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Lemma IX.2.4

Lemma IX.2.4

Lemma IX.2.4. If I (where I 6= R) is a regular left ideal of a ring R, then
I is contained in a maximal left ideal which is regular.

Proof. Since I is a regular left ideal of R, by Definition IX.1.2 of
“regular,” there is e ∈ R such that r − re ∈ I for all r ∈ R. If J is any left
ideal of R containing I then for all r ∈ R, r − re ∈ I ⊂ J so that J is also
a regular left ideal of R. With I ⊂ J and e ∈ J we have that re ∈ J for all
r ∈ R, since J is a left ideal of R, and so r − re ∈ I ⊂ J implies
r = (r − re) + re ∈ J for every r ∈ R, whence we must have R = J.

Therefore, if J is a left ideal of R containing I that is not equal to R then
r 6∈ J. Let S be the set of all left ideals L of R such that I ⊂ L ( R. Put
a partial ordering on S using subset inclusion.
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Lemma IX.2.4

Lemma IX.2.4 (continued)

Lemma IX.2.4. If I (where I 6= R) is a regular left ideal of a ring R, then
I is contained in a maximal left ideal which is regular.

Proof (continued). For any chain in S, say {Li}i∈K (where K denotes
some indexing set), define L′ = ∪i∈KLi . As shown in the proof of Theorem
III.2.18, L′ is a left ideal of R. Since e 6∈ Li for all i ∈ K then e 6∈ L′ so
that L′ ( R and so L′ ∈ S. So L′ is an upper bound of chain {Li}i∈K . So
by Zorn’s Lemma, S has a maximal element of M. So M is a maximal left
ideal of R and since I ⊂ M then, as shown above, M is regular, as
claimed.
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Lemma IX.2.5

Lemma IX.2.5

Lemma IX.2.5. Let R be a ring and let K be the intersection of all regular
maximal left ideals of R. Then K is a left quasi-regular left ideal of R.

Proof. K is a left ideal by Corollary III.2.3. For a ∈ K , define
T = {r + ra | r ∈ R}. If T = R then there exists r ∈ R such that
r + ra = −a, or r + a + ra = 0 and hence a is left quasi-regular. So K is
left quasi-regular if T = R (for arbitrary a ∈ K ).

T is a left ideal by
Theorem III.2.2 (since (r1 + r1a)− (r1 + r2a) = (r1 − r2) + (r1 − r2)a ∈ T
and r(r1 + r1a) = (rr1) + (rr1)a ∈ T ). T is regular with e = −a since for
all r ∈ R, r − re = r − r(−a) = r + ra ∈ T . ASSUME T 6= R. Then T is
a proper regular left ideal of R and by Lemma IX.2.4, T ⊂ I0 where I0 is a
regular maximal left ideal of R. (Notice that if R has no regular maximal
left ideals then T 6= R cannot hold so that T = R in this case, in keeping
with the set theoretic convention mentioned in Note IX.2.A.)
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Lemma IX.2.5

Lemma IX.2.5 (continued)

Lemma IX.2.5. Let R be a ring and let K be the intersection of all regular
maximal left ideals of R. Then K is a left quasi-regular left ideal of R.

Proof (continued). Since a ∈ K ⊂ I0, then ra ∈ I0 for all r ∈ R (since I0
is a left ideal of R). Thus since r + ra ∈ T ⊂ I0, we must have
(r + ra)− ra = r ∈ I0 for all r ∈ R. Consequently, R = I0. But this
CONTRADICTS the fact that I0 is a maximal left ideal of R (so that
I0 6= R by Definition II.2.17). So the assumption that T 6= R is false and
hence T = R. Hence K is left quasi-regular, as explained above.
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Lemma IX.2.6

Lemma IX.2.6

Lemma IX.2.6. Let R be a ring that has a simple left R-module. If I is a
left quasi-regular left ideal R, then I is contained in the intersection of all
the left annihilators of simple left R-modules.

Proof. ASSUME I 6⊂ ∩A(A), where the intersection is taken over all
simple left R-modules A. Then I is not the annihilator of some simple left
R-module B and so IB 6= {0}, whence Ib 6= {0} for some nonzero b ∈ B.
Since I is a left ideal then Ib is a nonzero submodule of B (see Definition
IV.1.1 or “module”). Since B is simple, B = Ib and hence ab = −b for
some a ∈ I .

