial, so we now
consider the case dimp(V) > 2. ASSUME {i, g(u)} is linearly
independent. Since R is dense in itself by Lemma IX.1.C, then there is

r € R such that r(u) = ru=0 and r(g(u)) = rg(u) # 0. But by
hypothesis f(g(u)) = rg(u) = gr(u) = g(r(u)) = g(0) =0, a
CONTRADICTION to the fact that r(g(u)) # 0. So the assumption is
false and {u, g(u)} is linearly independent.
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Lemma IX.1.16 (continued)
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Lemma IX.1.15

Lemma I1X.1.15. Let V be a finite dimensional vector space over a
division ring D. If A and B are simple faithful modules over the
endomorphism ring R = Homp(V, V), then A and B are isomorphic
R-modules.

Proof. Since V is finite dimensional (say dimp(V) = n), by Theorem
VII.1.4 R = Homp(V, V) is isomorphic to a ring of n x n matrices over a
division ring. By Corollary VIII.1.12, R is Artinian (and so satisfies the
descending chain condition). Then by Theorem VIII.1.4, R contains a
(nonzero) minimal left ideal /. Since A is faithful then (by Definition
1X.1.5) the annihilator A(A) = {0}. So there exists a € A such that

la # {0}. By Exercise IV.1.3, la is a nonzero submodule of A. Since A is
simple, then la= A. Define @ : | — la= A as 0(i) = ia. Then 6 is a
nonzero R-module epimorphism; that is, 6 € Homg(A, A). By Lemma
IX.1.10, 8 is a monomorphism and epimorphism, and so is an isomorphism.

That is, A= /. Similarly, B= [ and so A= B. ]
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Lemma 1X.1.16. Let V be a nonzero vector space over a division ring D
and let R be the endomorphism ring Homp(V, V). If g: V — Vis a
homomorphism of additive groups such that gr = rg for all r € R, then
there exists d € D such that g(v) = dv for all v € V.

Proof (continued). Therefore for some d € D, g(u) = du. If v € V then
there exists s € R such that s(u) = su = v because R is dense in itself.
Consequently, since s € R = Homp(V, V), then

8(v) = g(s(v)) = gs(u) = sg(u) = s(du) = ds(u) = dv,

and since v is arbitrary, the claim holds.

O]
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Proposition 1X.1.17

Proposition 1X.1.17

Proposition 1X.1.17. Let V4 and V5 be vector spaces of finite dimension
n over the division rings D; and D,, respectively.
(i) If there is an isomorphism of rings
Hole(Vl, V2) = Hosz(Vz, Vg), then
dimp, (V1) = dimp,(V2) and D; is isomorphic to D;.
(i) If there is an isomorphism of rings Mat,, (D1) = Mat,,(D»),
then ny = ny and Ds is isomorphic to Ds.
Proof. (i) It is argued in the example after Definition 1X.1.5 that each V;
is a faithful Homp. (V;, Vi)-module for i = 1,2. Let R = Homp, (V1, V1)
and let o be the hypothesized isomorphism,
o :r=Homp, (Vi, V1) — Homp,(V>, V2). So V, is a faithful simple
R-module (or Homp, (Vi, V1)-module) by pullback along o; that is,
rv—o(r)vforre R,veV,. (%)

By Lemma 1X.1.15 (with A= V4 and B = V,) there is an R-module
isomorphism ¢ : Vi — V5.

Proposition IX.1.17 (continued 1)

Proof (continued). For each v € V; and f € R,

o(F(v)) = fo(v) = a(f)[e(v)] by (x). With x € V5 and v = o~ }(w) we
then have o(f(p~(w))) = o(f)v for each w € V; and f € R. That is,
@fp~! = o(f) and this is a homomorphism (not necessarily an
isomorphism since f € Homp, (V4, V1) is a homomorphism) of additive
groups Vo — V5. For each d € D;, let ag : V; — V; be the
homomorphism of additive groups defined by the mapping x — dx (for
i=1,2). Now ag = 0 if and only if d =0 (since dx = 0 for d # 0 implies
d=tdx = d710 or x = 0 since d is in a division ring). For

f € R=Homp,(Vi, V1) and d € Dy, we have for x € V; that

fag(x) = fdx = f(dx) = df (x) = agf(x), so fag = agf. Consequently,

(page ) (of) = page  (pfe™?) since pf o™ = o(f)
= poagfe !t = pfage ! since fag = agf

= 80f90_190ad‘10_1 = (Uf)(gpadgp_l) since gpf(,p_l = of.
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Proposition IX.1.17 (continued 3)
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Proposition 1X.1.17

Proposition IX.1.17 (continued 2)
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Proof (continued). Now g = pagp =1 : Vo — V5 is a homomorphism

and this last equation shows that g(of) = of)g for all ¢f for every

of € Homp,(V2, V1) (since o is surjective [onto; it is an isomorphism], of
for f € Homp, (V1, V4) includes all elements of Homp,(V)2, V2)). So by
Lemma IX.1.16 (with V = V4) implies that there exists d* € D, such that
g = pagp ! =ag-. Let 7: D — Dy be the map given by 7(d) = d*.
Then for every d € Dy, g = pagp™ = ag = Qr(q)- We now show that
7 : Dy — D, is an isomorphism. If d,d’ € D; then 7(d + d') = (d + d')*
where pag, gt = Q(d+d)<- As shown in the proof of Theorem 1X.1.12,
we have oyt g = ag + ag and so

padrare = lag + ag)e™t = page™ + pagp™t

= Qg* —+ a(dl)* = a(d—i—d’)*a
so that 7(d +d') = (d + d')* = d* + (d')*.
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Proof (continued). Similarly, as shown in the proof of Theorem 1X.1.12,
we have Qddr = gyt and so

