Modern Algebra

Chapter IX. The Structure of Rings

IX.1. Simple and Primitive Rings—Proofs of Theorems

Table of contents

- [Lemma IX.1.A](#page-2-0) [Lemma IX.1.B](#page-6-0)
- [Theorem IX.1.3](#page-10-0)
- [Theorem IX.1.4](#page-16-0)
- [Proposition IX.1.6](#page-19-0)
- [Proposition IX.1.7](#page-22-0)
- [Lemma IX.1.C](#page-26-0)
- [Theorem IX.1.9](#page-29-0)
- [Lemma IX.1.10 \(Schur\)](#page-36-0)
- [Lemma IX.1.11](#page-41-0)
- [Theorem IX.1.12. Jacobson Density Theorem](#page-54-0)
- [Corollary IX.1.13](#page-61-0)
- 13 [Theorem IX.1.14. Wedderburn-Artin Theorem for Simple Artinian Rings](#page-65-0)
- Lemma $IX.1.15$
- [Lemma IX.1.16](#page-77-0)
- [Proposition IX.1.17](#page-81-0)

Lemma IX¹A

Lemma IX.1.A. Every simple module A is cyclic. In fact, $A = Ra$ for every nonzero $a \in A$.

Proof. First, Ra is a submodule of A by Theorem IV.1.5(i). Consider $B = \{c \in A \mid Rc = \{0\}\}\.$ Notice that $c_1, c_2 \in B$ implies $R(c_1 - c_2) = Rc_1 - Rc_2 = \{0\} - \{0\} = \{0\}$, so $c_1 - c_2 \in B$ and B is a subgroup of A (by Theorem I.2.5). By Definition IV.1.3, "submodule," B is a submodule of A (i.e., a sub- R -module of A).

Lemma IX¹A

Lemma IX.1.A. Every simple module A is cyclic. In fact, $A = Ra$ for every nonzero $a \in A$.

Proof. First, Ra is a submodule of A by Theorem IV.1.5(i). Consider $B = \{c \in A \mid Rc = \{0\}\}\.$ Notice that $c_1, c_2 \in B$ implies $R(c_1 - c_2) = Rc_1 - Rc_2 = \{0\} - \{0\} = \{0\}$, so $c_1 - c_2 \in B$ and B is a subgroup of A (by Theorem I.2.5). By Definition IV.1.3, "submodule," B is a submodule of A (i.e., a sub-R-module of A). Since A is simple, then Ra is either $\{0\}$ of A and similarly for B. Also, since A is simple, then by Definition IX.1.1, $RA \neq \{0\}$; but $RB = \{0\}$ and we must have $B \neq A$. This implies that $B = \{0\}$ and so $Ra = \{0\}$ only when $a = 0$. So for all $a \in A$ where $a \neq 0$ we must have $Ra = A$, as claimed.

Lemma IX.1.A

Lemma IX.1.A. Every simple module A is cyclic. In fact, $A = Ra$ for every nonzero $a \in A$.

Proof. First, Ra is a submodule of A by Theorem IV.1.5(i). Consider $B = \{c \in A \mid Rc = \{0\}\}\.$ Notice that $c_1, c_2 \in B$ implies $R(c_1 - c_2) = Rc_1 - Rc_2 = \{0\} - \{0\} = \{0\}$, so $c_1 - c_2 \in B$ and B is a subgroup of A (by Theorem I.2.5). By Definition IV.1.3, "submodule," B is a submodule of A (i.e., a sub-R-module of A). Since A is simple, then Ra is either $\{0\}$ of A and similarly for B. Also, since A is simple, then by Definition IX.1.1, $RA \neq \{0\}$; but $RB = \{0\}$ and we must have $B \neq A$. This implies that $B = \{0\}$ and so $Ra = \{0\}$ only when $a = 0$. So for all $a \in A$ where $a \neq 0$ we must have $Ra = A$, as claimed. Now the cyclic submodule of A generated by a consists of $\{ra + na \mid r \in Rmb \in \mathbb{Z}\}\$ by Theorem IV.1.5(ii). But $Ra = A$ and so Ra includes all of ${ra + na \mid r \in Rmb \in \mathbb{Z}}$ and hence R-module A is cyclic and generated by a.

Lemma IX.1.A

Lemma IX.1.A. Every simple module A is cyclic. In fact, $A = Ra$ for every nonzero $a \in A$.

Proof. First, Ra is a submodule of A by Theorem IV.1.5(i). Consider $B = \{c \in A \mid Rc = \{0\}\}\.$ Notice that $c_1, c_2 \in B$ implies $R(c_1 - c_2) = Rc_1 - Rc_2 = \{0\} - \{0\} = \{0\}$, so $c_1 - c_2 \in B$ and B is a subgroup of A (by Theorem I.2.5). By Definition IV.1.3, "submodule," B is a submodule of A (i.e., a sub-R-module of A). Since A is simple, then Ra is either $\{0\}$ of A and similarly for B. Also, since A is simple, then by Definition IX.1.1, $RA \neq \{0\}$; but $RB = \{0\}$ and we must have $B \neq A$. This implies that $B = \{0\}$ and so $Ra = \{0\}$ only when $a = 0$. So for all $a \in A$ where $a \neq 0$ we must have $Ra = A$, as claimed. Now the cyclic submodule of A generated by a consists of $\{ra + na \mid r \in Rmb \in \mathbb{Z}\}\$ by Theorem IV.1.5(ii). But $Ra = A$ and so Ra includes all of ${ra + na \mid r \in Rmb \in \mathbb{Z}}$ and hence R-module A is cyclic and generated by a.

Lemma IX.1.B. Let $A = Ra$ be a cyclic R-module. Define $\theta : R \to A$ as $\theta(r) = ra$. Then $R/Ker(\theta)$ (and hence A) has no proper submodules if and only if $\text{Ker}(\theta)$ is a maximal left ideal of R.

Proof. Define θ : $R \rightarrow A$ as $\theta(r) = ra$. By Theorem IV.1.5(i), θ is an R-module epimorphism (onto homomorphism). The kernel of θ is its kernel as a homomorphism of abelian groups (by definition, see Section IV.1) and so the kernel of θ determines a subgroup of the additive abelian group of R by Exercise $1.2.9(a)$.

Lemma IX.1.B. Let $A = Ra$ be a cyclic R-module. Define $\theta : R \to A$ as $\theta(r) = ra$. Then $R/Ker(\theta)$ (and hence A) has no proper submodules if and only if Ker(θ) is a maximal left ideal of R.

Proof. Define θ : $R \rightarrow A$ as $\theta(r) = ra$. By Theorem IV.1.5(i), θ is an R-module epimorphism (onto homomorphism). The kernel of θ is its kernel as a homomorphism of abelian groups (by definition, see Section IV.1) and so the kernel of θ determines a subgroup of the additive abelian **group of R by Exercise I.2.9(a).** For $b \in \text{Ker}(\theta)$ and $r \in R$ we have $rb \in \text{Ker}(\theta)$ since $\theta (rb) = (rb)a = r(ba) = r\theta(b) = r0 = 0$. So by Definition IV.1.3, $I = \text{Ker}(\theta)$ is a submodule of A. By the First Isomorphism Theorem (Theorem IV.1.7), $R/I = R/Ker(\theta) \cong A$.

Lemma IX.1.B. Let $A = Ra$ be a cyclic R-module. Define $\theta : R \to A$ as $\theta(r) = ra$. Then $R/Ker(\theta)$ (and hence A) has no proper submodules if and only if Ker(θ) is a maximal left ideal of R.

Proof. Define θ : $R \rightarrow A$ as $\theta(r) = ra$. By Theorem IV.1.5(i), θ is an R-module epimorphism (onto homomorphism). The kernel of θ is its kernel as a homomorphism of abelian groups (by definition, see Section IV.1) and so the kernel of θ determines a subgroup of the additive abelian group of R by Exercise I.2.9(a). For $b \in \text{Ker}(\theta)$ and $r \in R$ we have $rb \in \text{Ker}(\theta)$ since $\theta (rb) = (rb)a = r(ba) = r\theta(b) = r0 = 0$. So by Definition IV.1.3, $I = \text{Ker}(\theta)$ is a submodule of A. By the First Isomorphism Theorem (Theorem IV.1.7), $R/I = R/Ker(\theta) \cong A$. By Theorem IV.1.10, every submodule of R/I is of the form J/I , where J is a left ideal of R that contains $I = \text{Ker}(\theta)$. So module $R/\text{Ker}(\theta) = R/I$ (and hence A since $R/I \cong A$) has no proper submodules if and only if $I =$ Ker is a maximal left ideal of R.

Lemma IX.1.B. Let $A = Ra$ be a cyclic R-module. Define $\theta : R \to A$ as $\theta(r) = ra$. Then $R/Ker(\theta)$ (and hence A) has no proper submodules if and only if Ker(θ) is a maximal left ideal of R.

Proof. Define θ : $R \rightarrow A$ as $\theta(r) = ra$. By Theorem IV.1.5(i), θ is an R-module epimorphism (onto homomorphism). The kernel of θ is its kernel as a homomorphism of abelian groups (by definition, see Section IV.1) and so the kernel of θ determines a subgroup of the additive abelian group of R by Exercise I.2.9(a). For $b \in \text{Ker}(\theta)$ and $r \in R$ we have $rb \in \text{Ker}(\theta)$ since $\theta (rb) = (rb)a = r(ba) = r\theta(b) = r0 = 0$. So by Definition IV.1.3, $I = \text{Ker}(\theta)$ is a submodule of A. By the First Isomorphism Theorem (Theorem IV.1.7), $R/I = R/Ker(\theta) \cong A$. By Theorem IV.1.10, every submodule of R/I is of the form J/I , where J is a left ideal of R that contains $I = \text{Ker}(\theta)$. So module $R/\text{Ker}(\theta) = R/I$ (and hence A since $R/I \cong A$) has no proper submodules if and only if $I =$ Ker is a maximal left ideal of R.

Theorem IX.1.3. A left module A over ring R is simple if and only if A is isomorphic to R/I for some regular maximal left ideal I. This holds also if we replace "left" with "right."

Proof. Suppose A is simple. Then by Note IX.1.A, $A = Ra \cong R/I$ where U is some maximal left ideal. Since $A = Ra$ then $a = ea$ for some $e \in R$. So for any $r \in R$, $ra = req$ or $(r - re)a = 0$, whence $r - re \in \text{Ker}(\theta) = 1$ where $\theta : R \to A$ is the epimorphism of Lemma IX.1.B defined as $\theta(r) = ra$. Therefore *l* is regular.

Theorem IX.1.3. A left module A over ring R is simple if and only if A is isomorphic to R/I for some regular maximal left ideal I. This holds also if we replace "left" with "right."

Proof. Suppose A is simple. Then by Note IX.1.A, $A = Ra \cong R/I$ where U is some maximal left ideal. Since $A = Ra$ then $a = ea$ for some $e \in R$. So for any $r \in R$, $ra = req$ or $(r - re)a = 0$, whence $r - re \in \text{Ker}(\theta) = I$ where $\theta : R \to A$ is the epimorphism of Lemma IX.1.B defined as $\theta(r) = ra$. Therefore *l* is regular.

Suppose *I* is a regular maximal left ideal of R such that $A \cong R/I$ is of the form J/I where J is a left ideal of R that contains I. So module $R/I \cong A$ has no proper submodules since *I* is a maximal left ideal. So to show that $A \cong R/I$ is simple we need to show that $RA = R(R/I) \neq \{0\}.$

Theorem IX.1.3. A left module A over ring R is simple if and only if A is isomorphic to R/I for some regular maximal left ideal I. This holds also if we replace "left" with "right."

Proof. Suppose A is simple. Then by Note IX.1.A, $A = Ra \cong R/I$ where U is some maximal left ideal. Since $A = Ra$ then $a = ea$ for some $e \in R$. So for any $r \in R$, $ra = req$ or $(r - re)a = 0$, whence $r - re \in \text{Ker}(\theta) = I$ where $\theta : R \to A$ is the epimorphism of Lemma IX.1.B defined as $\theta(r) = ra$. Therefore *l* is regular.

Suppose I is a regular maximal left ideal of R such that $A \cong R/I$ is of the form J/I where J is a left ideal of R that contains I. So module $R/I \cong A$ has no proper submodules since *I* is a maximal left ideal. So to show that $A \cong R/I$ is simple we need to show that $RA = R(R/I) \neq \{0\}.$

Theorem IX.1.3 (continued)

Theorem IX.1.3. A left module A over ring R is simple if and only if A is isomorphic to R/I for some regular maximal left ideal I. This holds also if we replace "left" with "right."

Proof (continued). ASSUME $R(R/I) = \{0\}$. Then for all $r \in R$, $r(e + 1) \in R(R/I)$, where $r - re \in I$ by the regularity of I, and so $r(e + 1) = I$ (the identity in R/I), or $re + I = I$ or $re \in I$. Since $r - re \in I$, then $r \in I$ and so $R = I$. But this CONTRADICTS the definition maximal ideal (we need $I \neq R$; see Definition III.2.7 of maximal ideal).

Theorem IX.1.3 (continued)

Theorem IX.1.3. A left module A over ring R is simple if and only if A is isomorphic to R/I for some regular maximal left ideal I. This holds also if we replace "left" with "right."

Proof (continued). ASSUME $R(R/I) = \{0\}$. Then for all $r \in R$, $r(e + I) \in R(R/I)$, where $r - re \in I$ by the regularity of I, and so $r(e + 1) = I$ (the identity in R/I), or $re + I = I$ or $re \in I$. Since $r - re \in I$, then $r \in I$ and so $R = I$. But this CONTRADICTS the definition maximal ideal (we need $I \neq R$; see Definition III.2.7 of maximal **ideal).** So the assumption that $R(R/I) = \{0\}$ is false and we must have $RA = R(R/I) \neq \{0\}$. Therefore by Definition IX.1.1, A is simple.

Theorem IX.1.3 (continued)

Theorem IX.1.3. A left module A over ring R is simple if and only if A is isomorphic to R/I for some regular maximal left ideal I. This holds also if we replace "left" with "right."