Since I is left quasi-regular, by Definition IX.2.2, there exists
r ∈ R such that r + a + ra = 0. Therefore

0 = 0b = (r + a + ra)b = rb + ab + rab = rb − b − rb = −b

and so b = 0, a CONTRADICTION to the fact that b is nonzero. So the
assumption that I 6⊂ ∩A(A) is false and it must be that I ⊂ ∩A(A), as
claimed.
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Lemma IX.2.7

Lemma IX.2.7

Lemma IX.2.7. An ideal P of a ring R is left primitive if and only if P is
the left annihilator of a simple left R-module.

Proof. Suppose P is a left primitive ideal. Then by definition (Definition
IX.2.1), ring R/P is a left primitive ring. So by Definition IX.1.5
(“primitive ring”), there is a simple faithful left R/P-module A (so
A(A) = {0}; that is, (r + P)A = {0} if and only if r + P is the additive
identity in R/P). We claim that A is an R-module with ra defined as
(r + P)a for r ∈ R, a ∈ A, and r + P ∈ R/P.

For r , s ∈ R and a, b ∈ A we
have

(i) r(a + b) = (r + P)(a + b) = (r + P)a + (r + P)b = ra + rb,

(ii) (r + s)a = ((r + s) + P)a = ((r + P) + (s + P)a =
(r + P)a + (s + P)a = ra + sa, and

(iii) r(sa) = r((s + P)a) = (r + P)((s + P)a) =
(r + P)(s + P))a = (rs + P)a = (rs)a,

so by Definition IV.1.1 of “R-module,” A is an R-module.
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Lemma IX.2.7

Lemma IX.2.7 (continued 1)

Proof (continued). Notice that by our definition of ra, we have
RA = (R/P)A. Since A is a simple R/P-module then (R/P)A 6= {0} and
so RA 6= {0}. So every R-module of A is an R/P-submodule of A (with
our definition of ra. But A is a simple R/P-module, whence A is a simple
R-module. If r ∈ R, then rA = {0} if and only if (r + P)A = {0}. But
(r + P)A = {0} if and only if r + P is the additive identity in R/p (this is
where the fact that A is faithful and A(A) = {0} is used); that is, if and
only if r ∈ P. So the left annihilator of R-module A is P. That is, P is the
left annihilator of some simple left R-module (namely A, a simple faithful
left R/P-module).

Conversely, suppose P is the left annihilator of a simple R-module B. We
claim that B is a simple R/P-module with (r + P)b defined as rb for
r ∈ R, b ∈ B, and r + P ∈ R/P.
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Lemma IX.2.7

Lemma IX.2.7 (continued 2)

Proof (continued). For r + P, s + P ∈ R/P and a, b ∈ B we have

(i) (r + P)(a + b) = r(a + b) = ra + rb = (r + P)a + (r + P)b,

(ii) ((r + P) + (s + P))b = ((r + s) + P)b = (r + s)b =
rb + sb = (r + P)b + (s + P)b, and

(iii) (r + P)((s + P)b) = (r + P)(sb) = r(sb) = (rs)b =
(rs + P)b = ((r + P)(s + P))b,

so by Definition IV.1.1, A is an R/P-module. As above,
RB = (R/P)B 6= {0} (since B is a simple R-module by hypothesis), so
every R/P-submodule of B is an R-submodule of B. Since B is a simple
R-module then B is a simple R/P-module. Furthermore, since P is the
left annihilator of B then (r + P)B = {0} implies rB = {0} (with our
definition of (r + P)b in R/P-module B) and so r ∈ A(A) = P. Then
r + P = P (the additive identity in R/P; that is, r + P = 0 in R/P).
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Lemma IX.2.7

Lemma IX.2.7 (continued 3)

Lemma IX.2.7. An ideal P of a ring R is left primitive if and only if P is
the left annihilator of a simple left R-module.

Proof (continued). So in R/P-module B, B is simple and the left
annihilator of B is A(B) = {0}. That is, B is a faithful R/P-module.
Therefore R/P is a left primitive ring by Definition IX.1.5, whence (by
Definition IX.2.1) P is a left primitive ideal of R, as claimed.
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Lemma IX.2.8

Lemma IX.2.8

Lemma IX.2.8. Let I be a left ideal of ring R. If I is left quasi-regular,
then I is right quasi-regular.

