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Modern Algebra

Chapter IX. The Structure of Rings
IX.3. Semisimple Rings—Proofs of Theorems

Theorem 1X.3.2. A nonzero ring R is semisimple if and only if R is
isomorphic to a subdirect product or primitive rings.

Proof. Suppose R is nonzero semisimple and let P be the set of all left

primitive ideals of R. Then by Definition 1X.2.1, “left primitive ideal,” for

each P € P we have that R/P is a primitive ring. By the definition of

semisimple (Definition 1X.2.9 which states that R is semisimple if

J(R) = {0}) and Theorem 1X.2.3(iii), {0} = J(R) = NpepP. For each

PeP,let \p:R— R/Pand 7p : [[gep R/@ — R/P be the respective

canonical epimorphisms. Define ¢ : R — [[pcp R/P as

r— {Ap(r)}per = {r+ P}pep. If o(r) = ¢(s) then

{r+P}pep ={s+Plpep,orr+P=s+Pforal PeP. Sor—seP

for all P € P, but NpepP = {0} (this is where the semisimplicity of R is

@ww used), so r —s =0 and r = s. Therefore ¢ is one to one and so is a
monomorphism.
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Theorem 1X.3.2 (continued 1)

Proof (continued). Also, for each r € R we have

?Tpip(r) = ’:Tp({r-i- P}pe'p) =r+ P, so

mpp(R) ={r+ P|re€ R} = R/P. So by Definition IX.3.A, R is
isomorphic to a subdirect product of primitive rings.

Conversely, suppose there is a family of primitive rings {R; | i € I} and a
monomorphism of rings ¢ : R — [, R; such that m,p(R) = Ry for each
k € 1. Let 1k be the epimorphism (onto) k. By Corollary I11.2.10 (The
First Isomorphism Theorem), R, = R/Ker(1),) for each k € | and since
Ry is primitive by hypothesis then, by Definition 1X.2.1, Ker(1x) is a left
primitive ideal of R. Therefore, by Theorem 1X.2.3(ii),

J(R) C NkerKer(Pr). (%)

However, if r € R and 14(r) = 0 € Ry then the kth component of ¢(r) in
[I;c; Riis zero. Thus if r € Nke/Ker(1x), we must have ¢(r) = 0.
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Theorem 1X.3.2 (continued 2)

Theorem 1X.3.2. A nonzero ring R is semisimple if and only if R is
isomorphic to a subdirect product or primitive rings.

Proof (continued). Since ¢ is a monomorphism (one to one) by
hypothesis, then we must have r = 0 and so Nge/Ker(1) = {0}. This
combined with (x) gives J(R) C Nge/Ker(1x) = {0}. Therefore,

J(R) = {0} and R is semisimple by Definition 1X.2.9, as claimed. O
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[ Artinian Rings |
Theorem 1X.3.3

Theorem 1X.3.3. The Wedderburn-Artin Theorem for Semisimple
Artinian Rings.
The following conditions on a ring R are equivalent.

(i) R is a nonzero semisimple left Artinian ring;

(i) R is a direct product of a finite number of simple ideals each
of which is isomorphic to the endomorphism ring of a finite
dimensional vector space over a division ring;

(iii) there exist division rings D1, Da, ..., D¢ and

ny, na, ..., n € N such that R is isomorphic to the ring

Matp, (D1) X Matp,(D2) x - - - x Mat, (D).

Proof. (ii)<(iii) By Theorem VII.1.4, the endomorphism ring of a
dimension n vector space over a division ring is isomorphic to Mat,(D) for
some division ring D. By Exercise 111.2.9(a), Mat,(D) has no proper ideals
so that both it and the isomorphic endomorphism ring are simple.
Therefore, (i) and (ii) are equivalent.

Theorem 1X.3.3 (continued 1)

Proof (continued). (ii)=(i) Suppose R is isomorphic to [[i_; R; where
each R; is the endomorphism ring of a vector space (and hence R; is simple
by Exercise 111.2.9(a), as just explained). It is shown in the example after
definition IX.1.5 that each R; is primitive so, by Theorem 2.10(0), each R;
is semisimple and J(R;) = {0}. Consequently, by Theorem [X.2.17,

J(R)=J (H R,-) = HJ(R,-) = {0}.

So, by definition 1X.2.9 of “semisimple,” R is semisimple and the first part
of (i) holds.