Proof (continued). ASSUME $R(R/I) = \{0\}$. Then for all $r \in R$, $r(e + I) \in R(R/I)$, where $r - re \in I$ by the regularity of I, and so $r(e + 1) = I$ (the identity in R/I), or $re + I = I$ or $re \in I$. Since $r - re \in I$, then $r \in I$ and so $R = I$. But this CONTRADICTS the definition maximal ideal (we need $I \neq R$; see Definition III.2.7 of maximal ideal). So the assumption that $R(R/I) = \{0\}$ is false and we must have $RA = R(R/I) \neq \{0\}$. Therefore by Definition IX.1.1, A is simple.

Theorem IX 14

Theorem IX.1.4. Let B be a subset of a left module A over a ring R. Then $A(B) = \{r \in R \mid rb = 0 \text{ for all } b \in B\}$ is a left ideal of R. If B is a submodule of A, then $A(B)$ is an (two sided) ideal.

Proof. Let $r \in R$ and $s \in A(B)$. Then $sb = 0$ for all $b \in B$ and so $(rs)b = r(sb) = r0 = 0$ for all $b \in B$; i.e., $rs \in \mathcal{A}(B)$. So $\mathcal{A}(B)$ is a left ideal of R.

Theorem IX.1.4. Let B be a subset of a left module A over a ring R. Then $A(B) = \{r \in R \mid rb = 0 \text{ for all } b \in B\}$ is a left ideal of R. If B is a submodule of A, then $A(B)$ is an (two sided) ideal.

Proof. Let $r \in R$ and $s \in A(B)$. Then $sb = 0$ for all $b \in B$ and so $(rs)b = r(sb) = r0 = 0$ for all $b \in B$; i.e., $rs \in A(B)$. So $A(B)$ is a left ideal of R.

Suppose B is a submodule of A. If $r \in R$ and $s \in \mathcal{A}(B)$, then for every $b \in B$ we have $(sr)b = s(rb) = s0 = 0$ since $rb \in B$ because B is a submodule of A (see Definition IV.1.3). Consequently $sr \in A(B)$ and so $A(B)$ is also a right ideal and hence a (two sided) ideal.

Theorem IX.1.4. Let B be a subset of a left module A over a ring R. Then $A(B) = \{r \in R \mid rb = 0 \text{ for all } b \in B\}$ is a left ideal of R. If B is a submodule of A, then $A(B)$ is an (two sided) ideal.

Proof. Let $r \in R$ and $s \in A(B)$. Then $sb = 0$ for all $b \in B$ and so $(rs)b = r(sb) = r0 = 0$ for all $b \in B$; i.e., $rs \in A(B)$. So $A(B)$ is a left ideal of R.

Suppose B is a submodule of A. If $r \in R$ and $s \in \mathcal{A}(B)$, then for every $b \in B$ we have $(sr)b = s(rb) = s0 = 0$ since $rb \in B$ because B is a submodule of A (see Definition IV.1.3). Consequently $sr \in A(B)$ and so $A(B)$ is also a right ideal and hence a (two sided) ideal.

Proposition IX.1.6. A simple ring R with identity is primitive.

Proof. By Theorem III.2.18, R contains a maximal left ideal *I*. Since R has an identity then ideal *I* is regular (use $e = 1_R$ in Definition IX.1.2, "regular ideal"). Whence left R-module R/I is (isomorphic to) a simple R-module by Theorem IX.1.3.

Proposition IX.1.6. A simple ring R with identity is primitive.

Proof. By Theorem III.2.18, R contains a maximal left ideal I. Since R has an identity then ideal *I* is regular (use $e = 1_R$ in Definition IX.1.2, "regular ideal"). Whence left R -module R/I is (isomorphic to) a simple **R-module by Theorem IX.1.3.** Now the annihilator $A(R/I)$ is a (left) ideal of R by Theorem IX.1.4. Since R is simple by hypothesis, then $A(R/I)$ must be either $\{0\}$ or R. Since I is a maximal ideal in R then $I \neq R$ (see Definition III.2.17 of maximal ideal) and so $R/I \neq \{0\}$. So 1_R cannot be in $A(R/I)$; that is, $A(R/I) \neq R$. Hence it must be that $A(R/I) = \{0\}$. Therefore, left R-module R/I is faithful and ring R is primitive by Definition IX.1.5.

Proposition IX.1.6. A simple ring R with identity is primitive.

Proof. By Theorem III.2.18, R contains a maximal left ideal I. Since R has an identity then ideal *I* is regular (use $e = 1_R$ in Definition IX.1.2, "regular ideal"). Whence left R-module R/I is (isomorphic to) a simple R-module by Theorem IX.1.3. Now the annihilator $A(R/I)$ is a (left) ideal of R by Theorem IX.1.4. Since R is simple by hypothesis, then $A(R/I)$ must be either $\{0\}$ or R. Since I is a maximal ideal in R then $I \neq R$ (see Definition III.2.17 of maximal ideal) and so $R/I \neq \{0\}$. So 1_R cannot be in $A(R/I)$; that is, $A(R/I) \neq R$. Hence it must be that $A(R/I) = \{0\}$. Therefore, left R-module R/I is faithful and ring R is primitive by Definition IX.1.5.

Proposition IX.1.7. A commutative ring R is primitive if and only if R is a field.

Proof. Suppose R is a field. Then R is a division ring and by the first example in this section of class notes, R is simple. Since a field has an identity, then by Proposition $IX.1.6$, R is primitive.

Proposition IX.1.7. A commutative ring R is primitive if and only if R is a field.

Proof. Suppose R is a field. Then R is a division ring and by the first example in this section of class notes, R is simple. Since a field has an identity, then by Proposition $IX.1.6$, R is primitive.

Suppose R is a commutative primitive ring. By Definition IX.1.5, this means there is a simple faithful (left) R-module A; that is, simple R-module A satisfies $A(A) = \{0\}$. By Theorem IX.1.3, $A \cong R/I$ for some regular maximal left ideal *I*. Since R is commutative then *I* is a (two sided) ideal.

Proposition IX.1.7. A commutative ring R is primitive if and only if R is a field.

Proof. Suppose R is a field. Then R is a division ring and by the first example in this section of class notes, R is simple. Since a field has an identity, then by Proposition $IX.1.6$, R is primitive.

Suppose R is a commutative primitive ring. By Definition IX.1.5, this means there is a simple faithful (left) R -module A ; that is, simple R-module A satisfies $A(A) = \{0\}$. By Theorem IX.1.3, $A \cong R/I$ for some regular maximal left ideal *I*. Since R is commutative then *I* is a (two **sided) ideal.** Also $I \subset A(R/I) = A(A) = \{0\}$, so we must have $I = \{0\}$. Since $I = \{0\}$ is regular, by Definition IX.1.2 there is $e \in R$ such that $r - re = r - er \in I$, or $r = re = er$ for all $r \in R$. That is, $e = 1_R$ is an identity for R. Since $I = \{0\}$ is maximal by Corollary III.2.21 (the (iii) implies (i) part), R is a field.

Proposition IX.1.7. A commutative ring R is primitive if and only if R is a field.

Proof. Suppose R is a field. Then R is a division ring and by the first example in this section of class notes, R is simple. Since a field has an identity, then by Proposition $IX.1.6$, R is primitive.

Suppose R is a commutative primitive ring. By Definition IX.1.5, this means there is a simple faithful (left) R -module A ; that is, simple R-module A satisfies $A(A) = \{0\}$. By Theorem IX.1.3, $A \cong R/I$ for some regular maximal left ideal *I*. Since R is commutative then *I* is a (two sided) ideal. Also $I \subset A(R/I) = A(A) = \{0\}$, so we must have $I = \{0\}$. Since $I = \{0\}$ is regular, by Definition IX.1.2 there is $e \in R$ such that $r - re = r - er \in I$, or $r = re = er$ for all $r \in R$. That is, $e = 1_R$ is an identity for R. Since $I = \{0\}$ is maximal by Corollary III.2.21 (the (iii) implies (i) part), R is a field. П

Lemma IX.1.C/Example. For V a vector space over a division ring D , the endomorphism ring Hom_D(V, V) is a dense subring of itself.

Proof. Let $n \in \mathbb{N}$, $\{u_1, u_2, \ldots, u_n\}$ be a linearly independent subset of V, and $\{v_1, v_2, \ldots, v_n\} \subset V$. By Theorem IV.2.4 there is a basis U of V that contains u_1, u_2, \ldots, u_n . Define the map $\theta: V \to V$ by $\theta(u_i) = v_i$ for $i = 1, 2, \ldots, n$ and $\theta(u) = 0$ for $u \in U \setminus \{u_1, u_2, \ldots, u_n\}.$

Lemma IX.1.C/Example. For V a vector space over a division ring D , the endomorphism ring Hom_D(V, V) is a dense subring of itself.

Proof. Let $n \in \mathbb{N}$, $\{u_1, u_2, \ldots, u_n\}$ be a linearly independent subset of V, and $\{v_1, v_2, \ldots, v_n\} \subset V$. By Theorem IV.2.4 there is a basis U of V that contains u_1, u_2, \ldots, u_n . Define the map $\theta: V \to V$ by $\theta(u_i) = v_i$ for $i = 1, 2, \ldots, n$ and $\theta(u) = 0$ for $u \in U \setminus \{u_1, u_2, \ldots, u_n\}$. By Theorem IV.2.4, V is a free D-module. By Theorem IV.2.1(iv), θ is a homomorphism (see the proof of (i) implies (iv)). That is, $\theta \in \text{Hom}_D(V, V)$ and so $\text{Hom}_D(V, V)$ is a dense subring of itself by Definition IV.1.8.

Lemma IX.1.C/Example. For V a vector space over a division ring D , the endomorphism ring Hom_D(V, V) is a dense subring of itself.

Proof. Let $n \in \mathbb{N}$, $\{u_1, u_2, \ldots, u_n\}$ be a linearly independent subset of V, and $\{v_1, v_2, \ldots, v_n\} \subset V$. By Theorem IV.2.4 there is a basis U of V that contains u_1, u_2, \ldots, u_n . Define the map $\theta: V \to V$ by $\theta(u_i) = v_i$ for $i = 1, 2, \ldots, n$ and $\theta(u) = 0$ for $u \in U \setminus \{u_1, u_2, \ldots, u_n\}$. By Theorem IV.2.4, V is a free D-module. By Theorem IV.2.1(iv), θ is a homomorphism (see the proof of (i) implies (iv)). That is, $\theta \in \text{Hom}_D(V, V)$ and so $\text{Hom}_D(V, V)$ is a dense subring of itself by Definition IV.1.8.

Theorem IX.1.9. Let R be a dense ring of endomorphisms of a vector space V over a division ring D . Then R is left (respectively, right) Artinian if and only if $\dim_D(V)$ is finite, in which case $R = \text{Hom}_D(V, V)$.

Proof. Let R be Artinian. ASSUME dim_D (V) is infinite. Then there exists an infinite linearly independent subset $\{u_1, u_2, ...\}$ of V. By Exercise IV.1.7(c), V is a left $Hom_D(V, V)$ -module; since R is a subring of $\text{Hom}_{D}(V, V)$ (by Definition IX.1.8, "dense ring of endomorphisms") then V is also a left R-module (see Definition IV.1., "R-module").

Theorem IX.1.9. Let R be a dense ring of endomorphisms of a vector space V over a division ring D. Then R is left (respectively, right) Artinian if and only if $\dim_D(V)$ is finite, in which case $R = \text{Hom}_D(V, V)$.

Proof. Let R be Artinian. ASSUME dim_D (V) is infinite. Then there exists an infinite linearly independent subset $\{u_1, u_2, ...\}$ of V. By Exercise IV.1.7(c), V is a left $\text{Hom}_D(V, V)$ -module; since R is a subring of $\text{Hom}_D(V,V)$ (by Definition IX.1.8, "dense ring of endomorphisms") then V is also a left R-module (see Definition IV.1., "R-module"). For each $n \in \mathbb{N}$ let I_n be the left annihilator in R of the set $\{u_1, u_2, \ldots, u_n\}$. Then $I_1 \supset I_2 \supset \cdots$ is a descending chain of left ideal.

Theorem IX.1.9. Let R be a dense ring of endomorphisms of a vector space V over a division ring D. Then R is left (respectively, right) Artinian if and only if $\dim_D(V)$ is finite, in which case $R = \text{Hom}_D(V, V)$.

Proof. Let R be Artinian. ASSUME dim_D (V) is infinite. Then there exists an infinite linearly independent subset $\{u_1, u_2, ...\}$ of V. By Exercise IV.1.7(c), V is a left $\text{Hom}_D(V, V)$ -module; since R is a subring of Hom_D(V, V) (by Definition IX.1.8, "dense ring of endomorphisms") then V is also a left R-module (see Definition IV.1., "R-module"). For each $n \in \mathbb{N}$ let I_n be the left annihilator in R of the set $\{u_1, u_2, \ldots, u_n\}$. Then $I_1 \supset I_2 \supset \cdots$ is a descending chain of left ideal. Let w be any nonzero element of V. Since $\{u_1, u_2, \ldots, u_{n+1}\}$ is linearly independent for each $n \in \mathbb{N}$ and R is dense, then (by Definition IX.1.8, "sense ring of endomorphisms") there is $\theta \in R$ such that $\theta(u_i) = 0$ for $i = 1, 2, ..., n$ and $\theta(u_{n+1}) = w \neq 0$. Then $\theta \in I_n$ (since θ annihilates $\{u_1, u_2, \ldots, u_n\}$) but $\theta \notin I_{n+1}$. So $I_n \supset I_{n+1}$ and $I_n \neq I_{n+1}$.

Theorem IX.1.9. Let R be a dense ring of endomorphisms of a vector space V over a division ring D. Then R is left (respectively, right) Artinian if and only if $\dim_D(V)$ is finite, in which case $R = \text{Hom}_D(V, V)$.