Proof. Since I is left quasi-regular then by Definition IX.2.2, for a ∈ I
there exists r ∈ R such that r ◦ a = r + a + ra = 0. Since I is a left ideal,
ra ∈ I and hence r = −a− ra ∈ I . Again since I is left quasi-regular then
there is s ∈ R such that s ◦ r = s + r + sr = 0, whence s is right
quasi-regular.

Consequently,

a = 0 + a + 0a = 0 ◦ a = (s ◦ r) ◦ a = (s ◦ r) + a + (s ◦ r)a

= s+r +sr +a+(s+r +sr)a = s+r +sr +a+sa+ra+sra = s+(r +a+rs)

+s(r + a + ra) = s ◦ (r + a + ra) = s ◦ (r ◦ a) = s ◦ 0 = 0 + s + 0s = s.

So a is a right quasi-regular element of I . Since a is an arbitrary element
of I then I is a right quasi-regular left ideal of R.
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Theorem IX.2.3

Theorem IX.2.3

Theorem IX.2.3. If R is a ring, then there is an ideal J(R) of R such that:

(i) J(R) is the intersection of all the left annihilators of simple
left R-modules;

(ii) J(R) is the intersection of all the regular maximal left ideals
of R;

(iii) J(R) is the intersection of all the left primitive ideals of R;

(iv) J(R) is a left quasi-regular left ideal which contains every
left quasi-regular left ideal of R;

(v) Statements (i)–(iv) are also true if “left” is replaced by
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Theorem IX.2.3

Theorem IX.2.3 (continued 1)

Proof (continued). Notice that we are sort of taking part (i) as the
definition of the Jacobson radical and proving that (ii) and (iii) are
equivalent classifications of J(R). J(R) is an ideal of R by Theorem IX.1.4
(which says that annihilator of modules are ideals) and Corollary III.2.3
(which says that intersections of ideals are ideals).

We first observe that R itself cannot be the annihilator of a simple left
R-module A, for this would imply that RA = {0}, in contradiction to the
definition of “simple left R-module.” So if J(R) = R then R has no simple
left R-modules. This, combined with (∗), gives that the following are
equivalent:

(a) J(R) = R.

(b) R has no simple left R-modules.

By Theorem IX.1.3, A is a simple left R-module if and only if A ∼= R/I for
some regular maximal left ideal I of R. So (b) holds if and only if:

(c) R has no regular maximal left ideals.
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Theorem IX.2.3

Theorem IX.2.3 (continued 2)

Proof (continued). By Lemma IX.2.7, we have a left annihilator of a
simple left R-module if and only if we have a left primitive ideal of R. So
(b) *no simple left R-modules) is equivalent to:

(d) R has no left primitive ideals.

Therefore, by the set theoretic convention of Note IX.2.A, (ii), (iii), and
(iv) hold if J(R) = R. So for the remainder of the proof we may assume
J(R) 6= R.

(ii) Let K be the intersection of all the regular left ideals of R. We want to
show J(R) = K so that (i) is equivalent (ii). By Lemma IX.2.5, K is a left
quasi-regular left ideal of R. Then by Lemma IX.2.6 (notice that R has a
simple left R-module since (a) is equivalent to (b) and we are supposing
(a) does not hold), K is contained in the intersection of all left annihilators
of simple left R-modules so that K ⊂ J(R). Now suppose c ∈ J(R).
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Theorem IX.2.3

Theorem IX.2.3 (continued 3)

Proof (continued). Since J(R) is by our definition the intersection of all
left annihilators of simple left R-modules, by Theorem IX.1.3 (which
implies “simple left R-modules” if and only if “R/I for some regular
maximal left ideal”)