By Theorem VII.1.4, each R; is isomorphic to Mat,(D) for some n € N
and some division ring D. By Corollary VII1.1.12, Mat,(D) (and hence
each R;) is Artinian. By Corollary VIII.1.7, [];_; R: (and hence R) is
Artinian. So the second claim of (i) holds.
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Theorem 1X.3.3 (continued 2)

Proof (continued). (i)=>(ii) Suppose R is a nonzero semisimple Arintian
ring. Then by the definition of “semisimple,” J(R) = {0} and so by
theorem IX.2.3(iii) J(R) = {0} is the intersection of all left primitive ideals
of R, so R has left primitive ideals (or else we would have

J(R) = R # {0}; see Note IX.2.A concerning a set theoretic convention
which we follow).

Suppose that R has only finitely many distinct left primitive ideals:

P1,Ps, ..., P: (we show below that this must be the case). By the
definition of “primitive ideal” (Definition 1X.2.1), each ring R/P; is a
primitive ring. Now R satisfies the descending chain condition (that is, is
Artinian) by hypothesis, so by Corollary VIII.1.6, P; and R/P; are Artinian
(here we treat R, P;, and R/P; as R-modules with B = R in Corollary
VII1.1.6). By the Wedderburn-Artin Theorem for Simple Artinian Rings
(Theorem IX.1.14, the (ii)=(i) and (ii)=-(iii) parts), each R/P; is a simple
ring isomorphic to an endomorphism ring of a finite dimensional left vector
space over a division ring.
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Theorem 1X.3.3 (continued 3)

Proof (continued). By Theorem [11.2.13, since each R/P; is simple, then
each P; is a maximal ideal of R. Furthermore, R?> ¢ P; (otherwise
(R/P;)? = {0}, which contradicts the definition of “simple ring R/P;,"
Definition IX.1.1), whence P; # R? + P; = R (by the maximality of P;).
Likewise, if i # j then P+ i # P; + P; # Pj and so P; + P = R by
maximality. So the hypotheses of Corollary 111.2.27 are satisfied and so
there is an isomorphism # mapping

R/(Nt_;P;) = R/Py x R/Py x --- x R/P;. By Theorem IX.2.3(iii),

J(R) = nN!_,P; and so we have

R= T/{0} = R/J(R) = R/(N{_1P;) = R/P1 x R/Ps % --- x R/P,.

If o : R/Px — [[i_, R/P; is the canonical injection (see Theorem
|||222(IV)), then each I,k(R/Pk) = (01, 02._ coey Ok—]_:! R/Pk._ 0,((_{_1.. ce ,0:)
is a simple ideal of [[/_; R/P; (since R/Py is simple).
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Theorem 1X.3.3 (continued 4)

Proof (continued). Under the isomorphism 6 showing []i_, R/P; = R,
the images of the tx(R/Px), 0(tk(R/Px)), are simple ideals of R and

R =0(t1(R/P1)) x 0(12(R/P2)) x - x O(ee(R/Py)).

We saw above that each R/P; is isomorphic to an endomorphism ring of a
finite dimensional left vector space over a division ring (this is where we
used the Wedderburn-Artin Theorem of Simple Artinian Rings), so that
each 0(¢;(R/P;)) also satisfies this and hence (ii) holds.

To complete the proof we need only show that R cannot have an infinite
number of distinct left primitive ideals. ASSUME that Py, P5, Ps3, ... is a
sequence of distinct left primitive ideals of R. An intersection of (left)
ideals is again a (left) ideal by Corollary 111.2.3, so
PiDPiNPDPiNPyNP3 D -+ isa descending chain of (left) ideals of
R.
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Corollary 1X.3.4

Corollary 1X.3.4.
(i) A semisimple left Artinian ring has an identity.
(ii) A semisimple ring is left Artinian if and only if it is right
Artinian.
(iii) A semisimple left Artinian ring is both left and right
Noetherian.

Proof. (i) By Theorem IX.3.3 (the (i)=(iii) part), R is isomorphic to
Mat,, (D1) x Mat,,(Dz) x - - - x Mat,,(D;) for dome ny,ny,...,ny € N
and for some division rings Dj, Ds, ..., D;. Since a division ring contains

an identity, then each Mat,,(D;) contains an identity (the usual n; x n;
identity matrix) and so the direct product and hence R has an identity.

