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Chapter IX. The Structure of Rings
IX.1. Simple and Primitive Rings—Proofs of Theorems
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Lemma IX.1.A

Lemma IX.1.A

Lemma IX.1.A. Every simple module A is cyclic. In fact, A = Ra for
every nonzero a ∈ A.

Proof. First, Ra is a submodule of A by Theorem IV.1.5(i). Consider
B = {c ∈ A | Rc = {0}}. Notice that c1, c2 ∈ B implies
R(c1 − c2) = Rc1 − Rc2 = {0} − {0} = {0}, so c1 − c2 ∈ B and B is a
subgroup of A (by Theorem I.2.5). By Definition IV.1.3, “submodule,” B
is a submodule of A (i.e., a sub-R-module of A).

Since A is simple, then
Ra is either {0} of A and similarly for B. Also, since A is simple, then by
Definition IX.1.1, RA 6= {0}; but RB = {0} and we must have B 6= A.
This implies that B = {0} and so Ra = {0} only when a = 0. So for all
a ∈ A where a 6= 0 we must have Ra = A, as claimed. Now the cyclic
submodule of A generated by a consists of {ra + na | r ∈ Rmb ∈ Z} by
Theorem IV.1.5(ii). But Ra = A and so Ra includes all of
{ra + na | r ∈ Rmb ∈ Z} and hence R-module A is cyclic and generated by
a.
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Lemma IX.1.B

Lemma IX.1.B

Lemma IX.1.B. Let A = Ra be a cyclic R-module. Define θ : R → A as
θ(r) = ra. Then R/Ker(θ) (and hence A) has no proper submodules if and
only if Ker(θ) is a maximal left ideal of R.

Proof. Define θ : R → A as θ(r) = ra. By Theorem IV.1.5(i), θ is an
R-module epimorphism (onto homomorphism). The kernel of θ is its
kernel as a homomorphism of abelian groups (by definition, see Section
IV.1) and so the kernel of θ determines a subgroup of the additive abelian
group of R by Exercise I.2.9(a).

For b ∈ Ker(θ) and r ∈ R we have
rb ∈ Ker(θ) since θ(rb) = (rb)a = r(ba) = rθ(b) = r0 = 0. So by
Definition IV.1.3, I = Ker(θ) is a submodule of A. By the First
Isomorphism Theorem (Theorem IV.1.7), R/I = R/Ker(θ) ∼= A. By
Theorem IV.1.10, every submodule of R/I is of the form J/I , where J is a
left ideal of R that contains I = Ker(θ). So module R/Ker(θ) = R/I (and
hence A since R/I ∼= A) has no proper submodules if and only if I = Ker is
a maximal left ideal of R.
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Theorem IX.1.3

Theorem IX.1.3

Theorem IX.1.3. A left module A over ring R is simple if and only if A is
isomorphic to R/I for some regular maximal left ideal I . This holds also if
we replace “left” with “right.”

Proof. Suppose A is simple. Then by Note IX.1.A, A = Ra ∼= R/I where
U is some maximal left ideal. Since A = Ra then a = ea for some e ∈ R.
So for any r ∈ R, ra = req or (r − re)a = 0, whence r − re ∈ Ker(θ) = I
where θ : R → A is the epimorphism of Lemma IX.1.B defined as
θ(r) = ra. Therefore I is regular.

Suppose I is a regular maximal left ideal of R such that A ∼= R/I is of the
form J/I where J is a left ideal of R that contains I . So module R/I ∼= A
has no proper submodules since I is a maximal left ideal. So to show that
A ∼= R/I is simple we need to show that RA = R(R/I ) 6= {0}.
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Theorem IX.1.3

Theorem IX.1.3 (continued)

Theorem IX.1.3. A left module A over ring R is simple if and only if A is
isomorphic to R/I for some regular maximal left ideal I . This holds also if
we replace “left” with “right.”

Proof (continued). ASSUME R(R/I ) = {0}. Then for all r ∈ R,
r(e + I ) ∈ R(R/I ), where r − re ∈ I by the regularity of I , and so
r(e + 1) = I (the identity in R/I ), or re + I = I or re ∈ I . Since
r − re ∈ I , then r ∈ I and so R = I . But this CONTRADICTS the
definition maximal ideal (we need I 6= R; see Definition III.2.7 of maximal
ideal).

So the assumption that R(R/I ) = {0} is false and we must have
RA = R(R/I ) 6= {0}. Therefore by Definition IX.1.1, A is simple.
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Theorem IX.1.4

Theorem IX.1.4

Theorem IX.1.4. Let B be a subset of a left module A over a ring R.
Then A(B) = {r ∈ R | rb = 0 for all b ∈ B} is a left ideal of R. If B is a
submodule of A, then A(B) is an (two sided) ideal.

Proof. Let r ∈ R and s ∈ A(B). Then sb = 0 for all b ∈ B and so
(rs)b = r(sb) = r0 = 0 for all b ∈ B; i.e., rs ∈ A(B). So A(B) is a left
ideal of R.