J(R) is the intersection of the left annihilators of the quotients R/I , (∗∗)

where I runs over all regular maximal left ideals of R. (Notice that a
simple left R-module A is isomorphic to R/I , but that the annihilator of
both A and R/I are elements of R due to our definition of (r + I )a = ra
for r ∈ R, r + I ∈ R/I , and a ∈ I as introduced in Lemma IX.2.7.) For
each regular maximal left ideal I (by Definition IX.1.2) ther exists e ∈ R
such that c − ce ∈ I . Since c ∈ J(R) ⊂ A(R/I ) by (∗∗), then c(r + I ) = I
(I = 0 in R/I ) for all r ∈ R and so cr ∈ I for all r ∈ R. In particular,
ce ∈ I , and since c − ce ∈ I then c ∈ I . Since c is an arbitrary element of
J(R) and I is an arbitrary regular maximal left ideal of R, then
J(R) ⊂ ∪I = K . Therefore J(R) = K and so (ii) is equivalent to (i).
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Theorem IX.2.3

Theorem IX.2.3 (continued 4)

Proof (continued). (iii) Lemma IX.2.7 gives a one to one correspondence
between left primitive ideals of R and left annihilator of simple left
R-modules, so (i) is equivalent to (iii) (and hence by above, also
equivalent to (ii)).

(iv) By (ii), J(R) is the intersection of all the regular maximal left ideals of
R. So by Lemma IX.2.5, J(R) is a left quasi-regular left ideal of R. Now
we are assuming J(R) 6= R in this case (we showed above that Theorem
IX.2.3 holds when J(R) = R), so in this case J(R) has a simple left
R-module (see the discussion above). By Lemma IX.2.6, based on our
definition of J(R), J(R) contains every left quasi-regular left ideal of R.
So (iv) holds.

To complete the proof, we must show that (i)–(iv) are true with “right” in
the place of “left.” Let J1(R) be the intersection of all right annihilators
of all simple right R-modules.
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Theorem IX.2.3

Theorem IX.2.3 (continued 5)

Proof (continued). Since Lemmas IX.2.4 through IX.2.8 hold with “left”
and “right” interchanged (see Hungerford’s comment on page 426), then
the preceding proof holds for J1(R) (so we need to establish that
J1(R) = J(R)). Since J(R) is a left quasi-regular ideal of R by (iv) above,
then by Lemma IX.2.8, J(R) is also right quasi-regular. Hence by our
definition of J1(R), J(R) ⊂ J1(R). Similarly, J1(R) is right quasi-regular
by (iv) (modified with “left” and “right” interchanged) J1(R) is also left
quasi-regular. So by our definition of J(R), J1(R) ⊂ J(R) and hence
J(R) = J1(R), as needed.
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Theorem IX.2.A

Theorem IX.2.A

Theorem IX.2.A. Let R be a commutative ring with identity which has a
unique maximal ideal M (such a ring is a local ring; see Definition
III.4.12). Then J(R) = M.

Proof. By Theorem III.4.13(ii), all nonunits of R are contained in some
ideal of R (and this ideal is not equal to R), and since R has a unique
maximal ideal then M contains all nonunits of R. By Note IX.2.B,
J(R) 6= R. By Theorem III.3.2, u is a unit in R if and only if u | r for all
r ∈ R so that the only ideal containing u is R itself. So proper ideals of R
can only contain nonunits of R and so J(R) contains only nonunits so that
J(R) ⊂ M.

On the other hand, if r ∈ M then 1R + r 6∈ M (otherwise
qR ∈ M and then M = R, but M 6= R). Consequently qR + r is a unit and
by Exercise IX.2.1(c), element r is left quasi-regular and so ideal M is left
quasi-regular. By Theorem IX.2.3(iv), J(R) contains every quasi-regular
left ideal of R, so M ⊂ J(R). Therefore J(R) = M, as claimed.
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Theorem IX.2.10

Theorem IX.2.10

Theorem IX.2.10. Let R be a ring.

(i) If R is primitive, then R is semisimple.

(ii) If R is simple and semisimple, then R is primitive.

(iii) If R is simple, then R is either a primitive semisimple ring or
a radical ring.

Proof. (i) If R is primitive, then (by Definition IX.1.5) R has a simple
faithful left R-module A; that is, A is a simple left R-module and its left
annihilator satisfies A(A) = {0}. By Theorem IX.2.3(i),
J(R) ⊂ A(A) = {0}. So J(R) = {0} and R is semisimple.

(ii) Let R be simple and semisimple. Then R 6= {0} since R is simple. If
there is no simple left R-module then by Theorem IX.2.3(i) (and Note
IX.2.A), J(R) = R 6= {0}; but this contradicts the semisimplicity of R. So
there is some simple left R-module A. The left annihilator A(A) is an ideal
of R by Theorem IX.1.4.
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Theorem IX.2.10

Theorem IX.2.10 (continued)

Theorem IX.2.10. Let R be a ring.