Proof. Let R be Artinian. ASSUME dim_D (V) is infinite. Then there exists an infinite linearly independent subset $\{u_1, u_2, ...\}$ of V. By Exercise IV.1.7(c), V is a left $\text{Hom}_D(V, V)$ -module; since R is a subring of Hom_D(V, V) (by Definition IX.1.8, "dense ring of endomorphisms") then V is also a left R-module (see Definition IV.1., "R-module"). For each $n \in \mathbb{N}$ let I_n be the left annihilator in R of the set $\{u_1, u_2, \ldots, u_n\}$. Then $I_1 \supset I_2 \supset \cdots$ is a descending chain of left ideal. Let w be any nonzero element of V. Since $\{u_1, u_2, \ldots, u_{n+1}\}$ is linearly independent for each $n \in \mathbb{N}$ and R is dense, then (by Definition IX.1.8, "sense ring of endomorphisms") there is $\theta \in R$ such that $\theta(u_i) = 0$ for $i = 1, 2, ..., n$ and $\theta(u_{n+1}) = w \neq 0$. Then $\theta \in I_n$ (since θ annihilates $\{u_1, u_2, \ldots, u_n\}$) but $\theta \notin I_{n+1}$. So $I_n \supset I_{n+1}$ and $I_n \neq I_{n+1}$.

Theorem IX.1.9 (continued)

Proof (continued). But then $I_1 \supset I_2 \supset \cdots$ is a "properly descending" chain and so R cannot be left Artinian, a CONTRADICTION. So the assumption that dim $_D(V)$ is finite is false. Hence if R is Artinian then $\dim_D(V)$ is finite.

Suppose dim $_D(V)$ is finite. Then V has a finite basis $\{v_1, v_2, \ldots, v_m\}$. If f is any element of hom_D (V, V) then f is completely determines by its action on v_1, v_2, \ldots, v_m . Since R is dense then, by Definition IX.1.8, there exists $\theta \in R$ such that $\theta(v_i) = f(v_i)$ for $i = 1, 2, ..., m$. Whence $f = \theta \in R$ and so $\text{Hom}_D(V, V) \in R$.

Theorem IX.1.9 (continued)

Proof (continued). But then $I_1 \supset I_2 \supset \cdots$ is a "properly descending" chain and so R cannot be left Artinian, a CONTRADICTION. So the assumption that dim $_D(V)$ is finite is false. Hence if R is Artinian then $\dim_D(V)$ is finite.

Suppose dim $_D(V)$ is finite. Then V has a finite basis $\{v_1, v_2, \ldots, v_m\}$. If f is any element of hom_D(V, V) then f is completely determines by its action on v_1, v_2, \ldots, v_m . Since R is dense then, by Definition IX.1.8, there exists $\theta \in R$ such that $\theta(v_i) = f(v_i)$ for $i = 1, 2, ..., m$. Whence $f = \theta \in R$ and so Hom_D $(V, V) \in R$. But dense ring of endomorphisms R is a subring of $\text{Hom}_D(V,V)$ (see Definition IX.1.8 again), so $\text{Hom}_D(V,V)$ is isomorphic to the ring of all $n \times n$ matrices with entries from D. By Corollary VIII.1.12, Mat_n(D) is Artinian. Therefore, since R is a subring of $Hom_D(V, V)$ then R is Artinian.

Theorem IX.1.9 (continued)

Proof (continued). But then $I_1 \supset I_2 \supset \cdots$ is a "properly descending" chain and so R cannot be left Artinian, a CONTRADICTION. So the assumption that dim $_D(V)$ is finite is false. Hence if R is Artinian then $\dim_D(V)$ is finite.

Suppose dim $_D(V)$ is finite. Then V has a finite basis $\{v_1, v_2, \ldots, v_m\}$. If f is any element of hom_D(V, V) then f is completely determines by its action on v_1, v_2, \ldots, v_m . Since R is dense then, by Definition IX.1.8, there exists $\theta \in R$ such that $\theta(v_i) = f(v_i)$ for $i = 1, 2, ..., m$. Whence $f = \theta \in R$ and so Hom $_D(V, V) \in R$. But dense ring of endomorphisms R is a subring of Hom_D(V, V) (see Definition IX.1.8 again), so Hom_D(V, V) is isomorphic to the ring of all $n \times n$ matrices with entries from D. By Corollary VIII.1.12, Mat_n (D) is Artinian. Therefore, since R is a subring of $Hom_D(V, V)$ then R is Artinian.
Lemma IX.1.10 (Schur)

Lemma IX.1.10. (Schur) Let A be a simple module over a ring R and let B be any R-module.

- (i) Every nonzero R-module homomorphism $f : A \rightarrow B$ is a monomorphism (one to one);
- (ii) every nonzero R-module homomorphism $f : B \to A$ is an epimorphism (onto);
- (iii) the endomorphism ring $D = Hom_R(A, A)$ is a division ring.

Proof. (i) The kernel of f is its kernel as a homomorphism of abelian groups (by definition, see Section IV.1) and so the kernel of f determines a subgroup of the additive abelian group of R by Exercise I.2.9(a). For $c \in \text{Ker}(f)$ and $r \in R$ we have $rc \in \text{Ker}(f)$ since $f(rc) = rf(c) = r0 = 0$ (see Definition IV.1.2, "R-module homomorphism"). So by Definition IV.1.3, Ker(f) is a submodule of A. Since f is nonzero then Ker(f) $\neq A$.

Lemma IX.1.10 (Schur)

Lemma IX.1.10. (Schur) Let A be a simple module over a ring R and let B be any R-module.

- (i) Every nonzero R-module homomorphism $f : A \rightarrow B$ is a monomorphism (one to one);
- (ii) every nonzero R-module homomorphism $f : B \to A$ is an epimorphism (onto);
- (iii) the endomorphism ring $D = Hom_R(A, A)$ is a division ring.

Proof. (i) The kernel of f is its kernel as a homomorphism of abelian groups (by definition, see Section IV.1) and so the kernel of f determines a subgroup of the additive abelian group of R by Exercise I.2.9(a). For $c \in \text{Ker}(f)$ and $r \in R$ we have $rc \in \text{Ker}(f)$ since $f(rc) = rf(c) = r0 = 0$ (see Definition IV.1.2, "R-module homomorphism"). So by Definition IV.1.3, Ker(f) is a submodule of A. Since f is nonzero then Ker(f) \neq A.

Lemma IX.1.10 (Schur) continued

Proof (continued). Since A is simple then it must be that $\text{Ker}(f) = \{0\}$ and so f is a monomorphism (one to one) by Theorem I.2.3 (see also page 170 of Hungerford and the example in the class notes after Definition IV.1.3), as claimed.

(ii) $Im(g)$ is a submodule of A by Exercise I.2.9(b) (see also the example in the class notes after Definition IV.1.3). Since g is nonzero, $Im(g) \neq \{0\}$. So $Im(g)$ is a nonzero submodule of A and since A is simple it must be that $Im(f) = A$. That is, g is an epimorphism (onto), as claimed.

Lemma IX.1.10 (Schur) continued

Proof (continued). Since A is simple then it must be that $\text{Ker}(f) = \{0\}$ and so f is a monomorphism (one to one) by Theorem I.2.3 (see also page 170 of Hungerford and the example in the class notes after Definition IV.1.3), as claimed.

(ii) $Im(g)$ is a submodule of A by Exercise I.2.9(b) (see also the example in the class notes after Definition IV.1.3). Since g is nonzero, $Im(g) \neq \{0\}$. So $Im(g)$ is a nonzero submodule of A and since A is simple it must be that $Im(f) = A$. That is, g is an epimorphism (onto), as claimed.

(iii) We use parts (i) and (ii). Let $j \in D = \text{Hom}_R(A, A)$ with $h \neq 0$. By (i), h is onto to ne (injective) and by (ii) f is onto (surjective), so h is an isomorphism. By Theorem I.2.3(ii) (see also page 170 of Hungerford) h has a two-sided inverse $h^{-1} \in \mathsf{Hom}_R(A,A) = D.$ Since h is an arbitrary nonzero element of D , then D is a division ring.

Lemma IX.1.10 (Schur) continued

Proof (continued). Since A is simple then it must be that $\text{Ker}(f) = \{0\}$ and so f is a monomorphism (one to one) by Theorem I.2.3 (see also page 170 of Hungerford and the example in the class notes after Definition IV.1.3), as claimed.

(ii) $Im(g)$ is a submodule of A by Exercise I.2.9(b) (see also the example in the class notes after Definition IV.1.3). Since g is nonzero, $Im(g) \neq \{0\}$. So $Im(g)$ is a nonzero submodule of A and since A is simple it must be that $Im(f) = A$. That is, g is an epimorphism (onto), as claimed.

(iii) We use parts (i) and (ii). Let $j \in D = \text{Hom}_R(A, A)$ with $h \neq 0$. By (i), h is onto to ne (injective) and by (ii) f is onto (surjective), so h is an isomorphism. By Theorem I.2.3(ii) (see also page 170 of Hungerford) h has a two-sided inverse $h^{-1}\in\mathsf{Hom}_\mathcal{R}(\mathcal{A},\mathcal{A})=D.$ Since h is an arbitrary nonzero element of D , then D is a division ring.

Lemma IX.1.11. Let A be a simple module over a ring R. Consider A as a vector space over the division ring $D = Hom_R(A, A)$. If V is a finite dimensional D-subspace of the D-vector space A and $a \in A \setminus V$, then there exists $r \in R$ such that $ra \neq 0$ and $rV = 0$.

Proof. We give an induction proof on $n = \dim_D(V)$.

Lemma IX.1.11. Let A be a simple module over a ring R. Consider A as a vector space over the division ring $D = Hom_R(A, A)$. If V is a finite dimensional D-subspace of the D-vector space A and $a \in A \setminus V$, then there exists $r \in R$ such that $ra \neq 0$ and $rV = 0$.

Proof. We give an induction proof on $n = \dim_D(V)$.

Let $n = 0$. Then $V = \{0\}$ and so $a \in A \setminus V$ implies $a \neq 0$. Since A is simple, then by Lemma IX.1.A, $A = Ra$. So there is some $r \in R$ such that $ra = a \neq 0$ and $rV = v{0} = {0}$, and the claim holds for $n = \dim_D(V) = 0.$

Lemma IX.1.11. Let A be a simple module over a ring R. Consider A as a vector space over the division ring $D = Hom_R(A, A)$. If V is a finite dimensional D-subspace of the D-vector space A and $a \in A \setminus V$, then there exists $r \in R$ such that $ra \neq 0$ and $rV = 0$.

Proof. We give an induction proof on $n = \dim_D(V)$.

Let $n = 0$. Then $V = \{0\}$ and so $a \in A \setminus V$ implies $a \neq 0$. Since A is simple, then by Lemma IX.1.A, $A = Ra$. So there is some $r \in R$ such that $ra = a \neq 0$ and $rV = v{0} = {0}$, and the claim holds for $n = \dim_D(V) = 0.$

Now suppose dim_D $(V) = n \in \mathbb{N}$ and that the theorem holds for dimensions $0, 1, \ldots, n - 1$. Let $\{u_1, u_2, \ldots, u_{n-1}, u\}$ be a D-basis of V (which exists by Theorem IV.2.4) and let W be the $(n - 1)$ -dimensional D-subspace $W = \text{span}\{u_1, u_2, \ldots, u_{n-1}\}$ (with $W = \{0\}$ if $n = 1$).

Lemma IX.1.11. Let A be a simple module over a ring R. Consider A as a vector space over the division ring $D = Hom_R(A, A)$. If V is a finite dimensional D-subspace of the D-vector space A and $a \in A \setminus V$, then there exists $r \in R$ such that $ra \neq 0$ and $rV = 0$.

Proof. We give an induction proof on $n = \dim_D(V)$.

Let $n = 0$. Then $V = \{0\}$ and so $a \in A \setminus V$ implies $a \neq 0$. Since A is simple, then by Lemma IX.1.A, $A = Ra$. So there is some $r \in R$ such that $ra = a \neq 0$ and $rV = v{0} = {0}$, and the claim holds for $n = \dim_D(V) = 0.$

Now suppose dim_D $(V) = n \in \mathbb{N}$ and that the theorem holds for dimensions $0, 1, \ldots, n-1$. Let $\{u_1, u_2, \ldots, u_{n-1}, u\}$ be a D-basis of V (which exists by Theorem IV.2.4) and let W be the $(n-1)$ -dimensional D-subspace $W = \text{span}\{u_1, u_2, \ldots, u_{n-1}\}$ (with $W = \{0\}$ if $n = 1$).

Proof (continued). Since $\{u_1, u_2, \ldots, u_{n-1}, u\}$ is a basis then it is linearly independent and so $W \cap Du = \{0\}$ (notice that Du itself is a vector space; it is the span of $\{u\}$). So $V = W \oplus Du$ by Theorem IV.1.5. The left annihilator $I = \mathcal{A}(W)$ in R of W is a left ideal o fR by Theorem IX.1.4. By Exercise IV.1.3(a), I u is an R-submodule of A. Since $u \in A \setminus W$ and $\dim_D(W) = n - 1$ then by the *induction hypothesis* there is $r \in R$ such that $ru \neq 0$ and $rW = \{0\}$ (that is, $r \in I = \mathcal{A}(W)$). This implies $0 \neq ru \in lu$ is a nonzero R-submodule of A then $A = lu$. Notice that the induction hypothesis has given us that: for $u \in A$ we have that $u \notin W$ (where dim_D $(W) = n - 1$) implies there is $r \in I = \mathcal{A}(W)$ such that $ru \neq 0$.