Suppose B is a submodule of A. If r ∈ R and s ∈ A(B), then for every
b ∈ B we have (sr)b = s(rb) = s0 = 0 since rb ∈ B because B is a
submodule of A (see Definition IV.1.3). Consequently sr ∈ A(B) and so
A(B) is also a right ideal and hence a (two sided) ideal.
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Proposition IX.1.6

Proposition IX.1.6

Proposition IX.1.6. A simple ring R with identity is primitive.

Proof. By Theorem III.2.18, R contains a maximal left ideal I . Since R
has an identity then ideal I is regular (use e = 1R in Definition IX.1.2,
“regular ideal”). Whence left R-module R/I is (isomorphic to) a simple
R-module by Theorem IX.1.3.

Now the annihilator A(R/I ) is a (left) ideal
of R by Theorem IX.1.4. Since R is simple by hypothesis, then A(R/I )
must be either {0} or R. Since I is a maximal ideal in R then I 6= R (see
Definition III.2.17 of maximal ideal) and so R/I 6= {0}. So 1R cannot be
in A(R/I ); that is, A(R/I ) 6= R. Hence it must be that A(R/I ) = {0}.
Therefore, left R-module R/I is faithful and ring R is primitive by
Definition IX.1.5.
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Proposition IX.1.7

Proposition IX.1.7

Proposition IX.1.7. A commutative ring R is primitive if and only if R is
a field.

Proof. Suppose R is a field. Then R is a division ring and by the first
example in this section of class notes, R is simple. Since a field has an
identity, then by Proposition IX.1.6, R is primitive.

Suppose R is a commutative primitive ring. By Definition IX.1.5, this
means there is a simple faithful (left) R-module A; that is, simple
R-module A satisfies A(A) = {0}. By Theorem IX.1.3, A ∼= R/I for some
regular maximal left ideal I . Since R is commutative then I is a (two
sided) ideal. Also I ⊂ A(R/I ) = A(A) = {0}, so we must have I = {0}.
Since I = {0} is regular, by Definition IX.1.2 there is e ∈ R such that
r − re = r − er ∈ I , or r = re = er for all r ∈ R. That is, e = 1R is an
identity for R. Since I = {0} is maximal by Corollary III.2.21 (the (iii)
implies (i) part), R is a field.
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Lemma IX.1.C

Lemma IX.1.C

Lemma IX.1.C/Example. For V a vector space over a division ring D,
the endomorphism ring HomD(V ,V ) is a dense subring of itself.

Proof. Let n ∈ N, {u1, u2, . . . , un} be a linearly independent subset of V ,
and {v1, v2, . . . , vn} ⊂ V . By Theorem IV.2.4 there is a basis U of V that
contains u1, u2, . . . , un. Define the map θ : V → V by θ(ui ) = vi for
i = 1, 2, . . . , n and θ(u) = 0 for u ∈ U \ {u1, u2, . . . , un}.

By Theorem
IV.2.4, V is a free D-module. By Theorem IV.2.1(iv), θ is a
homomorphism (see the proof of (i) implies (iv)). That is,
θ ∈ HomD(V ,V ) and so HomD(V ,V ) is a dense subring of itself by
Definition IV.1.8.
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Theorem IX.1.9

Theorem IX.1.9

Theorem IX.1.9. Let R be a dense ring of endomorphisms of a vector
space V over a division ring D. Then R is left (respectively, right)
Artinian if and only if dimD(V ) is finite, in which case R = HomD(V ,V ).

Proof. Let R be Artinian. ASSUME dimD(V ) is infinite. Then there
exists an infinite linearly independent subset {u1, u2, . . .} of V . By
Exercise IV.1.7(c), V is a left HomD(V ,V )-module; since R is a subring
of HomD(V ,V ) (by Definition IX.1.8, “dense ring of endomorphisms”)
then V is also a left R-module (see Definition IV.1., “R-module”).

For
each n ∈ N let In be the left annihilator in R of the set {u1, u2, . . . , un}.
Then I1 ⊃ I2 ⊃ · · · is a descending chain of left ideal. Let w be any
nonzero element of V . Since {u1, u2, . . . , un+1} is linearly independent for
each n ∈ N and R is dense, then (by Definition IX.1.8, “sense ring of
endomorphisms”) there is θ ∈ R such that θ(ui ) = 0 for i = 1, 2, . . . , n
and θ(un+1) = w 6= 0. Then θ ∈ In (since θ annihilates {u1, u2, . . . , un})
but θ 6∈ In+1. So In ⊃ In+1 and In 6= In+1.
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Theorem IX.1.9

Theorem IX.1.9 (continued)

Proof (continued). But then I1 ⊃ I2 ⊃ · · · is a “properly descending”
chain and so R cannot be left Artinian, a CONTRADICTION. So the
assumption that dimD(V ) is finite is false. Hence if R is Artinian then
dimD(V ) is finite.