(i) If R is primitive, then R is semisimple.

(ii) If R is simple and semisimple, then R is primitive.

(iii) If R is simple, then R is either a primitive semisimple ring or
a radical ring.

Proof (continued). Since RA 6= {0} because A is a simple left R-module
(see Definition IX.1.1, “simple left module”) then A(A) 6= R. Also by
Definition IX.1.1, the simplicity of R then implies that A(A) = {0}. So
(by Definition IX.1.5) A is faithful (and so a simple faithful R-module) and
R is primitive.

(iii) Let R be simple. Then ideal J(R) of R is either R or {0}. If
J(R) = R then R is a radical ring. If J(R) = {0} then R is semisimple
and so, by part (ii), R is primitive.
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Theorem IX.2.10 (continued)
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Theorem IX.2.B

Theorem IX.2.B

Theorem IX.2.B. Let D be a division ring. Then the ring of all n × n
matrices over D, Matn(D), is semisimple.

Proof. By Theorem VII.1.4, Matn(D) is isomorphic to the ring of
endomorphisms HomD′(V ,V ) where V is a (left) vector space over some
division ring D ′.

In the Example after Definition IX.1.5, it is shown that
R = HomD′(V ,V ) is a primitive ring. So by Theorem IX.1.10(i),
R = HomD′(V ,V ) is semisimple. Since R ∼= Matn(D), then Matn(D) is
semisimple.
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Theorem IX.2.12

Theorem IX.2.12

Theorem IX.2.12. If R is a ring, then every nil right or left ideal is
contained in the Jacobson radical J(R).

Proof. Let a be in a nil ideal. Then an = 0 for some n ∈ N. Let
r = −a + a2 − a3 + · · ·+ (−1)n−1an−1. Then

r + a + ra = (−a + a2 − a3 + · · ·+ (−1)n−1an−1) + a

+(−a + a2 − a3 + · · ·+ (−1)n−1an−1)a

= (a2−a3+· · ·+(−1)n−1an−1)+(−a2+a3−· · ·+(−1)n−1an = (−1)n−1an = 0

and similarly r + a + ar = 0. Hence a is both left and right quasi-radical.
So the nil ideal is a quasi-regular ideal. By Theorem IX.2.3(iv) and (v),
the nil ideal is contained in J(R).
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Theorem IX.2.13

Theorem IX.2.13

Proposition IX.2.13. If R is a left (right) Artinian ring, then the radical
J(R) is a nilpotent ideal. Consequently every nil left or right ideal of R is
niplotent and J(R) is the unique maximal nilpotent left (right) ideal of R.

Proof. Let J = J(R) and consider J, J2, J3, . . . (again, Jk is the set of all
sums of products of k elements of J). Since J(R) is an ideal of R by
Theorem IX.2.3, then for any

a = (a1,1a2,1 · · · ak,1) + (a1,2a2,2 · · · ak,2) + · · ·+ (a1,na2,n · · · ak,n) ∈ Jk
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Theorem IX.2.13

Theorem IX.2.13 (continued 1)

Proof (continued). Similarly, any product of two products of k elements
of J can be written as a product of k elements of J:

(a1a2 · · · ak)(b1b2 · · · bk) = a1a2 · · · ak−1(akb1)b2 · · · bk

= a1a2 · · · (ak−1b
′)b2 · · · bk = a1a2 · · · ak−1b

′′b2 · · · bk

= · · · = b(k)b2 · · · bk ∈ Jk ,

so Jk is closed under products and is a subring of R. Hence
J ⊃ J2 ⊃ J3 ⊃ · · · is a descending chain of (left) ideals of R. By
hypothesis there exists k ∈ N such that J i = Jk for all i ≥ k. We claim
Jk = {0}.