Proof (continued). Since $\{u_1, u_2, \ldots, u_{n-1}, u\}$ is a basis then it is linearly independent and so $W \cap Du = \{0\}$ (notice that Du itself is a vector space; it is the span of $\{u\}$). So $V = W \oplus Du$ by Theorem IV.1.5. The left annihilator $I = \mathcal{A}(W)$ in R of W is a left ideal o fR by Theorem IX.1.4. By Exercise IV.1.3(a), Iu is an R-submodule of A. Since $u \in A \setminus W$ and $\dim_D(W) = n - 1$ then by the *induction hypothesis* there is $r \in R$ such that $ru \neq 0$ and $rW = \{0\}$ (that is, $r \in I = \mathcal{A}(W)$). This implies $0 \neq ru \in lu$ is a nonzero R-submodule of A then $A = lu$. Notice that the induction hypothesis has given us that: for $u \in A$ we have that $u \notin W$ (where dim_D(W) = n − 1) implies there is $r \in I = \mathcal{A}(W)$ such **that** $ru \neq 0$ **.** The contrapositive of this is that:

For $v \in A$, if for all $r \in I = \mathcal{A}(W)$ we have $rv = 0$ then $v \in W$. (*)

Proof (continued). Since $\{u_1, u_2, \ldots, u_{n-1}, u\}$ is a basis then it is linearly independent and so $W \cap Du = \{0\}$ (notice that Du itself is a vector space; it is the span of $\{u\}$). So $V = W \oplus Du$ by Theorem IV.1.5. The left annihilator $I = \mathcal{A}(W)$ in R of W is a left ideal o fR by Theorem IX.1.4. By Exercise IV.1.3(a), Iu is an R-submodule of A. Since $u \in A \setminus W$ and $\dim_D(W) = n - 1$ then by the *induction hypothesis* there is $r \in R$ such that $ru \neq 0$ and $rW = \{0\}$ (that is, $r \in I = \mathcal{A}(W)$). This implies $0 \neq ru \in lu$ is a nonzero R-submodule of A then $A = lu$. Notice that the induction hypothesis has given us that: for $u \in A$ we have that $u \notin W$ (where dim $_D(W) = n - 1$) implies there is $r \in I = \mathcal{A}(W)$ such that $ru \neq 0$. The contrapositive of this is that:

For $v \in A$, if for all $r \in I = \mathcal{A}(W)$ we have $rv = 0$ then $v \in W$. (*)

We must find $r \in R$ such that $ra \neq 0$ and $rV = \{0\}$. ASSUME no such r exists. Then define $\theta : A \rightarrow A$ as follows. For $ru \in lu = A$ let $\theta(ru) = ra \in A$.

Proof (continued). Since $\{u_1, u_2, \ldots, u_{n-1}, u\}$ is a basis then it is linearly independent and so $W \cap Du = \{0\}$ (notice that Du itself is a vector space; it is the span of $\{u\}$). So $V = W \oplus Du$ by Theorem IV.1.5. The left annihilator $I = \mathcal{A}(W)$ in R of W is a left ideal o fR by Theorem IX.1.4. By Exercise IV.1.3(a), Iu is an R-submodule of A. Since $u \in A \setminus W$ and $\dim_D(W) = n - 1$ then by the *induction hypothesis* there is $r \in R$ such that $ru \neq 0$ and $rW = \{0\}$ (that is, $r \in I = \mathcal{A}(W)$). This implies $0 \neq ru \in lu$ is a nonzero R-submodule of A then $A = lu$. Notice that the induction hypothesis has given us that: for $u \in A$ we have that $u \notin W$ (where dim $_D(W) = n - 1$) implies there is $r \in I = \mathcal{A}(W)$ such that $ru \neq 0$. The contrapositive of this is that:

For $v \in A$, if for all $r \in I = \mathcal{A}(W)$ we have $rv = 0$ then $v \in W$. (*)

We must find $r \in R$ such that $ra \neq 0$ and $rV = \{0\}$. ASSUME no such r exists. Then define $\theta : A \rightarrow A$ as follows. For $ru \in lu = A$ let $\theta(ru) = ra \in A$.

Proof (continued). We claim that θ is well-defined (that is, if $r_1u = r_2u$ for $r_1, r_2 \in I = \mathcal{A}(W)$, then $(r_1 - r_2)u = 0$, whence $(r_1 - r_2)V = (r_1 - r_2)(W \oplus Du) = \{0\}$ (since elements of $W \oplus Du$ are sums of elements of W, which $r_1 - r_2$ annihilates, and multiples of u of the form $du = d(u)$ for $d \in D = \text{Hom}_R(A, A)$ so that $(r_1 - r_2)du = (r_1 - r_2)d(u) = d((r_1 - r_2)u) = d(0) = 0$. By the assumption (that no r exists such that $ra \neq 0$ and $rV = \{0\}$; but here we have $(r_1 - r_2)V = \{0\}$) we must have $(r_1 - r_2)a = 0$. Therefore $r_1a = r_2a$ or $r_1a = \theta(r_1u) = \theta(r_2u) = r_2a$, and θ is well-defined. Let $a_1, a_2 \in A$. Since $A = lu$ then there is $r_1, r_2 \in I$ such that $a_1 = r_1u$ and $a_2 = r_2u$.

Proof (continued). We claim that θ is well-defined (that is, if $r_1u = r_2u$ for $r_1, r_2 \in I = \mathcal{A}(W)$, then $(r_1 - r_2)u = 0$, whence $(r_1 - r_2)V = (r_1 - r_2)(W \oplus Du) = \{0\}$ (since elements of $W \oplus Du$ are sums of elements of W, which $r_1 - r_2$ annihilates, and multiples of u of the form $du = d(u)$ for $d \in D = \text{Hom}_R(A, A)$ so that $(r_1 - r_2)du = (r_1 - r_2)d(u) = d((r_1 - r_2)u) = d(0) = 0$. By the assumption (that no r exists such that $ra \neq 0$ and $rV = \{0\}$; but here we have $(r_1 - r_2)V = \{0\}$) we must have $(r_1 - r_2)a = 0$. Therefore $r_1a = r_2a$ or $r_1a = \theta(r_1u) = \theta(r_2u) = r_2a$, and θ is well-defined. Let $a_1, a_2 \in A$. Since $A = Iu$ then there is $r_1, r_2 \in I$ such that $a_1 = r_1u$ and $a_2 = r_2u$. So

$$
\theta(a_1 + a_2) = \theta(r_1u + r_2u) = \theta((r_1 + r_2)u) = (r_1 + r_2)a = r_1a + r_2a = \theta(r_1u) + \theta(r_2u)
$$

Also, for $r' \in R$ and $a \in A = I$ u (so that $a = ru$ for some $r \in I$) we have

$$
\theta(r'a) = \theta(r'(ru)) = \theta((r'r)u) = (r'r)a = r'(ra) = r'\theta(ru) = r'\theta(a).
$$

Proof (continued). We claim that θ is well-defined (that is, if $r_1u = r_2u$ for $r_1, r_2 \in I = \mathcal{A}(W)$, then $(r_1 - r_2)u = 0$, whence $(r_1 - r_2)V = (r_1 - r_2)(W \oplus Du) = \{0\}$ (since elements of $W \oplus Du$ are sums of elements of W, which $r_1 - r_2$ annihilates, and multiples of u of the form $du = d(u)$ for $d \in D = \text{Hom}_R(A, A)$ so that $(r_1 - r_2)du = (r_1 - r_2)d(u) = d((r_1 - r_2)u) = d(0) = 0$. By the assumption (that no r exists such that $ra \neq 0$ and $rV = \{0\}$; but here we have $(r_1 - r_2)V = \{0\}$) we must have $(r_1 - r_2)a = 0$. Therefore $r_1a = r_2a$ or $r_1a = \theta(r_1u) = \theta(r_2u) = r_2a$, and θ is well-defined. Let $a_1, a_2 \in A$. Since $A = Iu$ then there is $r_1, r_2 \in I$ such that $a_1 = r_1u$ and $a_2 = r_2u$. So

$$
\theta(a_1+a_2)=\theta(r_1u+r_2u)=\theta((r_1+r_2)u)=(r_1+r_2)a=r_1a+r_2a=\theta(r_1u)+\theta(r_2u)
$$

Also, for $r' \in R$ and $a \in A = I$ u (so that $a = ru$ for some $r \in I$) we have

$$
\theta(r'a) = \theta(r'(ru)) = \theta((r'r)u) = (r'r)a = r'(ra) = r'\theta(ru) = r'\theta(a).
$$

Proof (continued). Therefore θ is an R-module homomorphism mapping $A \rightarrow A$ (by Definition IV.1.2); that is, $\theta \in \text{Hom}_R(A, A) = D$. Then for every $r \in I$,

$$
0 = ra - ra = \theta(ru) - ra = r\theta(u) - ra = r(\theta(u) - a).
$$

So by $(*)$, $\theta(u) - a = \theta u - a \in W$ and $a - \theta u \in W$. Notice that $\theta u = \theta(u) \in Du$ since $\theta \in D = \text{Hom}_R(A, A)$. Consequently $a = (a - \theta u) + \theta u \in W \oplus Du = V$. But this is a CONTRADICTION to the fact that $a \in A \setminus V$. So the assumption that no such r exists is false, and hence there exists $r \in R$ such that $ra \neq 0$ and $rV = \{0\}$. That is, the result holds for dim_D(V) = n and so holds for all $n \in \mathbb{N} \cup \{0\}$ by induction.

Proof (continued). Therefore θ is an R-module homomorphism mapping $A \rightarrow A$ (by Definition IV.1.2); that is, $\theta \in \text{Hom}_R(A, A) = D$. Then for every $r \in I$,

$$
0=ra-ra=\theta(ru)-ra=r\theta(u)-ra=r(\theta(u)-a).
$$

So by $(*)$, $\theta(u) - a = \theta u - a \in W$ and $a - \theta u \in W$. Notice that $\theta u = \theta(u) \in Du$ since $\theta \in D = \text{Hom}_R(A, A)$. Consequently $a = (a - \theta u) + \theta u \in W \oplus Du = V$. But this is a CONTRADICTION to the fact that $a \in A \setminus V$. So the assumption that no such r exists is false, and hence there exists $r \in R$ such that $ra \neq 0$ and $rV = \{0\}$. That is, the result holds for dim_D(V) = n and so holds for all $n \in \mathbb{N} \cup \{0\}$ by induction.

Theorem IX.1.12. Jacobson Density Theorem

Theorem IX.1.12. Jacobson Density Theorem.

Let R be a primitive ring and A a faithful simple R -module. consider A as a vector space over the division ring hom_R $(A, A) = D$. Then R is isomorphic to a dense ring of endomorphisms of the D-vector space A.

Proof. For each $r \in R$ the map $\alpha_r : A \rightarrow A$ given by $\alpha_r(A) = ra$ is a D-endomorphism of A (for $a_1, a_2 \in A$ we have $\alpha_r(a_1 + a_2) = r(a_1 + a_2) = ra_1 + ra_2 = \alpha_r(a_1) + \alpha_r(a_2)$ and for $a \in A$ and $\theta \in D = \text{Hom}_R(A, A)$ we have

$$
\alpha_r(\theta a) = \alpha_r(\theta(a)) = r\theta(a)
$$

= $\theta-ra)$ since $\theta \in \text{Hom}_R(A, A)$
= $\theta(\alpha_r(a)),$

so by Definition IV.1.2 α_{ℓ} is a homomorphism). That is, $\alpha_r \in \text{Hom}_D(A, A)$. Furthermore, for all $r, s \in R$ we have $\alpha_{r+s} = \alpha_r + \alpha_s$ and $\alpha_{rs} = \alpha_r \alpha_s$.

Theorem IX.1.12. Jacobson Density Theorem

Theorem IX.1.12. Jacobson Density Theorem.

Let R be a primitive ring and A a faithful simple R-module. consider A as a vector space over the division ring hom_R $(A, A) = D$. Then R is isomorphic to a dense ring of endomorphisms of the D-vector space A.

Proof. For each $r \in R$ the map $\alpha_r : A \rightarrow A$ given by $\alpha_r(A) = r$ a is a D-endomorphism of A (for $a_1, a_2 \in A$ we have $\alpha_r(a_1 + a_2) = r(a_1 + a_2) = ra_1 + ra_2 = \alpha_r(a_1) + \alpha_r(a_2)$ and for $a \in A$ and $\theta \in D = \text{Hom}_R(A, A)$ we have

$$
\alpha_r(\theta a) = \alpha_r(\theta(a)) = r\theta(a)
$$

= $\theta-ra)$ since $\theta \in \text{Hom}_R(A, A)$
= $\theta(\alpha_r(a)),$

so by Definition IV.1.2 α_{r} is a homomorphism). That is, $\alpha_r \in \text{Hom}_D(A, A)$. Furthermore, for all $r, s \in R$ we have $\alpha_{r+s} = \alpha_r + \alpha_s$ and $\alpha_{rs} = \alpha_r \alpha_s$.

Theorem IX.1.12. Jacobson Density Theorem (continued 1)

Proof (continued). Consequently, the map α : $R \rightarrow Hom_D(A, A)$ defined by $\alpha(r)=\alpha_r$ is a homomorphism of rings. Since A is a faithful R -module (that is, $A(A) = \{0\}$), $\alpha_r = 0 \in \text{Hom}_D(A, A)$ if an only if $r \in A(A) = \{0\}$. So Ker(α) = {0} and α is a monomorphism (one to one; by Theorem I.2.3(i)). Whence R is isomorphic to the subring $\text{Im}(\alpha)$ of $\text{Hom}_D(A, A)$.

Now we show that $Im(\alpha)$ is a dense subring of Hom $_D(A, A)$. So given any D-linearly independent subset $U = \{u_1, U_2, \ldots, u_n\}$ of A and any subset $\{v_1, v_2, \ldots, v_n\}$ of A, we must find $\alpha_r \in \text{Im}(\alpha)$ such that $\alpha_r(u_i) = v_i$ for $i = 1, 2, \ldots, n$. Here we go.

Theorem IX.1.12. Jacobson Density Theorem (continued 1)

Proof (continued). Consequently, the map $\alpha : R \to \text{Hom}_D(A, A)$ defined by $\alpha(r)=\alpha_r$ is a homomorphism of rings. Since A is a faithful R -module (that is, $A(A) = \{0\}$), $\alpha_r = 0 \in \text{Hom}_D(A, A)$ if an only if $r \in A(A) = \{0\}$. So Ker(α) = {0} and α is a monomorphism (one to one; by Theorem I.2.3(i)). Whence R is isomorphic to the subring $Im(\alpha)$ of Hom_D(A, A).