Suppose dimD(V ) is finite. Then V has a finite basis {v1, v2, . . . , vm}. If f
is any element of homD(V ,V ) then f is completely determines by its
action on v1, v2, . . . , vm. Since R is dense then, by Definition IX.1.8, there
exists θ ∈ R such that θ(vi ) = f (vi ) for i = 1, 2, . . . ,m. Whence
f = θ ∈ R and so HomD(V ,V ) ∈ R.

But dense ring of endomorphisms R
is a subring of HomD(V ,V ) (see Definition IX.1.8 again), so HomD(V ,V )
is isomorphic to the ring of all n × n matrices with entries from D. By
Corollary VIII.1.12, Matn(D) is Artinian. Therefore, since R is a subring of
HomD(V ,V ) then R is Artinian.
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Lemma IX.1.10 (Schur)

Lemma IX.1.10 (Schur)

Lemma IX.1.10. (Schur) Let A be a simple module over a ring R and let
B be any R-module.

(i) Every nonzero R-module homomorphism f : A → B is a
monomorphism (one to one);

(ii) every nonzero R-module homomorphism f : B → A is an
epimorphism (onto);

(iii) the endomorphism ring D = HomR(A,A) is a division ring.

Proof. (i) The kernel of f is its kernel as a homomorphism of abelian
groups (by definition, see Section IV.1) and so the kernel of f determines a
subgroup of the additive abelian group of R by Exercise I.2.9(a). For
c ∈ Ker(f ) and r ∈ R we have rc ∈ Ker(f ) since f (rc) = rf (c) = r0 = 0
(see Definition IV.1.2, “R-module homomorphism”). So by Definition
IV.1.3, Ker(f ) is a submodule of A. Since f is nonzero then Ker(f ) 6= A.
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Lemma IX.1.10 (Schur)

Lemma IX.1.10 (Schur) continued

Proof (continued). Since A is simple then it must be that Ker(f ) = {0}
and so f is a monomorphism (one to one) by Theorem I.2.3 (see also page
170 of Hungerford and the example in the class notes after Definition
IV.1.3), as claimed.

(ii) Im(g) is a submodule of A by Exercise I.2.9(b) (see also the example in
the class notes after Definition IV.1.3). Since g is nonzero, Im(g) 6= {0}.
So Im(g) is a nonzero submodule of A and since A is simple it must be
that Im(f ) = A. That is, g is an epimorphism (onto), as claimed.

(iii) We use parts (i) and (ii). Let j ∈ D = HomR(A,A) with h 6= 0. By
(i), h is onto to ne (injective) and by (ii) f is onto (surjective), so h is an
isomorphism. By Theorem I.2.3(ii) (see also page 170 of Hungerford) h
has a two-sided inverse h−1 ∈ HomR(A,A) = D. Since h is an arbitrary
nonzero element of D, then D is a division ring.
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Lemma IX.1.11

Lemma IX.1.11

Lemma IX.1.11. Let A be a simple module over a ring R. Consider A as
a vector space over the division ring D = HomR(A,A). If V is a finite
dimensional D-subspace of the D-vector space A and a ∈ A \ V , then
there exists r ∈ R such that ra 6= 0 and rV = 0.

Proof. We give an induction proof on n = dimD(V ).

Let n = 0. Then V = {0} and so a ∈ A \ V implies a 6= 0. Since A is
simple, then by Lemma IX.1.A, A = Ra. So there is some r ∈ R such that
ra = a 6= 0 and rV = v{0} = {0}, and the claim holds for
n = dimD(V ) = 0.

Now suppose dimD(V ) = n ∈ N and that the theorem holds for
dimensions 0, 1, . . . , n − 1. Let {u1, u2, . . . , un−1, u} be a D-basis of V
(which exists by Theorem IV.2.4) and let W be the (n − 1)-dimensional
D-subspace W = span{u1, u2, . . . , un−1} (with W = {0} if n = 1).
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Lemma IX.1.11

Lemma IX.1.11 (continued 1)

Proof (continued). Since {u1, u2, . . . , un−1, u} is a basis then it is
linearly independent and so W ∩ Du = {0} (notice that Du itself is a
vector space; it is the span of {u}). So V = W ⊕ Du by Theorem IV.1.5.
The left annihilator I = A(W ) in R of W is a left ideal o fR by Theorem
IX.1.4. By Exercise IV.1.3(a), Iu is an R-submodule of A. Since
u ∈ A \W and dimD(W ) = n − 1 then by the induction hypothesis there
is r ∈ R such that ru 6= 0 and rW = {0} (that is, r ∈ I = A(W )). This
implies 0 6= ru ∈ Iu is a nonzero R-submodule of A then A = Iu. Notice
that the induction hypothesis has given us that: for u ∈ A we have that
u 6∈ W (where dimD(W ) = n − 1) implies there is r ∈ I = A(W ) such
that ru 6= 0.