ASSUME Jk 6= {0}. Then the set S of all left ideals I such
that Jk I 6= {0} contains I = Jk since JkJk = J2k = Jk 6= {0}. By
Theorem VIII.1.4, set S has a minimal element I0 ∈ S . Since I0 ∈ S then
Jk I0 6= {0}, so there is nonzero a ∈ I0 such that Jka 6= {0}.
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Theorem IX.2.13

Theorem IX.2.13 (continued 2)

Proof (continued). Since Jk is a subring of R then Jka is a subring of R
(it is “clearly” closed under addition and multiplication; notice
a ∈ I0 ⊂ Jk) and since Jk is a left ideal of R (so rJk ⊂ Jk for all r ∈ R)
then Jka is a left ideal of R (for ja ∈ Jka and r ∈ R,
r(ja) = (rj)a = j ′a ∈ Jka for some j ′ ∈ Jk). Since I0 ∈ S is a left ideal of
R and a ∈ I0 then Jka ⊂ I0. Furthermore, since
Jk(Jka) = J2ka = Jka 6= {0} then Jka ∈ S . Consequently, since I0 is a
minimal element of S , Jka ∈ S , and Jka ⊂ I0, then Jka = I0. Thus for
some nonzero r ∈ Jk , ra = a. Since Jk is a ring, −r ∈ Jk ⊂ J = J(R) and
by Theorem IX.2.3(iv) all elements of J(R) are quasi-regular, then −r is
quasi-regular.

Whence s − r − sr = 0 (by Definition IX.2.2) for some
s ∈ R. Consequently (using ra = a):

a = ra = −(−ra) = −(−ra + 0) = −(−ra + sa− sa)

= −(−ra + sa− s(ra)) = −(−r + s − sr)a = −0a = 0.

But by choice, a is nonzero so this is a CONTRADICTION.
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Theorem IX.2.13

Theorem IX.2.13 (continued 3)

Proposition IX.2.13. If R is a left (right) Artinian ring, then the radical
J(R) is a nilpotent ideal. Consequently every nil left or right ideal of R is
niplotent and J(R) is the unique maximal nilpotent left (right) ideal of R.

Proof (continued). So the assumption that Jk 6= {0} is false and hence
Jk = {0}. So J(R) = J ⊃ J2 ⊃ · · · ⊃ Jk = {0} and so J is a nilpotent
ideal of R (by Definition IX.2.11), as claimed.

By Theorem IX.2.12, every nil left or right ideal of R is contained in J(R).
Since we have shown J(R) to be nilpotent, then every nil left or right ideal
of R is also nilpotent as claimed. Also, since J(R) contains all nil left or
right ideals of R and i fI is any nilpotent ideal then I is also a nil ideal (by
definition IX.2.11 and the Note after it) and so I ⊂ J(R). Hence J(R) is
the unique maximal nilpotent left (or right) ideal of R, as claimed.
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Theorem IX.2.14

Theorem IX.2.14

Theorem IX.2.14. If R is a ring, then the quotient ring R/J(R) is
semisimple.

Proof. Let π : R → R/J(R) be the canonical epimorphism mapping
r 7→ r + J(R). Denote π(r) = r + J(R) = r for each r ∈ R. Let C be the
set of all regular maximal left ideals of R. Then by Theorem IX.2.3(ii),
J(R) = ∩I∈C I , so if I ∈ C then J(R) ⊂ I . By Theorem IV.1.10 (which
describes all submodules of R/J(R)), π(I ) = I/J(R) is a maximal left
ideal of R/J(R).

Since I is regular, there is e ∈ R such that r − re ∈ I for
all r ∈ R, and π(r − re) = r − r e ∈ π(I ) for all r ∈ R (and so for all
R ∈ R/J(R)). Therefore, π(I ) is regular (by Definition IX.1.2) for every
I ∈ C).

Let r ∈ ∩I∈Cπ(I ) = ∩I∈C I/J(R). ASSUME r 6∈ J(R). Then
R = r + J(R) 6= J(R). So coset r + J(R) ∈ I/J(R) for all I ∈ C. Now the
cosets of J(R) in I partition I for each I ∈ C, so these partitions each
include J(R) and r + J(R).
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Theorem IX.2.14

Theorem IX.2.14 (continued)

Proof (continued). So cosets in (∩I∈C I ) /J(R) include both J(R) and
r + J(R). However, ∩I∈C I = J(R), so (∩I∈C I ) /J(R) = J(R)/J(R) = {0}
and so J(R)/J(R) includes only the identity coset J(R), a
CONTRADICTION. So the assumption that r 6∈ J(R) is false and it must
be that for all r ∈ ∩I∈C I = ∩I∈C I/J(R), we have r ∈ J(R). That is,

∩I∈C I ⊂ π(J(R)). (∗)

Consequently, by applying Theorem IX.2.3(ii) to ring R/J(R), we have
that J(R/J(R)) is the intersection of all regular maximal left ideals of
R/J(R). Since each π(I ) is a maximal left ideal of R/J(R) for all I ∈ C as
shown above, then

J(R/J(R)) ⊂ ∩I∈Cπ(I )

⊂ π(J(R)) by (∗)
= J(R)/J(R) = {0}.