Now we show that Im(α) is a dense subring of Hom $_D(A, A)$. So given any D-linearly independent subset $U = \{u_1, U_2, \ldots, u_n\}$ of A and any subset $\{v_1,v_2,\ldots,v_n\}$ of A , we must find $\alpha_r\in\mathsf{Im}(\alpha)$ such that $\alpha_r(u_i)=v_i$ for $i = 1, 2, \ldots, n$. Here we go. For each $i = 1, 2, \ldots, n$, let V_i be the D-subspace of A spanned by $\{u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots u_n\}$. Since U is D-linearly independent then $u_i \in V_i$. Consequently (since A is simple by Definition IX.1.5 of "primitive ring"), by Lemma IX.1.11 there exists $r_i \in R$ such that $r_i u_i \neq 0$ and $r_i V_i = \{0\}.$

Theorem IX.1.12. Jacobson Density Theorem (continued 1)

Proof (continued). Consequently, the map $\alpha : R \to \text{Hom}_D(A, A)$ defined by $\alpha(r)=\alpha_r$ is a homomorphism of rings. Since A is a faithful R -module (that is, $A(A) = \{0\}$), $\alpha_r = 0 \in \text{Hom}_D(A, A)$ if an only if $r \in A(A) = \{0\}$. So Ker(α) = {0} and α is a monomorphism (one to one; by Theorem I.2.3(i)). Whence R is isomorphic to the subring $Im(\alpha)$ of Hom_D(A, A).

Now we show that Im(α) is a dense subring of Hom $_D(A, A)$. So given any D-linearly independent subset $U = \{u_1, U_2, \ldots, u_n\}$ of A and any subset $\{v_1,v_2,\ldots,v_n\}$ of A , we must find $\alpha_r\in\mathsf{Im}(\alpha)$ such that $\alpha_r(u_i)=v_i$ for $i = 1, 2, \ldots, n$. Here we go. For each $i = 1, 2, \ldots, n$, let V_i be the D-subspace of A spanned by $\{u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots u_n\}$. Since U is D-linearly independent then $u_i \in V_i$. Consequently (since A is simple by Definition IX.1.5 of "primitive ring"), by Lemma IX.1.11 there exists $r_i \in R$ such that $r_i u_i \neq 0$ and $r_i V_i = \{0\}$.

Theorem IX.1.12. Jacobson Density Theorem (continued 2)

Proof (continued). Applying Lemma IX.1.11 to D-subspace $V = \{0\}$ of A and nonzero $r_i u_i \in A \setminus V$, there exists $s_i \in R$ such that $s_i r_i u_i \neq 0$ and $s_i0 = 0$. Since $s_ir_iu_i \neq 0$, the R-submodule Rr_iu_i of A is nonzero. But A is simple (by the definition of "primitive ring" R), so it must be that $Rr_iu_i = A$. Therefore there exists $t_i \in R$ such that $t_ir_iu_i = v_i$. Define $r = t_1 r_1 + t_2 r_2 + \cdots + t_n r_n \in R.$ By definition of V_j , we have for $i \neq j$ that $u_i \in V_i$ and so for $i \neq j$ we also have $t_i r_i u_i \in t_i(r_iV_i) = t_i\{0\} = \{0\}$ (since $r_iV_i = \{0\}$ by the choice of r_i above). Consequently for each $i = 1, 2, \ldots, n$ we have

$$
\alpha_r(u_i) = ru_i = (t_1r_1 + t_2r_2 + \cdots + t_nr_n)u_i = t_ir_iu_i = v_i.
$$

So, by Definition IX.1.8, "dense ring of endomorphisms," $Im(\alpha)$ is a dense ring of endomorphisms of the D-vector space A. Since R is isomorphic to $Im(\alpha)$ (under isomorphism α), the claim follows.

Theorem IX.1.12. Jacobson Density Theorem (continued 2)

Proof (continued). Applying Lemma IX.1.11 to D-subspace $V = \{0\}$ of A and nonzero $r_i u_i \in A \setminus V$, there exists $s_i \in R$ such that $s_i r_i u_i \neq 0$ and $s_i0 = 0$. Since $s_ir_iu_i \neq 0$, the R-submodule Rr_iu_i of A is nonzero. But A is simple (by the definition of "primitive ring" R), so it must be that $Rr_iu_i = A$. Therefore there exists $t_i \in R$ such that $t_ir_iu_i = v_i$. Define $r = t_1 r_1 + t_2 r_2 + \cdots + t_n r_n \in R.$ By definition of V_j , we have for $i \neq j$ that $u_i \in V_i$ and so for $i \neq j$ we also have $t_i r_i u_i \in t_i(r_iV_i) = t_i\{0\} = \{0\}$ (since $r_iV_i = \{0\}$ by the choice of r_i above). Consequently for each $i = 1, 2, \ldots, n$ we have

$$
\alpha_r(u_i) = ru_i = (t_1r_1 + t_2r_2 + \cdots + t_nr_n)u_i = t_ir_iu_i = v_i.
$$

So, by Definition IX.1.8, "dense ring of endomorphisms," Im(α) is a dense ring of endomorphisms of the D-vector space A. Since R is isomorphic to $Im(\alpha)$ (under isomorphism α), the claim follows.

Corollary IX.1.13

Corollary IX.1.13. If R is a primitive ring, then for some division ring D either R is isomorphic to the endomorphism ring of a finite dimensional vector space over D or for every $m \in \mathbb{N}$ there is subring R_m of R and an epimorphism of rings mapping $R_m \to \text{Hom}_D(V_m, V_m)$ where V_m is an n-dimensional vector space over D.

Proof. In the notation of the Jacobson Density Theorem (Theorem IX.1.12) with A as the faithful simple R-module and $D = \text{Hom}_R(A, A)$, we have $\alpha : R \to \text{Hom}_D(A, A)$ is a monomorphism such that $R \cong \text{Im}(\alpha)$ and $\text{Im}(\alpha)$ is dense in $\text{Hom}_D(A, A)$. If $\text{dim}_D(A) = n$ is finite, then $\text{Im}(\alpha) = \text{Hom}_D(A, A)$ by Theorem IX.1.9 (this also gives that $\text{Im}(\alpha)$ is left Artinian). So the first conclusion holds.

Corollary IX.1.13

Corollary IX.1.13. If R is a primitive ring, then for some division ring D either R is isomorphic to the endomorphism ring of a finite dimensional vector space over D or for every $m \in \mathbb{N}$ there is subring R_m of R and an epimorphism of rings mapping $R_m \to \text{Hom}_D(V_m, V_m)$ where V_m is an n-dimensional vector space over D.

Proof. In the notation of the Jacobson Density Theorem (Theorem IX.1.12) with A as the faithful simple R-module and $D = \text{Hom}_R(A, A)$, we have $\alpha : R \to \text{Hom}_D(A, A)$ is a monomorphism such that $R \cong \text{Im}(\alpha)$ and $\text{Im}(\alpha)$ is dense in $\text{Hom}_D(A, A)$. If $\text{dim}_D(A) = n$ is finite, then $\textsf{Im}(\alpha) = \textsf{Hom}_D(A, A)$ by Theorem IX.1.9 (this also gives that $\textsf{Im}(\alpha)$ is left Artinian). So the first conclusion holds.

If dim_D(A) is infinite and $\{u_1, u_2, ...\}$ is an infinite linearly independent set, then let V_m be the *m*-dimensional D-subspace of A spanned by $\{u_1, u_2, \ldots, u_m\}$. Define $R_n = \{r \in R \mid rV_m \subset V_m\}$.

Corollary IX.1.13

Corollary IX.1.13. If R is a primitive ring, then for some division ring D either R is isomorphic to the endomorphism ring of a finite dimensional vector space over D or for every $m \in \mathbb{N}$ there is subring R_m of R and an epimorphism of rings mapping $R_m \to \text{Hom}_D(V_m, V_m)$ where V_m is an n-dimensional vector space over D.

Proof. In the notation of the Jacobson Density Theorem (Theorem IX.1.12) with A as the faithful simple R-module and $D = \text{Hom}_R(A, A)$, we have $\alpha : R \to \text{Hom}_D(A, A)$ is a monomorphism such that $R \cong \text{Im}(\alpha)$ and $\text{Im}(\alpha)$ is dense in $\text{Hom}_D(A, A)$. If $\text{dim}_D(A) = n$ is finite, then $\textsf{Im}(\alpha) = \textsf{Hom}_D(A, A)$ by Theorem IX.1.9 (this also gives that $\textsf{Im}(\alpha)$ is left Artinian). So the first conclusion holds.

If dim_D(A) is infinite and $\{u_1, u_2, ...\}$ is an infinite linearly independent set, then let V_m be the m-dimensional D-subspace of A spanned by $\{u_1, u_2, \ldots, u_m\}$. Define $R_n = \{r \in R \mid rV_m \subset V_m\}$.

Corollary IX.1.13 (continued)

Corollary IX.1.13. If R is a primitive ring, then for some division ring D either R is isomorphic to the endomorphism ring of a finite dimensional vector space over D or for every $m \in \mathbb{N}$ there is subring R_m of R and an epimorphism of rings mapping $R_m \to \text{Hom}_D(V_m, V_m)$ where V_m is an n-dimensional vector space over D.

Proof (continued). If $r_1, r_2 \in R_m$ then $(r_1 + r_2)V_m = r_1V_m + r_2V_m \subset V_m$ since r_1V_m and r_2V_m are subset of V_m (and V_m is closed under addition), and $(r_1r_1)V_m = r_1(r_2V_m) \subset V_m$ since $r_2V_m \subset V_m$ and $r_1V_m \subset V_m$. So R_m is a subring of R. Define $\beta: R_m \to \text{Hom}_D(V_m, V_m)$ as the restriction of α_r to V_m : $\beta(r)=\alpha_r|_{V_m}$. By Exercise IX.1.A, β is a well-defined ring epimorphism and the second claim holds.

Theorem IX.1.14. The Wedderburn-Artin Theorem for Simple Artinian Rings.

The following conditions on a left Artinian ring R are equivalent:

- (i) R is simple;
- (ii) R is primitive;
- (iii) R is isomorphic to the endomorphism ring of a nonzero finite dimensional space V over a division ring D ;
- (iv) for some $b \in \mathbb{N}$, R is isomorphic to the ring of all $n \times n$ matrices over a division ring.

Proof. (i)⇒(ii). Let $I = \{r \in R \mid Rr = \{0\}\}\.$ Then I is the right annihilator of R (treating ring R as an R-module) and since R is a submodule of itself then I is an ideal of R by Theorem IX.1.4. Since R is hypothesized to be simple then either $I = R$ or $I = \{0\}$.

Theorem IX.1.14. The Wedderburn-Artin Theorem for Simple Artinian Rings.

The following conditions on a left Artinian ring R are equivalent:

- (i) R is simple;
- (ii) R is primitive;
- (iii) R is isomorphic to the endomorphism ring of a nonzero finite dimensional space V over a division ring D ;
- (iv) for some $b \in \mathbb{N}$, R is isomorphic to the ring of all $n \times n$ matrices over a division ring.

Proof. (i)⇒(ii). Let $I = \{r \in R \mid Rr = \{0\}\}\.$ Then I is the right annihilator of R (treating ring R as an R-module) and since R is a submodule of itself then I is an ideal of R by Theorem IX.1.4. Since R is hypothesized to be simple then either $I = R$ or $I = \{0\}$.

Proof (continued). Since R is a simple ring then (by Definition IX.1.1) $R^2\neq \{0\}$ and we cannot have $I=R$ (or else $Rr=\{0\}$ for all $r\in R;$ that is, $R^2 = \{0\}$). Hence $I = \{0\}$. Since R is left Artinian by hypothesis, the set of all nonzero left ideals of R contains a minimal left ideal J by Theorem VIII.1.4. Now J has no proper R-submodules (notice that an R-submodule of J would be a left ideal of R). We claim that annihilator $A(J) = \{0\}$ in R.

Proof (continued). Since R is a simple ring then (by Definition IX.1.1) $R^2\neq \{0\}$ and we cannot have $I=R$ (or else $Rr=\{0\}$ for all $r\in R;$ that is, $R^2=\{0\}).$ Hence $I=\{0\}.$ Since R is left Artinian by hypothesis, the set of all nonzero left ideals of R contains a minimal left ideal J by Theorem VIII.1.4. Now J has no proper R-submodules (notice that an R-submodule of J would be a left ideal of R). We claim that annihilator $\mathcal{A}(J) = \{0\}$ in R. ASSUME $\mathcal{A}(J) \neq \{0\}$. By Theorem IX.1.4, the left annihilator $A(J)$ is a left ideal of R. Since R is simple then we must have $A(J) = R$. Then $Ru = 0$ for every nonzero $u \in J$. Consequently, each such nonzero *u* is in $I = \{0\}$, a CONTRADICTION. Therefore $A(J) = \{0\}$. Also $RJ \neq \{0\}$ (or else $A(J) = R \neq \{0\}$). Thus J is a faithful simple R-module and so by Definition IX.1.5, "primitive ring," R is primitive.

Proof (continued). Since R is a simple ring then (by Definition IX.1.1) $R^2\neq \{0\}$ and we cannot have $I=R$ (or else $Rr=\{0\}$ for all $r\in R;$ that is, $R^2=\{0\}).$ Hence $I=\{0\}.$ Since R is left Artinian by hypothesis, the set of all nonzero left ideals of R contains a minimal left ideal J by Theorem VIII.1.4. Now J has no proper R-submodules (notice that an R-submodule of J would be a left ideal of R). We claim that annihilator $A(J) = \{0\}$ in R. ASSUME $A(J) \neq \{0\}$. By Theorem IX.1.4, the left annihilator $A(J)$ is a left ideal of R. Since R is simple then we must have $A(J) = R$. Then $Ru = 0$ for every nonzero $u \in J$. Consequently, each such nonzero u is in $I = \{0\}$, a CONTRADICTION. Therefore $A(J) = \{0\}$. Also $RJ \neq \{0\}$ (or else $A(J) = R \neq \{0\}$). Thus J is a faithful simple R-module and so by Definition IX.1.5, "primitive ring," R is primitive.