The contrapositive of this is that:

For v ∈ A, if for all r ∈ I = A(W ) we have rv = 0 then v ∈ W . (*)

We must find r ∈ R such that ra 6= 0 and rV = {0}. ASSUME no such r
exists. Then define θ : A → A as follows. For ru ∈ Iu = A let
θ(ru) = ra ∈ A.
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Proof (continued). We claim that θ is well-defined (that is, if r1u = r2u
for r1, r2 ∈ I = A(W ), then (r1 − r2)u = 0, whence
(r1 − r2)V = (r1 − r2)(W ⊕ Du) = {0} (since elements of W ⊕ Du are
sums of elements of W , which r1 − r2 annihilates, and multiples of u of
the form du = d(u) for d ∈ D = HomR(A,A) so that
(r1 − r2)du = (r1 − r2)d(u) = d((r1 − r2)u) = d(0) = 0). By the
assumption (that no r exists such that ra 6= 0 and rV = {0}; but here we
have (r1 − r2)V = {0}) we must have (r1 − r2)a = 0. Therefore r1a = r2a
or r1a = θ(r1u) = θ(r2u) = r2a, and θ is well-defined. Let a1, a2 ∈ A.
Since A = Iu then there is r1, r2 ∈ I such that a1 = r1u and a2 = r2u.

So

θ(a1+a2) = θ(r1u+r2u) = θ((r1+r2)u) = (r1+r2)a = r1a+r2a = θ(r1u)+θ(r2u) = θ(a1)+θ(a2).

Also, for r ′ ∈ R and a ∈ A = Iu (so that a = ru for some r ∈ I ) we have

θ(r ′a) = θ(r ′(ru)) = θ((r ′r)u) = (r ′r)a = r ′(ra) = r ′θ(ru) = r ′θ(a).
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Lemma IX.1.11

Lemma IX.1.11 (continued 3)

Proof (continued). Therefore θ is an R-module homomorphism mapping
A → A (by Definition IV.1.2); that is, θ ∈ HomR(A,A) = D. Then for
every r ∈ I ,

0 = ra− ra = θ(ru)− ra = rθ(u)− ra = r(θ(u)− a).

So by (∗), θ(u)− a = θu − a ∈ W and a− θu ∈ W . Notice that
θu = θ(u) ∈ Du since θ ∈ D = HomR(A,A). Consequently
a = (a− θu) + θu ∈ W ⊕ Du = V . But this is a CONTRADICTION to
the fact that a ∈ A \ V . So the assumption that no such r exists is false,
and hence there exists r ∈ R such that ra 6= 0 and rV = {0}. That is, the
result holds for dimD(V ) = n and so holds for all n ∈ N ∪ {0} by
induction.
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Theorem IX.1.12. Jacobson Density Theorem

Theorem IX.1.12. Jacobson Density Theorem

Theorem IX.1.12. Jacobson Density Theorem.
Let R be a primitive ring and A a faithful simple R-module. consider A as
a vector space over the division ring homR(A,A) = D. Then R is
isomorphic to a dense ring of endomorphisms of the D-vector space A.

Proof. For each r ∈ R the map αr : A → A given by αr (A) = ra is a
D-endomorphism of A (for a1, a2 ∈ A we have
αr (a1 + a2) = r(a1 + a2) = ra1 + ra2 = αr (a1) + αr (a2) and for a ∈ A and
θ ∈ D = HomR(A,A) we have

αr (θa) = αr (θ(a)) = rθ(a)

= θ(ra) since θ ∈ HomR(A,A)

= θ(αr (a)),

so by Definition IV.1.2 αr is a homomorphism). That is,
αr ∈ HomD(A,A). Furthermore, for all r , s ∈ R we have αr+s = αr + αs

and αrs = αrαs .
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Theorem IX.1.12. Jacobson Density Theorem

Theorem IX.1.12. Jacobson Density Theorem (continued
1)

Proof (continued). Consequently, the map α : R → HomD(A,A) defined
by α(r) = αr is a homomorphism of rings. Since A is a faithful R-module
(that is, A(A) = {0}), αr = 0 ∈ HomD(A,A) if an only if r ∈ A(A) = {0}.
So Ker(α) = {0} and α is a monomorphism (one to one; by Theorem
I.2.3(i)). Whence R is isomorphic to the subring Im(α) of HomD(A,A).

Now we show that Im(α) is a dense subring of HomD(A,A). So given any
D-linearly independent subset U = {u1,U2, . . . , un} of A and any subset
{v1, v2, . . . , vn} of A, we must find αr ∈ Im(α) such that αr (ui ) = vi for
i = 1, 2, . . . , n. Here we go.