So J(R/J(R)) = {0} and by Definition IX.2.9, R/J(R) is semisimple, as
claimed.
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Lemma IX.2.15

Lemma IX.2.15

Lemma IX.2.15. Let R be a ring and a ∈ R.

(i) If −a2 is left quasi-regular, then so is a.
(ii) a ∈ J(R) if and only if Ra is a left quasi-regular left ideal.

Proof. (i) If −a2 is left quasi-regular then, by Definition IX.2.2, there is
r ∈ R such that r + (0a2) + r(−a2) = 0. let s = r − a− ra. Then

s + a + sa = (r − a− ra) + a + (r − a− ra)a

= r − a− ra + a + ra− a2 − ra2 = r + (−a2) + r(−a2) = 0,

and so a is left quasi-regular.

(ii) Suppose a ∈ J(R). Since J(R) is an ideal of R by Theorem IX.2.3,
then Ra ⊂ J(R). Now J(R) is a left quasi-regular left ideal of R by
Theorem IX.2.3(iv), so each element of Ra is left quasi-regular; also, Ra is
a left ideal of R and so Ra is a left quasi-regular left ideal, as claimed.
Conversely, suppose Ra is a left quasi-regular left ideal of R. Consider
K = {ra + na | r ∈ R, n ∈ Z}.
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Lemma IX.2.15 (continued)

Lemma IX.2.15. Let R be a ring and a ∈ R.

(i) If −a2 is left quasi-regular, then so is a.

(ii) a ∈ J(R) if and only if Ra is a left quasi-regular left ideal.

Proof (continued). Then
(r1a + n1a)− (r2a + n2a) = (r1 − r2)a + (n1 − n2)a ∈ K and for any r ∈ R
we have r(r1a + n1a) = rr1a + nara = (rr1 + nqr)a ∈ K . So by Theorem
III2.2, K is a left ideal of R. Also, a ∈ K (take r = 0 ∈ R and n = 1 ∈ Z)
and Ra ⊂ K (take n = 0 ∈ Z). If s = ra + na ∈ K then −s2 ∈ Ra since Ra
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left quasi-regular left ideal of R. Since a ∈ K then a is left quasi-regular.
Since a is an arbitrary element of J(R) then J(R) is left quasi-regular, as
claimed.
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Theorem IX.2.16

Theorem IX.2.16

Theorem IX.2.16.

(i) If an ideal I of a ring R is itself considered as a ring, then
J(I ) = I ∩ J(R).

(ii) If R is semisimple, then so is every ideal of R.

(iii) J(R) is a radical ring.

Proof. (i) Consider I ∩ J(R). By Theorem IX.2.3, J(R) is an ideal of R
(and so for each r ∈ I , rJ(R) ⊂ J(R) and J(R)r ⊂ J(R)), so
r(I ∩ J(R)) ⊂ I ∩ J(R) and (I ∩ J(R))f ⊂ I ∩ J(R). That is, I ∩ J(R) is
an ideal of I .

If a ∈ I ∩ J(R) then a is left quasi-regular in R by Theorem
IX.2.3(iv), whence r + a + ra = 0 for some r ∈ R. But r = −a− ra ∈ I
(since a ∈ I and I is an ideal of R). Thus every element of I ∩ J(R) is left
quasi-regular in I (since r + a + ra = 0 where r ∈ I ). Therefore by
Theorem IX.2.3(iv) (applied to ring I ), I ∩ J(R) ⊂ J(I ).
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Theorem IX.2.16

Theorem IX.2.16 (continued)