Proof (continued). (ii) \Rightarrow (iii). Since R is primitive by hypothesis, then by the Jacobson Density Theorem (Theorem $|X(1,12)|$ R is isomorphic to a dense ring T of endomorphisms of a vector space V over a division ring D . Since R is left Artinian by hypothesis then $R \cong T = \text{Hom}_{D}(V, V)$ and $\dim_D(V)$ is finite, as claimed.

(iii) \Leftrightarrow (iv). By Theorem VII.1.4, Hom_D(V, V) is isomorphic to a ring of $n \times n$ matrices with entries from a division ring.

Proof (continued). (ii) \Rightarrow (iii). Since R is primitive by hypothesis, then by the Jacobson Density Theorem (Theorem $|X(1,12)|$ R is isomorphic to a dense ring T of endomorphisms of a vector space V over a division ring D . Since R is left Artinian by hypothesis then $R \cong T = \text{Hom}_{D}(V, V)$ and $\dim_D(V)$ is finite, as claimed.

(iii) \Leftrightarrow (iv). By Theorem VII.1.4, Hom_D(V, V) is isomorphic to a ring of $n \times n$ matrices with entries from a division ring.

(iv) \Rightarrow (i). Exercise III.2.9(a) implies R has no proper ideals and so, by Definition IX.1.1, R is simple.
Theorem IX.1.14. The Wedderburn-Artin Theorem for Simple Artinian Rings (continued)

Proof (continued). (ii) \Rightarrow (iii). Since R is primitive by hypothesis, then by the Jacobson Density Theorem (Theorem $|X(1,12)|$ R is isomorphic to a dense ring T of endomorphisms of a vector space V over a division ring D . Since R is left Artinian by hypothesis then $R \cong T = \text{Hom}_{D}(V, V)$ and $\dim_D(V)$ is finite, as claimed.

(iii) \Leftrightarrow (iv). By Theorem VII.1.4, Hom_D(V, V) is isomorphic to a ring of $n \times n$ matrices with entries from a division ring.

(iv)⇒(i). Exercise III.2.9(a) implies R has no proper ideals and so, by Definition IX.1.1, R is simple.

l emma IX. 1.15

Lemma IX.1.15. Let V be a finite dimensional vector space over a division ring D . If A and B are simple faithful modules over the endomorphism ring $R = \text{Hom}_{D}(V, V)$, then A and B are isomorphic R-modules.

Proof. Since V is finite dimensional (say dim_D $(V) = n$), by Theorem VII.1.4 $R = \text{Hom}_{D}(V, V)$ is isomorphic to a ring of $n \times n$ matrices over a division ring. By Corollary VIII.1.12, R is Artinian (and so satisfies the descending chain condition). Then by Theorem VIII.1.4, R contains a (nonzero) minimal left ideal I.

l emma IX. 1.15

Lemma IX.1.15. Let V be a finite dimensional vector space over a division ring D . If A and B are simple faithful modules over the endomorphism ring $R = \text{Hom}_{D}(V, V)$, then A and B are isomorphic R-modules.

Proof. Since V is finite dimensional (say $\dim_D(V) = n$), by Theorem VII.1.4 $R = \text{Hom}_{D}(V, V)$ is isomorphic to a ring of $n \times n$ matrices over a division ring. By Corollary VIII.1.12, R is Artinian (and so satisfies the descending chain condition). Then by Theorem VIII.1.4, R contains a (nonzero) minimal left ideal I. Since A is faithful then (by Definition IX.1.5) the annihilator $A(A) = \{0\}$. So there exists $a \in A$ such that $Ia \neq \{0\}$. By Exercise IV.1.3, *Ia* is a nonzero submodule of A. Since A is simple, then $I_a = A$.

Lemma IX.1.15

Lemma IX.1.15. Let V be a finite dimensional vector space over a division ring D . If A and B are simple faithful modules over the endomorphism ring $R = \text{Hom}_D(V, V)$, then A and B are isomorphic R-modules.

Proof. Since V is finite dimensional (say $\dim_D(V) = n$), by Theorem VII.1.4 $R = \text{Hom}_{D}(V, V)$ is isomorphic to a ring of $n \times n$ matrices over a division ring. By Corollary VIII.1.12, R is Artinian (and so satisfies the descending chain condition). Then by Theorem VIII.1.4, R contains a (nonzero) minimal left ideal I. Since A is faithful then (by Definition IX.1.5) the annihilator $A(A) = \{0\}$. So there exists $a \in A$ such that $Ia \neq \{0\}$. By Exercise IV.1.3, *Ia* is a nonzero submodule of *A*. Since *A* is **simple, then** $Ia = A$ **.** Define $\theta : I \rightarrow Ia = A$ as $\theta(i) = ia$. Then θ is a nonzero R-module epimorphism; that is, $\theta \in \text{Hom}_R(A, A)$. By Lemma $IX.1.10, \theta$ is a monomorphism and epimorphism, and so is an isomorphism. That is, $A \cong I$. Similarly, $B \cong I$ and so $A \cong B$.

Lemma IX.1.15

Lemma IX.1.15. Let V be a finite dimensional vector space over a division ring D . If A and B are simple faithful modules over the endomorphism ring $R = \text{Hom}_D(V, V)$, then A and B are isomorphic R-modules.

Proof. Since V is finite dimensional (say $\dim_D(V) = n$), by Theorem VII.1.4 $R = \text{Hom}_{D}(V, V)$ is isomorphic to a ring of $n \times n$ matrices over a division ring. By Corollary VIII.1.12, R is Artinian (and so satisfies the descending chain condition). Then by Theorem VIII.1.4, R contains a (nonzero) minimal left ideal I. Since A is faithful then (by Definition IX.1.5) the annihilator $A(A) = \{0\}$. So there exists $a \in A$ such that $Ia \neq \{0\}$. By Exercise IV.1.3, *Ia* is a nonzero submodule of A. Since A is simple, then $I_a = A$. Define $\theta : I \to I_a = A$ as $\theta(i) = ia$. Then θ is a nonzero R-module epimorphism; that is, $\theta \in \text{Hom}_R(A, A)$. By Lemma IX.1.10, θ is a monomorphism and epimorphism, and so is an isomorphism. That is, $A \cong I$. Similarly, $B \cong I$ and so $A \cong B$.

Lemma IX.1.16

Lemma IX.1.16. Let V be a nonzero vector space over a division ring D and let R be the endomorphism ring $\text{Hom}_D(V,V)$. If $g: V \to V$ is a homomorphism of additive groups such that $gr = rg$ for all $r \in R$, then there exists $d \in D$ such that $g(v) = dv$ for all $v \in V$.

Proof. Let u be a nonzero element of V. We claim that u and $g(u)$ are linearly independent over D. If dim_D(V) = 1 then this is trivial, so we now consider the case dim_D $(V) \geq 2$.

Lemma IX.1.16. Let V be a nonzero vector space over a division ring D and let R be the endomorphism ring $\text{Hom}_D(V,V)$. If $g: V \to V$ is a homomorphism of additive groups such that $gr = rg$ for all $r \in R$, then there exists $d \in D$ such that $g(v) = dv$ for all $v \in V$.

Proof. Let u be a nonzero element of V. We claim that u and $g(u)$ are linearly independent over D. If dim_D $(V) = 1$ then this is trivial, so we now consider the case $\dim_D(V) \geq 2$. ASSUME $\{i, g(u)\}$ is linearly independent. Since R is dense in itself by Lemma IX.1.C, then there is $r \in R$ such that $r(u) = ru = 0$ and $r(g(u)) = rg(u) \neq 0$. But by hypothesis $f(g(u)) = rg(u) = gr(u) = g(r(u)) = g(0) = 0$, a CONTRADICTION to the fact that $r(g(u)) \neq 0$. So the assumption is false and $\{u, g(u)\}\$ is linearly independent.

Lemma IX.1.16. Let V be a nonzero vector space over a division ring D and let R be the endomorphism ring $\text{Hom}_D(V,V)$. If $g: V \to V$ is a homomorphism of additive groups such that $gr = rg$ for all $r \in R$, then there exists $d \in D$ such that $g(v) = dv$ for all $v \in V$.

Proof. Let u be a nonzero element of V. We claim that u and $g(u)$ are linearly independent over D. If dim_D $(V) = 1$ then this is trivial, so we now consider the case dim_D(V) \geq 2. ASSUME {*i*, $g(u)$ } is linearly independent. Since R is dense in itself by Lemma IX.1.C, then there is $r \in R$ such that $r(u) = ru = 0$ and $r(g(u)) = rg(u) \neq 0$. But by hypothesis $f(g(u)) = rg(u) = gr(u) = g(r(u)) = g(0) = 0$, a CONTRADICTION to the fact that $r(g(u)) \neq 0$. So the assumption is false and $\{u, g(u)\}\$ is linearly independent.

Lemma IX.1.16 (continued)

Lemma IX.1.16. Let V be a nonzero vector space over a division ring D and let R be the endomorphism ring $Hom_D(V, V)$. If $g: V \to V$ is a homomorphism of additive groups such that $gr = rg$ for all $r \in R$, then there exists $d \in D$ such that $g(v) = dv$ for all $v \in V$.

Proof (continued). Therefore for some $d \in D$, $g(u) = du$. If $v \in V$ then there exists $s \in R$ such that $s(u) = su = v$ because R is dense in itself. Consequently, since $s \in R = \text{Hom}_D(V, V)$, then

$$
g(v) = g(s(u)) = gs(u) = sg(u) = s(du) = ds(u) = dv,
$$

and since v is arbitrary, the claim holds.

Proposition IX.1.17

Proposition IX.1.17. Let V_1 and V_2 be vector spaces of finite dimension *n* over the division rings D_1 and D_2 , respectively.

\n- (i) If there is an isomorphism of rings
$$
Hom_{D_1}(V_1, V_2) \cong Hom_{D_2}(V_2, V_2)
$$
, then $dim_{D_1}(V_1) = dim_{D_2}(V_2)$ and D_1 is isomorphic to D_2 .
\n- (ii) If there is an isomorphism of rings $Mat_{n_1}(D_1) \cong Mat_{n_2}(D_2)$, then $n_1 = n_2$ and D_1 is isomorphic to D_2 .
\n

Proof. (i) It is argued in the example after Definition IX.1.5 that each V_i is a faithful $\mathsf{Hom}_{D_i}(V_i,V_i)$ -module for $i=1,2.$ Let $R=\mathsf{Hom}_{D_1}(V_1,V_1)$ and let σ be the hypothesized isomorphism,

 σ : $r = \text{Hom}_{D_1}(V_1, V_1) \rightarrow \text{Hom}_{D_2}(V_2, V_2)$. So V_2 is a faithful simple *R*-module (or $\text{\sf Hom}_{D_1}(V_1,V_1)$ -module) by pullback along σ ; that is,

$$
rv - \sigma(r)v \text{ for } r \in R, v \in V_2. \qquad (*)
$$

By Lemma IX.1.15 (with $A = V_1$ and $B = V_2$) there is an R-module isomorphism $\varphi: V_1 \to V_2$.

Proposition IX.1.17

Proposition IX.1.17. Let V_1 and V_2 be vector spaces of finite dimension *n* over the division rings D_1 and D_2 , respectively.

\n- (i) If there is an isomorphism of rings
$$
Hom_{D_1}(V_1, V_2) \cong Hom_{D_2}(V_2, V_2)
$$
, then $dim_{D_1}(V_1) = dim_{D_2}(V_2)$ and D_1 is isomorphic to D_2 .
\n- (ii) If there is an isomorphism of rings $Mat_{n_1}(D_1) \cong Mat_{n_2}(D_2)$, then $n_1 = n_2$ and D_1 is isomorphic to D_2 .
\n

Proof. (i) It is argued in the example after Definition IX.1.5 that each V_i is a faithful $\mathsf{Hom}_{D_i}(V_i,V_i)$ -module for $i=1,2.$ Let $R=\mathsf{Hom}_{D_1}(V_1,V_1)$ and let σ be the hypothesized isomorphism,

 σ : $r = \mathsf{Hom}_{D_1}(V_1,V_1) \to \mathsf{Hom}_{D_2}(V_2,V_2)$. So V_2 is a faithful simple *R*-module (or $\mathsf{Hom}_{D_1}(V_1,V_1)$ -module) by pullback along σ ; that is,

$$
rv - \sigma(r)v \text{ for } r \in R, v \in V_2. \qquad (*)
$$

By Lemma IX.1.15 (with $A = V_1$ and $B = V_2$) there is an R-module isomorphism $\varphi: V_1 \to V_2$.

Proposition IX.1.17

Proposition IX.1.17 (continued 1)

Proof (continued). For each $v \in V_1$ and $f \in R$, $\varphi(f(v))=f\varphi(v)=\sigma(f)[\varphi(v)]$ by $(*)$. With $x\in V_2$ and $v=\varphi^{-1}(w)$ we then have $\varphi(f(\varphi^{-1}(w)))=\sigma(f)$ v for each $w\in V_2$ and $f\in R.$ That is, $\varphi f \varphi^{-1} = \sigma(f)$ and this is a homomorphism (not necessarily an isomorphism since $f\in{\sf Hom}_{D_1}(V_1,V_1)$ is a homomorphism) of additive $\mathsf{groups}\ \mathsf{V_2}\to\mathsf{V_2}.$ For each $d\in D_i,$ let $\alpha_d:V_i\to V_i$ be the homomorphism of additive groups defined by the mapping $x \mapsto dx$ (for $i = 1, 2$). Now $\alpha_d = 0$ if and only if $d = 0$ (since $dx = 0$ for $d \neq 0$ implies $d^{-1}dx = d^{-1}0$ or $x = 0$ since d is in a division ring). For $f \in R = \mathsf{Hom}_{D_1}(V_1,V_1)$ and $d \in D_1$, we have for $x \in V_1$ that $f \alpha_d(x) = f dx = f (dx) = df (x) = \alpha_d f (x)$, so $f \alpha_d = \alpha_d f$.