For each i = 1, 2, . . . , n, let Vi be the
D-subspace of A spanned by {u1, u2, . . . , ui−1, ui+1, . . . un}. Since U is
D-linearly independent then ui ∈ Vi . Consequently (since A is simple by
Definition IX.1.5 of “primitive ring”), by Lemma IX.1.11 there exists
ri ∈ R such that riui 6= 0 and riVi = {0}.
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Theorem IX.1.12. Jacobson Density Theorem

Theorem IX.1.12. Jacobson Density Theorem (continued
2)

Proof (continued). Applying Lemma IX.1.11 to D-subspace V = {0} of
A and nonzero riui ∈ A \ V , there exists si ∈ R such that si riui 6= 0 and
si0 = 0. Since si riui 6= 0, the R-submodule Rriui of A is nonzero. But A is
simple (by the definition of “primitive ring” R), so it must be that
Rriui = A. Therefore there exists ti ∈ R such that ti riui = vi . Define
r = t1r1 + t2r2 + · · ·+ tnrn ∈ R. By definition of Vj , we have for i 6= j
that ui ∈ Vj and so for i 6= j we also have tj rjui ∈ tj(rjVj) = tj{0} = {0}
(since rjVj = {0} by the choice of rj above). Consequently for each
i = 1, 2, . . . , n we have

αr (ui ) = rui = (t1r1 + t2r2 + · · ·+ tnrn)ui = ti riui = vi .

So, by Definition IX.1.8, “dense ring of endomorphisms,” Im(α) is a dense
ring of endomorphisms of the D-vector space A. Since R is isomorphic to
Im(α) (under isomorphism α), the claim follows.
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Corollary IX.1.13

Corollary IX.1.13

Corollary IX.1.13. If R is a primitive ring, then for some division ring D
either R is isomorphic to the endomorphism ring of a finite dimensional
vector space over D or for every m ∈ N there is subring Rm of R and an
epimorphism of rings mapping Rm → HomD(Vm,Vm) where Vm is an
n-dimensional vector space over D.

Proof. In the notation of the Jacobson Density Theorem (Theorem
IX.1.12) with A as the faithful simple R-module and D = HomR(A,A), we
have α : R → HomD(A,A) is a monomorphism such that R ∼= Im(α) and
Im(α) is dense in HomD(A,A). If dimD(A) = n is finite, then
Im(α) = HomD(A,A) by Theorem IX.1.9 (this also gives that Im(α) is left
Artinian). So the first conclusion holds.

If dimD(A) is infinite and {u1, u2, . . .} is an infinite linearly independent
set, then let Vm be the m-dimensional D-subspace of A spanned by
{u1, u2, . . . , um}. Define Rn = {r ∈ R | rVm ⊂ Vm}.
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Corollary IX.1.13

Corollary IX.1.13 (continued)

Corollary IX.1.13. If R is a primitive ring, then for some division ring D
either R is isomorphic to the endomorphism ring of a finite dimensional
vector space over D or for every m ∈ N there is subring Rm of R and an
epimorphism of rings mapping Rm → HomD(Vm,Vm) where Vm is an
n-dimensional vector space over D.

Proof (continued). If r1, r2 ∈ Rm then (r1 + r2)Vm = r1Vm + r2Vm ⊂ Vm

since r1Vm and r2Vm are subset of Vm (and Vm is closed under addition),
and (r1r1)Vm = r1(r2Vm) ⊂ Vm since r2Vm ⊂ Vm and r1Vm ⊂ Vm. So Rm

is a subring of R. Define β : Rm → HomD(Vm,Vm) as the restriction of αr

to Vm: β(r) = αr |Vm . By Exercise IX.1.A, β is a well-defined ring
epimorphism and the second claim holds.
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Theorem IX.1.14. Wedderburn-Artin Theorem for Simple Artinian
Rings

Theorem IX.1.14. The Wedderburn-Artin Theorem for
Simple Artinian Rings

Theorem IX.1.14. The Wedderburn-Artin Theorem for Simple
Artinian Rings.
The following conditions on a left Artinian ring R are equivalent:

(i) R is simple;

(ii) R is primitive;

(iii) R is isomorphic to the endomorphism ring of a nonzero finite
dimensional space V over a division ring D;

(iv) for some b ∈ N, R is isomorphic to the ring of all n × n
matrices over a division ring.

Proof. (i)⇒(ii). Let I = {r ∈ R | Rr = {0}}. Then I is the right
annihilator of R (treating ring R as an R-module) and since R is a
submodule of itself then I is an ideal of R by Theorem IX.1.4. Since R is
hypothesized to be simple then either I = R or I = {0}.
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Theorem IX.1.14. Wedderburn-Artin Theorem for Simple Artinian
Rings

Theorem IX.1.14. The Wedderburn-Artin Theorem for
Simple Artinian Rings (continued)

Proof (continued). Since R is a simple ring then (by Definition IX.1.1)
R2 6= {0} and we cannot have I = R (or else Rr = {0} for all r ∈ R; that
is, R2 = {0}). Hence I = {0}. Since R is left Artinian by hypothesis, the
set of all nonzero left ideals of R contains a minimal left ideal J by
Theorem VIII.1.4. Now J has no proper R-submodules (notice that an
R-submodule of J would be a left ideal of R). We claim that annihilator
A(J) = {0} in R.