Q(dd)» = poga et = pagage !t = (page ) (paget) = Qg* Y gr)>

so that 7(dd’") = 7(d)7(d"). So 7 is a ring homomorphism (by Definition
I11.1.7). Now suppose d # d’. then there is nonzero v € Vj such that

dvy # d'vy (or else dv; = d'vq for all vy € V4 and so (d — d')vy = 0 for all
vi € Vp;if d —d’ #0 € Dy then (d — d')~! exists since D, is a division
ring and so (d — d')"}(d — d’)vy = (d — d’)710 or v; = 0, a contradiction
to the choice of v1). So ay # ag because agvi = dvi # d'vi = agvy.
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Proposition IX.1.17 (continued 4)

Proof (continued). Now ¢ : V4 — Vo and o 1 : Vo — Vi are

isomorphisms (and so are surjective/onto and injective/one to one) so for
some v» € V5 we have ¢ lv, = v; and

-1
Qr(@)V2 = Pagp Va2 = Qagvi
#  pagrvy since @ is one to one

-1
= PQgp V2 = Qr(g)V2,

SO Q7 (d) 75 Qr(d’), OF Qgx 75 Q(dr)*- So

— —1 -1 _ :
Qg = PagP ™ F pagp™ " = qgry+. Since both ags and g+ also map
Vo — V3, this means for some v € V> we have ay«(v) # a(gn-(v) or
d*v # (d')*v. If d* = (d')* then d*v = (d’)*v and so we must have
d* # (d")*; thatis, 7(d) # 7(d’). Hence 7 is a monomorphism (one to
one and onto homomorphism).
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Proposition IX.1.17 (continued 6)

Proof (continued). Suppose sio(u1) + spo(u2) + - - - + sp(uk) = 0 for
$1,8,...,5¢ € Dy. Since 7 : Dy — D5 is an isomorphism, then there are
ri,r,...,rx € Dy such that 7(n) = s1,7(r) = sp,...,7(rk) = sk and so
T(r)e(u1) + 7(r2)p(u2) 4 - -+ 7(rc)p(uK) = 0, or by (),

o(nu) + e(ru) + - -+ p(rcuk) = 0, or since ¢ is a homomorphism,
o(ruy + rpuy + -+ 4 reup) = 0. Since @ is an isomorphism, it is injective
(one to one) and so riuy + rpup + -+ + reux = 0. Since A is linearly
independent, then = r» =--- = r, = 0. Since 7 is a homomorphism,

s1 =5 =--- =5, = 0. Similarly, since ¢=! and o1 are isomorphisms, if
B is linearly independent then A is linearly independent. So A is linearly
independent if and only if B is. Therefore A is a basis for Vi if and only if
B is a basis for V, and so dimp, (V1) = dimp,(V2), as claimed (recall that
V1 and V; are finite dimensional, by hypothesis).
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Proposition 1X.1.17 (continued 5)

Proof (continued). Reversing the roles of Dy and D, in the previous
argument (and replacing ¢ and o with ¢! and o™, respectively) yields

that for every d» € D, there exists d; € D; such that

o g = ag 1 Vi — Vi, whence o, = pag 07! = ). So

7(d1) = da and 7 is surjective/onto. Hence 7: Dy — D5 is an
isomorphism and so Dj is isomorphic to Dy, as claimed.

Furthermore, for every d € D; and v € Vi,

p(dv) = pag(v) = pagp e(v)
= Q- (g)p(v) since a (q) = pagp "
= 7(d)p(v) by definition of a,(q). (xx)
Consider the sets A = {uy, ua, ..., ux} and B = {p(u1), p(w2), ..., o(uk)}.
Suppose A is D;-linearly independent; then for ry, o, ..., re € D1 we have
that nuy + rpuy + -+ + rrue = 0 impliesthat n = =---=r, =0.
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Proposition IX.1.17 (continued 7)

Proof (continued). (ii) Suppose there is an isomorphism of rings

Matp, (D1) = Matp,(D2). By Theorem VII.1.4,
Homep(vh V1) = Mat,, ((D7P)°P) and

Hongp(VL V2) 2 Mat,, ((D5)°P). By Exercise 111.1.17(d),
(D;P)°P = Dy and (D3P)°P = Ds, so

HomDi)p(Vl, Vl) = Matnl(Dl) = Matn2(D2) = Hoszop(Vg, Vg)

By part (i), m = dim,0p(V4, V1) = dim ;0p(V2, V2) = 1z and D7P = D3P.
By Exercise 111.1.17(e), Dy = Dy, as claimed. O

September 19, 2018 37 /37

Modern Algebra