Proposition IX.1.17 (continued 1)

Proof (continued). For each $v \in V_1$ and $f \in R$, $\varphi(f(v))=f\varphi(v)=\sigma(f)[\varphi(v)]$ by $(*)$. With $x\in V_2$ and $v=\varphi^{-1}(w)$ we then have $\varphi(f(\varphi^{-1}(w)))=\sigma(f)$ v for each $w\in V_2$ and $f\in R.$ That is, $\varphi f \varphi^{-1} = \sigma(f)$ and this is a homomorphism (not necessarily an isomorphism since $f\in{\sf Hom}_{D_1}(V_1,V_1)$ is a homomorphism) of additive groups $V_2\to V_2.$ For each $d\in D_i$, let $\alpha_d:V_i\to V_i$ be the homomorphism of additive groups defined by the mapping $x \mapsto dx$ (for $i = 1, 2$). Now $\alpha_d = 0$ if and only if $d = 0$ (since $dx = 0$ for $d \neq 0$ implies $d^{-1}dx=d^{-1}0$ or $x=0$ since d is in a division ring). For $f \in R = \mathsf{Hom}_{D_1}(V_1,V_1)$ and $d \in D_1$, we have for $x \in V_1$ that $f \alpha_d(x) = f dx = f (dx) = df (x) = \alpha_d f (x)$, so $f \alpha_d = \alpha_d f$. Consequently,

$$
(\varphi \alpha_d \varphi^{-1})(\sigma f) = \varphi \alpha_d \varphi^{-1}(\varphi f \varphi^{-1}) \text{ since } \varphi f \varphi^{-1} = \sigma(f)
$$

=
$$
\varphi \alpha_d f \varphi^{-1} = \varphi f \alpha_d \varphi^{-1} \text{ since } f \alpha_d = \alpha_d f
$$

=
$$
\varphi f \varphi^{-1} \varphi \alpha_d \varphi^{-1} = (\sigma f)(\varphi \alpha_d \varphi^{-1}) \text{ since } \varphi f \varphi^{-1} = \sigma f.
$$

Proposition IX.1.17 (continued 1)

Proof (continued). For each $v \in V_1$ and $f \in R$, $\varphi(f(v))=f\varphi(v)=\sigma(f)[\varphi(v)]$ by $(*)$. With $x\in V_2$ and $v=\varphi^{-1}(w)$ we then have $\varphi(f(\varphi^{-1}(w)))=\sigma(f)$ v for each $w\in V_2$ and $f\in R.$ That is, $\varphi f \varphi^{-1} = \sigma(f)$ and this is a homomorphism (not necessarily an isomorphism since $f\in{\sf Hom}_{D_1}(V_1,V_1)$ is a homomorphism) of additive groups $V_2\to V_2.$ For each $d\in D_i$, let $\alpha_d:V_i\to V_i$ be the homomorphism of additive groups defined by the mapping $x \mapsto dx$ (for $i = 1, 2$). Now $\alpha_d = 0$ if and only if $d = 0$ (since $dx = 0$ for $d \neq 0$ implies $d^{-1}dx=d^{-1}0$ or $x=0$ since d is in a division ring). For $f \in R = \mathsf{Hom}_{D_1}(V_1,V_1)$ and $d \in D_1$, we have for $x \in V_1$ that $f \alpha_d(x) = f dx = f (dx) = df (x) = \alpha_d f (x)$, so $f \alpha_d = \alpha_d f$. Consequently,

$$
(\varphi \alpha_d \varphi^{-1})(\sigma f) = \varphi \alpha_d \varphi^{-1}(\varphi f \varphi^{-1}) \text{ since } \varphi f \varphi^{-1} = \sigma(f)
$$

=
$$
\varphi \alpha_d f \varphi^{-1} = \varphi f \alpha_d \varphi^{-1} \text{ since } f \alpha_d = \alpha_d f
$$

=
$$
\varphi f \varphi^{-1} \varphi \alpha_d \varphi^{-1} = (\sigma f)(\varphi \alpha_d \varphi^{-1}) \text{ since } \varphi f \varphi^{-1} = \sigma f.
$$

Proposition IX.1.17 (continued 2)

Proof (continued). Now $g = \varphi \alpha_d \varphi^{-1} : V_2 \to V_2$ is a homomorphism and this last equation shows that $g(\sigma f) = \sigma f$)g for all φf for every $\sigma f\in{\sf Hom}_{D_2}({\sf V}_2,{\sf V}_2)$ (since σ is surjective [onto; it is an isomorphism], σf for $f\in{\sf Hom}_{D_1}(V_1,V_1)$ includes all elements of ${\sf Hom}_{D_2}(V)$ 2, $V_2)$). So by Lemma IX.1.16 (with $V=V_2)$ implies that there exists $d^*\in D_2$ such that ${\pmb g} = \pmb \varphi \pmb \alpha_{\pmb d} \pmb \varphi^{-\pmb 1} = \pmb \alpha_{\pmb d^*}.$ Let $\tau : D_1 \to D_2$ be the map given by $\tau(d) = d^*.$ Then for every $d\in D_1$, $g=\varphi\alpha_d\varphi^{-1}=\alpha_{d^*}=\alpha_{\tau(d)}.$ We now show that $\tau:D_1\rightarrow D_2$ is an isomorphism. If $d,d'\in D_1$ then $\tau(d+d')=(d+d')^*$ where $\varphi \alpha_{d+d'} \varphi^{-1} = \alpha_{(d+d')^*}.$

Proposition IX.1.17 (continued 2)

Proof (continued). Now $g = \varphi \alpha_d \varphi^{-1} : V_2 \to V_2$ is a homomorphism and this last equation shows that $g(\sigma f) = \sigma f$)g for all φf for every $\sigma f\in{\sf Hom}_{D_2}({\sf V}_2,{\sf V}_2)$ (since σ is surjective [onto; it is an isomorphism], σf for $f\in{\sf Hom}_{D_1}(V_1,V_1)$ includes all elements of ${\sf Hom}_{D_2}(V)$ 2, $V_2)$). So by Lemma IX.1.16 (with $V=V_2)$ implies that there exists $d^*\in D_2$ such that $\mathsf{g} = \varphi \alpha_{\mathsf{d}} \varphi^{-1} = \alpha_{\mathsf{d}^*}.$ Let $\tau : D_1 \to D_2$ be the map given by $\tau(\mathsf{d}) = \mathsf{d}^*.$ Then for every $d\in D_1$, $g=\varphi\alpha_d\varphi^{-1}=\alpha_{\bm d^*}=\alpha_{\tau(\bm d)}.$ We now show that $\tau:D_1\rightarrow D_2$ is an isomorphism. If $d,d'\in D_1$ then $\tau(d+d')=(d+d')^*$ **where** $\varphi \alpha_{\bm{d+d'}} \varphi^{-1} = \alpha_{(\bm{d+d'})^*}.$ As shown in the proof of Theorem IX.1.12, we have $\alpha_{d+d'} = \alpha_d + \alpha_{d'}$ and so

$$
\varphi \alpha_{d+d'} \varphi^{-1} = \varphi(\alpha_d + \alpha_{d'}) \varphi^{-1} = \varphi \alpha_d \varphi^{-1} + \varphi \alpha_{d'} \varphi^{-1}
$$

$$
=\alpha_{d^*}+\alpha_{(d')^*}=\alpha_{(d+d')^*},
$$

so that $\tau(d + d') = (d + d')^* = d^* + (d')^*.$

Proposition IX.1.17 (continued 2)

Proof (continued). Now $g = \varphi \alpha_d \varphi^{-1} : V_2 \to V_2$ is a homomorphism and this last equation shows that $g(\sigma f) = \sigma f$)g for all φf for every $\sigma f\in{\sf Hom}_{D_2}({\sf V}_2,{\sf V}_2)$ (since σ is surjective [onto; it is an isomorphism], σf for $f\in{\sf Hom}_{D_1}(V_1,V_1)$ includes all elements of ${\sf Hom}_{D_2}(V)$ 2, $V_2)$). So by Lemma IX.1.16 (with $V=V_2)$ implies that there exists $d^*\in D_2$ such that $\mathsf{g} = \varphi \alpha_{\mathsf{d}} \varphi^{-1} = \alpha_{\mathsf{d}^*}.$ Let $\tau : D_1 \to D_2$ be the map given by $\tau(\mathsf{d}) = \mathsf{d}^*.$ Then for every $d\in D_1$, $g=\varphi\alpha_d\varphi^{-1}=\alpha_{\bm d^*}=\alpha_{\tau(\bm d)}.$ We now show that $\tau:D_1\rightarrow D_2$ is an isomorphism. If $d,d'\in D_1$ then $\tau(d+d')=(d+d')^*$ where $\varphi \alpha_{\bm{d}+\bm{d}'}\varphi^{-1}=\alpha_{(\bm{d}+\bm{d}')^*}.$ As shown in the proof of Theorem IX.1.12, we have $\alpha_{\bm{d}+\bm{d}'}=\alpha_{\bm{d}}+\alpha_{\bm{d}'}$ and so

$$
\varphi \alpha_{d+d'} \varphi^{-1} = \varphi(\alpha_d + \alpha_{d'}) \varphi^{-1} = \varphi \alpha_d \varphi^{-1} + \varphi \alpha_{d'} \varphi^{-1}
$$

$$
=\alpha_{d^*}+\alpha_{(d')^*}=\alpha_{(d+d')^*},
$$

so that $\tau(d + d') = (d + d')^* = d^* + (d')^*.$

Proposition IX.1.17 (continued 3)

Proof (continued). Similarly, as shown in the proof of Theorem IX.1.12, we have $\alpha_{\bm{d}\bm{d}'}=\alpha_{\bm{d}}\alpha_{\bm{d}'}$ and so

$$
\alpha_{(dd')}^* = \varphi \alpha_{dd'} \varphi^{-1} = \varphi \alpha_d \alpha_{d'} \varphi^{-1} = (\varphi \alpha_d \varphi^{-1})(\varphi \alpha_{d'} \varphi^{-1}) = \alpha_{d^*} \alpha_{(d')^*}
$$

so that $\tau(dd')=\tau(d)\tau(d').$ So τ is a ring homomorphism (by Definition **III.1.7).** Now suppose $d \neq d'$. then there is nonzero $v \in V_1$ such that $dv_1 \neq d'v_1$ (or else $dv_1 = d'v_1$ for all $v_1 \in V_1$ and so $(d - d')v_1 = 0$ for all v_1 ∈ V_1 ; if $d - d' \neq 0$ ∈ D_2 then $(d - d')^{-1}$ exists since D_2 is a division ring and so $(d-d')^{-1}(d-d')v_1=(d-d')^{-1}0$ or $v_1=0$, a contradiction to the choice of v_1). So $\alpha_d \neq \alpha_{d'}$ because $\alpha_d v_1 = dv_1 \neq d'v_1 = \alpha_{d'} v_1$.

Proposition IX.1.17 (continued 3)

Proof (continued). Similarly, as shown in the proof of Theorem IX.1.12, we have $\alpha_{\bm{d}\bm{d}'}=\alpha_{\bm{d}}\alpha_{\bm{d}'}$ and so

$$
\alpha_{(\mathbf{d}d')^*} = \varphi \alpha_{\mathbf{d}d'} \varphi^{-1} = \varphi \alpha_d \alpha_{\mathbf{d}'} \varphi^{-1} = (\varphi \alpha_{\mathbf{d}} \varphi^{-1})(\varphi \alpha_{\mathbf{d}'} \varphi^{-1}) = \alpha_{\mathbf{d}^*} \alpha_{(\mathbf{d}')^*}
$$

so that $\tau(dd')=\tau(d)\tau(d').$ So τ is a ring homomorphism (by Definition III.1.7). Now suppose $d\neq d'$. then there is nonzero $v\in V_1$ such that $dv_1 \neq d'v_1$ (or else $dv_1 = d'v_1$ for all $v_1 \in V_1$ and so $(d-d')v_1 = 0$ for all $v_1 \in V_1$; if $d - d' \neq 0 \in D_2$ then $(d - d')^{-1}$ exists since D_2 is a division ring and so $(d-d')^{-1}(d-d')\nu_1=(d-d')^{-1}0$ or $\nu_1=0$, a contradiction to the choice of v_1). So $\alpha_d \neq \alpha_{d'}$ because $\alpha_d v_1 = dv_1 \neq d'v_1 = \alpha_{d'} v_1$.

Proposition IX.1.17 (continued 4)

<code>Proof</code> (continued). Now $\varphi:V_1\to V_2$ and $\varphi^{-1}:V_2\to V_1$ are isomorphisms (and so are surjective/onto and injective/one to one) so for some $v_2\in V_2$ we have $\varphi^{-1}v_2=v_1$ and

$$
\alpha_{\tau(d)} v_2 = \varphi \alpha_d \varphi^{-1} v_2 = \varphi \alpha_d v_1
$$

\n
$$
\neq \varphi \alpha_{d'} v_1 \text{ since } \varphi \text{ is one to one}
$$

\n
$$
= \varphi \alpha_{d'} \varphi^{-1} v_2 = \alpha_{\tau(d')} v_2,
$$

so $\alpha_{\tau(\bm{d})}\neq \alpha_{\tau(\bm{d}')}$, or $\alpha_{\bm{d}^*}\neq \alpha_{(\bm{d}')^*}.$ So α d* $=\varphi\alpha$ d $\varphi^{-1}\neq \varphi\alpha$ d' $\varphi^{-1}=\alpha$ (d')*. Since both α d* and α _{(d')*} also map $V_2 \to V_2$, this means for some $v \in V_2$ we have $\alpha_{d^*}(v) \neq \alpha_{(d')^*}(v)$ or $d^*v \neq (d')^*v$. If $d^* = (d')^*$ then $d^*v = (d')^*v$ and so we must have $d^* \neq (d')^*$; that is, $\tau(d) \neq \tau(d')$. Hence τ is a monomorphism (one to one and onto homomorphism).