(i) Theorem 1X.3.3 holds if “left” is replaced with “right.” If R is a
semisimple left Artinian ring then by Theorem 1X.3.3 (the (i)=>(iii) part),
R is isomorphic to Mat,, (D;) x Mat,,(D>) x -+ x Mat,,(D;) for some
t,ny, na, ..., ny € N and some division rings Dy, Do, ..., Dy.
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[ e e e Al Rings |
Theorem 1X.3.3 (continued 5)

Proof (continued). Since R is Artinian by hypothesis, there is n € N
such that PN PN ---NP,=P1NPyN---NPyN Ppyg (in fact, all
intersections beyond this point must be equal), whence
PiNPyN---NP,C Pyrii. We saw above that R2 + P; = R and

Py + P; =R (for i #j) fori,j=1,2,...,n+ 1. The proof of Theorem
[11.2.25 (see line 5 of page 132) shows that

Poi1+(PrN PN ---NP,) =R. Consequently P,;1 = R. But Py is a
left primitive ideal of R, and R itself is not a left primitive ideal of R (see
the Note after Definition 1X.2.1 of “left primitive ideal”), a
CONTRADICTION. So the assumption that R has infinitely many distinct
left primitive ideals is false, and the proof is complete. O
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Corollary 1X.3.4 (continued)

Proof (continued). Now by Theorem 1X.3.3 (the (iii)=-(i) part with
“left" replaced with “right”), R is a semisimple right Artinian ring, as
claimed.

(iii) Let A be a semisimple left Artinian ring. By Theorem 1X.3.3 (the
(i)=(ii) part),

R = Matp,(D1) x Matp,(D2) x - -+ x Matp, (D)

for some t, ny, na, ..., ny € N and for some division rings Dy, Ds, ..., Ds.
By Corollary VIII.1.12, each Mat, (D;) is Noetherian. By Corollary
VIIL.1.7, Mat,, (D1) x Mat,,(D2) x --- x Matp,(D¢) (and hence R) is then

Noetherian, as claimed. L]
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Corollary 1X.3.5

Corollary 1X.3.5. If / is an ideal in a semisimple left Artinian ring R, then
| = Re, where e is an idempotent element (that is, €2 = e) which is in the
center of R.

Proof. Let R be a left Artinian semisimple ring. By Theorem 1X.3.3(ii), R
is a (ring) direct product of simple ideals, say R =1/ x kb x --- x I,. Since
each /; is simple, then for a given ideal / of R we have / N /; is either {0}
or /; (since the intersection of ideals is an ideal by Corollary 111.2.3). This
also holds for I = I;, so R is an internal direct product of the /; and we do
not treat R as a collection of n-tuples but instead note that each element
of R is a unique sum of elements of the /; (the uniqueness follows from
Theorem 1.8.9); see the Note after Theorem 111.2.24 (and page 131 of
Hungerford). After re-indexing (if necessary) we may assume that
INlj=1lforj=1,2,....,tand IN[={0}forj=t+1,t+2,...,n By
Corollary 1X.2.4(i), R has an identity 1g. So 1g = e + e+ --- + ¢, for
some g; € [;.
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Corollary IX.3.5 (continued)

Proof (continued). Now /;/; C I since /i is a left ideal of R and /; C R,
and il C I since I; is a right ideal of R and I, C R. So

lilk C ;N I = {0} for j # k. Therefore,

atet+ - te=lg=(L)0=(ate+  +e)f =6+ + +e
and so ¢; = ej2 for each j. Similarly,

(1 +e+--+e&)=e+e&+---+e and

(E'H_1 + €42+ -+ E'n)2 = €11+ €42 + -+ + €, So that
et+e+---+e and ey1 + €10 + - - + e, are idempotent. With
e=e;+ e+ -+ e we have by Exercise 111.2.23 that

1 — (et41+e€t42+---+€) =€ + e+ -+ e = e isin the center of
R. Since I is an ideal, Re C I. Conversely, if u € I then

u=ulgp =uve; +ues+---+ ue, but for j=t+1,t+2,...,n we have
uej € IN1; = {0} and thus u = ve; + uey + --- + ue; = ue. So ve € | and
| C Re. Hence | = Re for idempotent e in the center of R, as claimed. []
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