ASSUME A(J) 6= {0}. By Theorem IX.1.4, the left
annihilator A(J) is a left ideal of R. Since R is simple then we must have
A(J) = R. Then Ru = 0 for every nonzero u ∈ J. Consequently, each such
nonzero u is in I = {0}, a CONTRADICTION. Therefore A(J) = {0}.
Also RJ 6= {0} (or else A(J) = R 6= {0}). Thus J is a faithful simple
R-module and so by Definition IX.1.5, “primitive ring,” R is primitive.
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Theorem IX.1.14. Wedderburn-Artin Theorem for Simple Artinian
Rings

Theorem IX.1.14. The Wedderburn-Artin Theorem for
Simple Artinian Rings (continued)

Proof (continued). (ii)⇒(iii). Since R is primitive by hypothesis, then by
the Jacobson Density Theorem (Theorem IX.1.12) R is isomorphic to a
dense ring T of endomorphisms of a vector space V over a division ring D.
Since R is left Artinian by hypothesis then R ∼= T = HomD(V ,V ) and
dimD(V ) is finite, as claimed.

(iii)⇔(iv). By Theorem VII.1.4, HomD(V ,V ) is isomorphic to a ring of
n × n matrices with entries from a division ring.

(iv)⇒(i). Exercise III.2.9(a) implies R has no proper ideals and so, by
Definition IX.1.1, R is simple.
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Lemma IX.1.15

Lemma IX.1.15

Lemma IX.1.15. Let V be a finite dimensional vector space over a
division ring D. If A and B are simple faithful modules over the
endomorphism ring R = HomD(V ,V ), then A and B are isomorphic
R-modules.

Proof. Since V is finite dimensional (say dimD(V ) = n), by Theorem
VII.1.4 R = HomD(V ,V ) is isomorphic to a ring of n × n matrices over a
division ring. By Corollary VIII.1.12, R is Artinian (and so satisfies the
descending chain condition). Then by Theorem VIII.1.4, R contains a
(nonzero) minimal left ideal I .

Since A is faithful then (by Definition
IX.1.5) the annihilator A(A) = {0}. So there exists a ∈ A such that
Ia 6= {0}. By Exercise IV.1.3, Ia is a nonzero submodule of A. Since A is
simple, then Ia = A. Define θ : I → Ia = A as θ(i) = ia. Then θ is a
nonzero R-module epimorphism; that is, θ ∈ HomR(A,A). By Lemma
IX.1.10, θ is a monomorphism and epimorphism, and so is an isomorphism.
That is, A ∼= I . Similarly, B ∼= I and so A ∼= B.
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Lemma IX.1.16

Lemma IX.1.16

Lemma IX.1.16. Let V be a nonzero vector space over a division ring D
and let R be the endomorphism ring HomD(V ,V ). If g : V → V is a
homomorphism of additive groups such that gr = rg for all r ∈ R, then
there exists d ∈ D such that g(v) = dv for all v ∈ V .

Proof. Let u be a nonzero element of V . We claim that u and g(u) are
linearly independent over D. If dimD(V ) = 1 then this is trivial, so we now
consider the case dimD(V ) ≥ 2.

ASSUME {i , g(u)} is linearly
independent. Since R is dense in itself by Lemma IX.1.C, then there is
r ∈ R such that r(u) = ru = 0 and r(g(u)) = rg(u) 6= 0. But by
hypothesis f (g(u)) = rg(u) = gr(u) = g(r(u)) = g(0) = 0, a
CONTRADICTION to the fact that r(g(u)) 6= 0. So the assumption is
false and {u, g(u)} is linearly independent.
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Lemma IX.1.16

Lemma IX.1.16 (continued)

Lemma IX.1.16. Let V be a nonzero vector space over a division ring D
and let R be the endomorphism ring HomD(V ,V ). If g : V → V is a
homomorphism of additive groups such that gr = rg for all r ∈ R, then
there exists d ∈ D such that g(v) = dv for all v ∈ V .

Proof (continued). Therefore for some d ∈ D, g(u) = du. If v ∈ V then
there exists s ∈ R such that s(u) = su = v because R is dense in itself.
Consequently, since s ∈ R = HomD(V ,V ), then

g(v) = g(s(u)) = gs(u) = sg(u) = s(du) = ds(u) = dv ,

and since v is arbitrary, the claim holds.

() Modern Algebra September 19, 2018 29 / 37



Proposition IX.1.17

Proposition IX.1.17

Proposition IX.1.17. Let V1 and V2 be vector spaces of finite dimension
n over the division rings D1 and D2, respectively.