Proof (continued). Suppose a ∈ J(I ). For any r ∈ R,
−(ta)2 = −(rar)a ∈ IJ(I ) (since J(R) is a [two-sided] ideal of R) and
IJ(I ) ⊂ J(I ) (since J(I ) is an ideal of I ), so that −(ra)2 ∈ J(I ). Whence,
by Theorem IX.2.3(iv) applied to ring I , −(ra)2 is left quasi-regular in I .
Consequently, by Lemma IX.2.14(i), ra is left quasi-regular in I , and hence
in R (see Definition IX.2.2). Since r ∈ R is arbitrary, Ra is a left
quasi-regular left ideal of R, whence a ∈ J(R) by Lemma 2.15(ii).
Therefore, a ∈ J(I ) ∩ J(R) ⊂ I ∩ J(R). Since a is an arbitrary element of
J(I ), then J(I ) ⊂ I ∩ J(R) and, since I ∩ J(R) ⊂ I as shown above,
J(I ) = I ∩ J(R).

(ii) If R is semisimple then, by Definition IX.2.9, J(R) = {0}. If I is any
ideal of R then by part (i), J(I ) ⊂ I ∩ J(R) = {0} and so I is semisimple.

(iii) Since I = J(R) is an ideal of R by Theorem IX.2.3, then part (i)
implies JJ(R)) = J(R) ∩ J(R) = J(R). So by Definition IX.2.9 of radical
ring, I = J(R) is a radical ring.
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Theorem IX.2.17

Theorem IX.2.17

Theorem IX.2.17. If {Ri | i ∈ I} is a family of rings, then
J

(∏
i∈I Ri

)
=

∏
i∈I J(Ri ).

Proof. First, we claim that {ai} ∈
∏

Ri is a left quasi-regular element in∏
Ri if and only if ai is left quasi-regular in Ri for each i ∈ I . If each ai is

left quasi-regular in Ri then, by Definition IX.2.2, there is ri ∈ Ri such that
ri + ai + riai = 0i . Then for {ri} ∈

∏
Ri , we have

{ri}+ {ai}+ {ri}{ai} = {ri + ai + riai} = {ai} = 0 ∈
∏

Ri

and so {ai} is left quasi-regular in
∏

Ri .

Conversely, if a = {ai} is left
quasi-regular in

∏
Ri , then there is r = {ri} ∈

∏
Ri such that

r + a + ra = {ri}+ {ai}+ {ri}{ai} = {ri + ai + riai} = {0i} = 0 ∈
∏

Ri .

So ri + ai + raai = 0i for all i ∈ I . That is, ai is left quasi-regular in Ri for
each i ∈ I .
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Theorem IX.2.17

Theorem IX.2.17 (continued)

Proof (continued). Now J(Ri ) is a left quasi-regular ideal of Ri by
Theorem IX.2.3(iv) (so every element of J(Ri ) is left quasi-regular in Ri ),
so

∏
J(Ri ) is a left quasi-regular ideal in

∏
Ri . So by Theorem IX.2.3(iv)

again,
∏

J(Ri ) ⊂ J(
∏

Ri ).

For each k ∈ I , let πk :
∏

Ri → Rk be the canonical projection. Consider
Ik = πk(J(

∏
Ri )). Now J(

∏
Ri ) is an ideal of

∏
Ri by Theorem IX.2.3, so

Ik = πk(J(
∏

Ri )) is an ideal of Rk (by Theorem III.2.2, say, where we can
use certain closure of J(

∏
Ri ) in

∏
Ri to set the corresponding closure of

Ik in Rk). Let ak ∈ Ik . Then {ai} ∈ J(
∏

Ri ), for some ai ∈ Ri for
i ∈ I , i 6= k.

Applying Theorem IX.2.3(iv) to ring
∏

Ri , J(
∏

Ri ) is a left
quasi-regular ideal of

∏
Ri and so {ai} is a left quasi-regular element of∏

Ri . So there is {ri} ∈
∏

Ri such that {ri}+ {ai}+ {ri}{ai} = {0i}. In
particular, rk + ak + rkak = 0k and ak is left quasi-regular in Rk . Since ak

is an arbitrary element of Ik , then Ik is left quasi-regular in Rk . By
Theorem IX.2.3(iv), Ik ⊂ J(Rk). Since this holds for each k ∈ I ,
J(

∏
Ri ) ⊂

∏
J(Ri ). Therefore, J(

∏
Ri ) =

∏
J(Ri ), as claimed.
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