Proposition IX.1.17 (continued 4)

<code>Proof</code> (continued). Now $\varphi:V_1\to V_2$ and $\varphi^{-1}:V_2\to V_1$ are isomorphisms (and so are surjective/onto and injective/one to one) so for some $v_2\in V_2$ we have $\varphi^{-1}v_2=v_1$ and

$$
\alpha_{\tau(d)} v_2 = \varphi \alpha_d \varphi^{-1} v_2 = \varphi \alpha_d v_1
$$

\n
$$
\neq \varphi \alpha_{d'} v_1 \text{ since } \varphi \text{ is one to one}
$$

\n
$$
= \varphi \alpha_{d'} \varphi^{-1} v_2 = \alpha_{\tau(d')} v_2,
$$

so $\alpha_{\tau(\bm{d})}\neq \alpha_{\tau(\bm{d}')}$, or $\alpha_{\bm{d}^*}\neq \alpha_{(\bm{d}')^*}.$ So $\alpha_{\bm d^*}=\varphi\alpha_{\bm d}\varphi^{-1}\neq \varphi\alpha_{\bm d'}\varphi^{-1}=\alpha_{(\bm d')^*}.$ Since both $\alpha_{\bm d^*}$ and $\alpha_{(\bm d')^*}$ also map $V_2\to V_2$, this means for some $v\in V_2$ we have $\alpha_{\bm{d}^*}(v)\neq \alpha_{(\bm{d}')^*}(v)$ or $d^*v \neq (d')^*v$. If $d^* = (d')^*$ then $d^*v = (d')^*v$ and so we must have $d^* \neq (d')^*$; that is, $\tau(d) \neq \tau(d')$. Hence τ is a monomorphism (one to one and onto homomorphism).

Proposition IX.1.17 (continued 5)

Proof (continued). Reversing the roles of D_1 and D_2 in the previous argument (and replacing φ and σ with φ^{-1} and σ^{-1} , respectively) yields that for every $d_2 \in D_2$ there exists $d_1 \in D_1$ such that $\varphi^{-1}\alpha_{\bm{d}_2}\varphi=\alpha_{\bm{d}_1}:V_1\to V_1$, whence $\alpha_{\bm{d}_2}=\varphi\alpha_{\bm{d}_1}\varphi^{-1}=\alpha_{\tau(\bm{d}_1)}.$ So $\tau(d_1) = d_2$ and τ is surjective/onto. Hence $\tau : D_1 \rightarrow D_2$ is an isomorphism and so D_1 is isomorphic to D_2 , as claimed.

Furthermore, for every $d \in D_1$ and $v \in V_1$.

$$
\varphi(dv) = \varphi \alpha_d(v) = \varphi \alpha_d \varphi^{-1} \varphi(v)
$$

= $\alpha_{\tau(d)} \varphi(v)$ since $\alpha_{\tau(d)} = \varphi \alpha_d \varphi^{-1}$
= $\tau(d) \varphi(v)$ by definition of $\alpha_{\tau(d)}$. (**)

Proposition IX.1.17 (continued 5)

Proof (continued). Reversing the roles of D_1 and D_2 in the previous argument (and replacing φ and σ with φ^{-1} and σ^{-1} , respectively) yields that for every $d_2 \in D_2$ there exists $d_1 \in D_1$ such that $\varphi^{-1}\alpha_{\bm{d}_2}\varphi=\alpha_{\bm{d}_1}:V_1\to V_1$, whence $\alpha_{\bm{d}_2}=\varphi\alpha_{\bm{d}_1}\varphi^{-1}=\alpha_{\tau(\bm{d}_1)}.$ So $\tau(d_1) = d_2$ and τ is surjective/onto. Hence $\tau : D_1 \to D_2$ is an isomorphism and so D_1 is isomorphic to D_2 , as claimed.

Furthermore, for every $d \in D_1$ and $v \in V_1$,

$$
\varphi(dv) = \varphi \alpha_d(v) = \varphi \alpha_d \varphi^{-1} \varphi(v)
$$

= $\alpha_{\tau(d)} \varphi(v)$ since $\alpha_{\tau(d)} = \varphi \alpha_d \varphi^{-1}$
= $\tau(d) \varphi(v)$ by definition of $\alpha_{\tau(d)}$. (**)

Consider the sets $A = \{u_1, u_2, \dots, u_k\}$ and $B = \{\varphi(u_1), \varphi(u_2), \dots, \varphi(u_k)\}.$ Suppose A is D_1 -linearly independent; then for $r_1, r_2, \ldots, r_k \in D_1$ we have that $r_1u_1 + r_2u_2 + \cdots + r_ku_k = 0$ implies that $r_1 = r_2 = \cdots = r_k = 0$.

Proposition IX.1.17 (continued 5)

Proof (continued). Reversing the roles of D_1 and D_2 in the previous argument (and replacing φ and σ with φ^{-1} and σ^{-1} , respectively) yields that for every $d_2 \in D_2$ there exists $d_1 \in D_1$ such that $\varphi^{-1}\alpha_{\bm{d}_2}\varphi=\alpha_{\bm{d}_1}:V_1\to V_1$, whence $\alpha_{\bm{d}_2}=\varphi\alpha_{\bm{d}_1}\varphi^{-1}=\alpha_{\tau(\bm{d}_1)}.$ So $\tau(d_1) = d_2$ and τ is surjective/onto. Hence $\tau : D_1 \to D_2$ is an isomorphism and so D_1 is isomorphic to D_2 , as claimed.

Furthermore, for every $d \in D_1$ and $v \in V_1$,

$$
\varphi(dv) = \varphi \alpha_d(v) = \varphi \alpha_d \varphi^{-1} \varphi(v)
$$

= $\alpha_{\tau(d)} \varphi(v)$ since $\alpha_{\tau(d)} = \varphi \alpha_d \varphi^{-1}$
= $\tau(d) \varphi(v)$ by definition of $\alpha_{\tau(d)}$. (**)

Consider the sets $A = \{u_1, u_2, \ldots, u_k\}$ and $B = \{\varphi(u_1), \varphi(u_2), \ldots, \varphi(u_k)\}.$ Suppose A is D_1 -linearly independent; then for $r_1, r_2, \ldots, r_k \in D_1$ we have that $r_1u_1 + r_2u_2 + \cdots + r_ku_k = 0$ implies that $r_1 = r_2 = \cdots = r_k = 0$.

Proposition IX.1.17 (continued 6)

Proof (continued). Suppose $s_1\varphi(u_1) + s_2\varphi(u_2) + \cdots + s_k\varphi(u_k) = 0$ for $s_1, s_2, \ldots, s_k \in D_2$. Since $\tau : D_1 \to D_2$ is an isomorphism, then there are $r_1,r_2,\ldots,r_k\in D_1$ such that $\tau(r_1)=s_1,\tau(r_2)=s_2,\ldots,\tau(r_k)=s_k$ and so $\tau(r_1)\varphi(u_1) + \tau(r_2)\varphi(u_2) + \cdots + \tau(r_k)\varphi(u_k) = 0$, or by $(**)$, $\varphi(r_1u_1) + \varphi(r_2u_2) + \cdots + \varphi(r_ku_k) = 0$, or since φ is a homomorphism, $\varphi(r_1u_1 + r_2u_2 + \cdots + r_ku_n) = 0$. Since φ is an isomorphism, it is injective (one to one) and so $r_1u_1 + r_2u_2 + \cdots + r_ku_k = 0$. Since A is linearly independent, then $r_1 = r_2 = \cdots = r_k = 0$. Since τ is a homomorphism, $s_1 = s_2 = \cdots = s_k = 0.$

Proposition IX.1.17 (continued 6)

Proof (continued). Suppose $s_1\varphi(u_1) + s_2\varphi(u_2) + \cdots + s_k\varphi(u_k) = 0$ for $s_1, s_2, \ldots, s_k \in D_2$. Since $\tau : D_1 \to D_2$ is an isomorphism, then there are $r_1,r_2,\ldots,r_k\in D_1$ such that $\tau(r_1)=s_1,\tau(r_2)=s_2,\ldots,\tau(r_k)=s_k$ and so $\tau(r_1)\varphi(u_1) + \tau(r_2)\varphi(u_2) + \cdots + \tau(r_k)\varphi(u_k) = 0$, or by $(**)$, $\varphi(r_1u_1) + \varphi(r_2u_2) + \cdots + \varphi(r_ku_k) = 0$, or since φ is a homomorphism, $\varphi(r_1u_1 + r_2u_2 + \cdots + r_ku_n) = 0$. Since φ is an isomorphism, it is injective (one to one) and so $r_1u_1 + r_2u_2 + \cdots + r_ku_k = 0$. Since A is linearly independent, then $r_1 = r_2 = \cdots = r_k = 0$. Since τ is a homomorphism, $\mathsf{s}_1=\mathsf{s}_2=\cdots=\mathsf{s}_\mathsf{k}=\mathsf{0}.$ Similarly, since φ^{-1} and σ^{-1} are isomorphisms, if B is linearly independent then A is linearly independent. So A is linearly independent if and only if B is. Therefore A is a basis for V_1 if and only if B is a basis for V_2 and so dim $_{D_1}(V_1)=\dim_{D_2}(V_2)$, as claimed (recall that V_1 and V_2 are finite dimensional, by hypothesis).

Proposition IX.1.17 (continued 6)

Proof (continued). Suppose $s_1\varphi(u_1) + s_2\varphi(u_2) + \cdots + s_k\varphi(u_k) = 0$ for $s_1, s_2, \ldots, s_k \in D_2$. Since $\tau : D_1 \to D_2$ is an isomorphism, then there are $r_1,r_2,\ldots,r_k\in D_1$ such that $\tau(r_1)=s_1,\tau(r_2)=s_2,\ldots,\tau(r_k)=s_k$ and so $\tau(r_1)\varphi(u_1) + \tau(r_2)\varphi(u_2) + \cdots + \tau(r_k)\varphi(u_k) = 0$, or by $(**)$, $\varphi(r_1u_1) + \varphi(r_2u_2) + \cdots + \varphi(r_ku_k) = 0$, or since φ is a homomorphism, $\varphi(r_1u_1 + r_2u_2 + \cdots + r_ku_n) = 0$. Since φ is an isomorphism, it is injective (one to one) and so $r_1u_1 + r_2u_2 + \cdots + r_ku_k = 0$. Since A is linearly independent, then $r_1 = r_2 = \cdots = r_k = 0$. Since τ is a homomorphism, $s_1 = s_2 = \cdots = s_k = 0.$ Similarly, since φ^{-1} and σ^{-1} are isomorphisms, if B is linearly independent then A is linearly independent. So A is linearly independent if and only if B is. Therefore A is a basis for V_1 if and only if B is a basis for V_2 and so $\mathsf{dim}_{D_1}(V_1) = \mathsf{dim}_{D_2}(V_2)$, as claimed (recall that V_1 and V_2 are finite dimensional, by hypothesis).

Proposition IX.1.17 (continued 7)

Proof (continued). (ii) Suppose there is an isomorphism of rings

Mat_{n1}(D₁)
$$
\cong
$$
 Mat_{n2}(D₂). By Theorem VII.1.4,
Hom<sub>D₁^{op}(V₁, V₁) \cong Mat_{n₁}((D₁^{op})^{op}) and
Hom<sub>D₂^{op}(V₂, V₂) \cong Mat_{n₂}((D₂^{op})^{op}). By Exercise III.1.17(d),
(D₁^{op})^{op} = D₁ and (D₂^{op})^{op} = D₂, so</sub></sub>

 $\mathsf{Hom}_{D_1^{\mathsf{op}}}(V_1,V_1)\cong \mathsf{Mat}_{n_1}(D_1)\cong \mathsf{Mat}_{n_2}(D_2)\cong \mathsf{Hom}_{D_2^{\mathsf{op}}}(V_2,V_2).$

Proposition IX.1.17 (continued 7)

Proof (continued). (ii) Suppose there is an isomorphism of rings

Mat_{n₁}(D₁)
$$
\cong
$$
 Mat_{n₂}(D₂). By Theorem VII.1.4,
Hom<sub>D₁^{op}(V₁, V₁) \cong Mat_{n₁}((D₁^{op})^{op}) and
Hom<sub>D₂^{op}(V₂, V₂) \cong Mat_{n₂}((D₂^{op})^{op}). By Exercise III.1.17(d),
(D₁^{op})^{op} = D₁ and (D₂^{op})^{op} = D₂, so</sub></sub>

 $\mathsf{Hom}_{D_1^{\mathsf{opp}}}(V_1,V_1)\cong \mathsf{Mat}_{n_1}(D_1)\cong \mathsf{Mat}_{n_2}(D_2)\cong \mathsf{Hom}_{D_2^{\mathsf{opp}}}(V_2,V_2).$ 1 2

By part (i), $n_1 = \dim_{D_1^{\text{op}}} (V_1, V_1) = \dim_{D_2^{\text{op}}} (V_2, V_2) = n_2$ and D_1^{op} By Exercise III.1.17(e), $D_1 \cong D_2$, as claimed. $D_1^{\text{op}} \cong D_2^{\text{op}}$ 2^{op} .

Proposition IX.1.17 (continued 7)

Proof (continued). (ii) Suppose there is an isomorphism of rings

Mat_{n1}(D₁)
$$
\cong
$$
 Mat_{n2}(D₂). By Theorem VII.1.4,
Hom<sub>D₁^{op}(V₁, V₁) \cong Mat_{n1}((D₁^{op})^{op}) and
Hom<sub>D₂^{op}(V₂, V₂) \cong Mat_{n2}((D₂^{op})^{op}). By Exercise III.1.17(d),
(D₁^{op})^{op} = D₁ and (D₂^{op})^{op} = D₂, so
Hom_{D₁^{op}(V₁, V₁) \cong Mat_{n1}(D₁) \cong Mat_{n2}(D₂) \cong Hom_{D₂^{op}(V₂, V₂).}}</sub></sub>

By part (i), $n_1 = \dim_{D_1^{\text{op}}}(V_1, V_1) = \dim_{D_2^{\text{op}}}(V_2, V_2) = n_2$ and D_1^{op} By Exercise III.1.17(e), $D_1 \cong D_2$, as claimed. $D_1^{\text{op}} \cong D_2^{\text{op}}$ 2^{op} .