(i) If there is an isomorphism of rings
HomD1(V1,V2) ∼= HomD2(V2,V2), then
dimD1(V1) = dimD2(V2) and D1 is isomorphic to D2.

(ii) If there is an isomorphism of rings Matn1(D1) ∼= Matn2(D2),
then n1 = n2 and D1 is isomorphic to D2.

Proof. (i) It is argued in the example after Definition IX.1.5 that each Vi

is a faithful HomDi
(Vi ,Vi )-module for i = 1, 2. Let R = HomD1(V1,V1)

and let σ be the hypothesized isomorphism,
σ : r = HomD1(V1,V1) → HomD2(V2,V2). So V2 is a faithful simple
R-module (or HomD1(V1,V1)-module) by pullback along σ; that is,

rv − σ(r)v for r ∈ R, v ∈ V2. (∗)

By Lemma IX.1.15 (with A = V1 and B = V2) there is an R-module
isomorphism ϕ : V1 → V2.
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Proposition IX.1.17

Proposition IX.1.17 (continued 1)

Proof (continued). For each v ∈ V1 and f ∈ R,
ϕ(f (v)) = f ϕ(v) = σ(f )[ϕ(v)] by (∗). With x ∈ V2 and v = ϕ−1(w) we
then have ϕ(f (ϕ−1(w))) = σ(f )v for each w ∈ V2 and f ∈ R. That is,
ϕf ϕ−1 = σ(f ) and this is a homomorphism (not necessarily an
isomorphism since f ∈ HomD1(V1,V1) is a homomorphism) of additive
groups V2 → V2. For each d ∈ Di , let αd : Vi → Vi be the
homomorphism of additive groups defined by the mapping x 7→ dx (for
i = 1, 2). Now αd = 0 if and only if d = 0 (since dx = 0 for d 6= 0 implies
d−1dx = d−10 or x = 0 since d is in a division ring). For
f ∈ R = HomD1(V1,V1) and d ∈ D1, we have for x ∈ V1 that
f αd(x) = fdx = f (dx) = df (x) = αd f (x), so f αd = αd f .

Consequently,

(ϕαdϕ−1)(σf ) = ϕαdϕ−1(ϕf ϕ−1) since ϕf ϕ−1 = σ(f )

= ϕαd f ϕ−1 = ϕf αdϕ−1 since f αd = αd f

= ϕf ϕ−1ϕαdϕ−1 = (σf )(ϕαdϕ−1) since ϕf ϕ−1 = σf .
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Proposition IX.1.17

Proposition IX.1.17 (continued 2)

Proof (continued). Now g = ϕαdϕ−1 : V2 → V2 is a homomorphism
and this last equation shows that g(σf ) = σf )g for all ϕf for every
σf ∈ HomD2(V2,V2) (since σ is surjective [onto; it is an isomorphism], σf
for f ∈ HomD1(V1,V1) includes all elements of HomD2(V )2,V2)). So by
Lemma IX.1.16 (with V = V2) implies that there exists d∗ ∈ D2 such that
g = ϕαdϕ−1 = αd∗ . Let τ : D1 → D2 be the map given by τ(d) = d∗.
Then for every d ∈ D1, g = ϕαdϕ−1 = αd∗ = ατ(d). We now show that
τ : D1 → D2 is an isomorphism. If d , d ′ ∈ D1 then τ(d + d ′) = (d + d ′)∗

where ϕαd+d ′ϕ−1 = α(d+d ′)∗ .

As shown in the proof of Theorem IX.1.12,
we have αd+d ′ = αd + αd ′ and so

ϕαd+d ′ϕ−1 = ϕ(αd + αd ′)ϕ−1 = ϕαdϕ−1 + ϕαd ′ϕ−1

= αd∗ + α(d ′)∗ = α(d+d ′)∗ ,

so that τ(d + d ′) = (d + d ′)∗ = d∗ + (d ′)∗.
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Proposition IX.1.17

Proposition IX.1.17 (continued 3)

Proof (continued). Similarly, as shown in the proof of Theorem IX.1.12,
we have αdd ′ = αdαd ′ and so

α(dd ′)∗ = ϕαdd ′ϕ−1 = ϕαdαd ′ϕ−1 = (ϕαdϕ−1)(ϕαd ′ϕ−1) = αd∗α(d ′)∗

so that τ(dd ′) = τ(d)τ(d ′). So τ is a ring homomorphism (by Definition
III.1.7). Now suppose d 6= d ′. then there is nonzero v ∈ V1 such that
dv1 6= d ′v1 (or else dv1 = d ′v1 for all v1 ∈ V1 and so (d − d ′)v1 = 0 for all
v1 ∈ V1; if d − d ′ 6= 0 ∈ D2 then (d − d ′)−1 exists since D2 is a division
ring and so (d − d ′)−1(d − d ′)v1 = (d − d ′)−10 or v1 = 0, a contradiction
to the choice of v1). So αd 6= αd ′ because αdv1 = dv1 6= d ′v1 = αd ′v1.
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Proposition IX.1.17

Proposition IX.1.17 (continued 4)

Proof (continued). Now ϕ : V1 → V2 and ϕ−1 : V2 → V1 are
isomorphisms (and so are surjective/onto and injective/one to one) so for
some v2 ∈ V2 we have ϕ−1v2 = v1 and

ατ(d)v2 = ϕαdϕ−1v2 = ϕαdv1

6= ϕαd ′v1 since ϕ is one to one

= ϕαd ′ϕ−1v2 = ατ(d ′)v2,

so ατ(d) 6= ατ(d ′), or αd∗ 6= α(d ′)∗ . So
αd∗ = ϕαdϕ−1 6= ϕαd ′ϕ−1 = α(d ′)∗ . Since both αd∗ and α(d ′)∗ also map
V2 → V2, this means for some v ∈ V2 we have αd∗(v) 6= α(d ′)∗(v) or
d∗v 6= (d ′)∗v . If d∗ = (d ′)∗ then d∗v = (d ′)∗v and so we must have
d∗ 6= (d ′)∗; that is, τ(d) 6= τ(d ′). Hence τ is a monomorphism (one to
one and onto homomorphism).
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Proposition IX.1.17 (continued 5)

Proof (continued). Reversing the roles of D1 and D2 in the previous
argument (and replacing ϕ and σ with ϕ−1 and σ−1, respectively) yields
that for every d2 ∈ D2 there exists d1 ∈ D1 such that
ϕ−1αd2ϕ = αd1 : V1 → V1, whence αd2 = ϕαd1ϕ

−1 = ατ(d1). So
τ(d1) = d2 and τ is surjective/onto. Hence τ : D1 → D2 is an
isomorphism and so D1 is isomorphic to D2, as claimed.

Furthermore, for every d ∈ D1 and v ∈ V1,

ϕ(dv) = ϕαd(v) = ϕαdϕ−1ϕ(v)

= ατ(d)ϕ(v) since ατ(d) = ϕαdϕ−1

= τ(d)ϕ(v) by definition of ατ(d). (∗∗)

Consider the sets A = {u1, u2, . . . , uk} and B = {ϕ(u1), ϕ(u2), . . . , ϕ(uk)}.
Suppose A is D1-linearly independent; then for r1, r2, . . . , rk ∈ D1 we have
that r1u1 + r2u2 + · · ·+ rkuk = 0 implies that r1 = r2 = · · · = rk = 0.
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Proposition IX.1.17

Proposition IX.1.17 (continued 6)

Proof (continued). Suppose s1ϕ(u1) + s2ϕ(u2) + · · ·+ skϕ(uk) = 0 for
s1, s2, . . . , sk ∈ D2. Since τ : D1 → D2 is an isomorphism, then there are
r1, r2, . . . , rk ∈ D1 such that τ(r1) = s1, τ(r2) = s2, . . . , τ(rk) = sk and so
τ(r1)ϕ(u1) + τ(r2)ϕ(u2) + · · ·+ τ(rk)ϕ(uk) = 0, or by (∗∗),
ϕ(r1u1) + ϕ(r2u2) + · · ·+ ϕ(rkuk) = 0, or since ϕ is a homomorphism,
ϕ(r1u1 + r2u2 + · · ·+ rkun) = 0. Since ϕ is an isomorphism, it is injective
(one to one) and so r1u1 + r2u2 + · · ·+ rkuk = 0. Since A is linearly
independent, then r1 = r2 = · · · = rk = 0. Since τ is a homomorphism,
s1 = s2 = · · · = sk = 0.

Similarly, since ϕ−1 and σ−1 are isomorphisms, if
B is linearly independent then A is linearly independent. So A is linearly
independent if and only if B is. Therefore A is a basis for V1 if and only if
B is a basis for V2 and so dimD1(V1) = dimD2(V2), as claimed (recall that
V1 and V2 are finite dimensional, by hypothesis).
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Proposition IX.1.17

Proposition IX.1.17 (continued 7)

Proof (continued). (ii) Suppose there is an isomorphism of rings

Matn1(D1) ∼= Matn2(D2). By Theorem VII.1.4,
Hom

D
op
1

(V1,V1) ∼= Matn1((D
op
1 )op) and

Hom
D

op
2

(V2,V2) ∼= Matn2((D
op
2 )op). By Exercise III.1.17(d),

(Dop
1 )op = D1 and (Dop

2 )op = D2, so

Hom
D

op
1

(V1,V1) ∼= Matn1(D1) ∼= Matn2(D2) ∼= Hom
D

op
2

(V2,V2).

By part (i), n1 = dim
D

op
1

(V1,V1) = dim
D

op
2

(V2,V2) = n2 and Dop
1
∼= Dop

2 .

By Exercise III.1.17(e), D1
∼= D2, as claimed.
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Proposition IX.1.17 (continued 7)
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