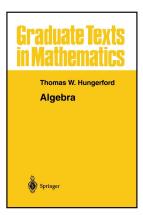
Modern Algebra

Chapter IX. The Structure of Rings

IX.3. Semisimple Rings—Proofs of Theorems



- Theorem IX.3.3. Wedderburn-Artin Theorem for Semisimple Artinian Rings
- 3 Corollary IX.3.4

4 Corollary IX.3.5

Theorem IX.3.2. A nonzero ring R is semisimple if and only if R is isomorphic to a subdirect product or primitive rings.

Proof. Suppose *R* is nonzero semisimple and let \mathcal{P} be the set of all left primitive ideals of *R*. Then by Definition IX.2.1, "left primitive ideal," for each $P \in \mathcal{P}$ we have that R/P is a primitive ring. By the definition of semisimple (Definition IX.2.9 which states that *R* is semisimple if $J(R) = \{0\}$) and Theorem IX.2.3(iii), $\{0\} = J(R) = \bigcap_{P \in \mathcal{P}} P$.

Theorem IX.3.2. A nonzero ring R is semisimple if and only if R is isomorphic to a subdirect product or primitive rings.

Proof. Suppose *R* is nonzero semisimple and let \mathcal{P} be the set of all left primitive ideals of R. Then by Definition IX.2.1, "left primitive ideal," for each $P \in \mathcal{P}$ we have that R/P is a primitive ring. By the definition of semisimple (Definition IX.2.9 which states that R is semisimple if $J(R) = \{0\}$ and Theorem IX.2.3(iii), $\{0\} = J(R) = \bigcap_{P \in \mathcal{P}} P$. For each $P \in \mathcal{P}$, let $\lambda_P : R \to R/P$ and $\pi_P : \prod_{Q \in \mathcal{P}} R/Q \to R/P$ be the respective canonical epimorphisms. Define $\varphi : R \to \prod_{P \in \mathcal{D}} R/P$ as $r \mapsto \{\lambda_P(r)\}_{P \in \mathcal{P}} = \{r + P\}_{P \in \mathcal{P}}$. If $\varphi(r) = \varphi(s)$ then $\{r + P\}_{P \in \mathcal{P}} = \{s + P\}_{P \in \mathcal{P}}$, or r + P = s + P for all $P \in \mathcal{P}$. So $r - s \in P$ for all $P \in P$, but $\bigcap_{P \in \mathcal{P}} P = \{0\}$ (this is where the semisimplicity of R is used), so r - s = 0 and r = s. Therefore φ is one to one and so is a

Theorem IX.3.2. A nonzero ring R is semisimple if and only if R is isomorphic to a subdirect product or primitive rings.

Proof. Suppose R is nonzero semisimple and let \mathcal{P} be the set of all left primitive ideals of R. Then by Definition IX.2.1, "left primitive ideal," for each $P \in \mathcal{P}$ we have that R/P is a primitive ring. By the definition of semisimple (Definition IX.2.9 which states that R is semisimple if $J(R) = \{0\}$ and Theorem IX.2.3(iii), $\{0\} = J(R) = \bigcap_{P \in \mathcal{P}} P$. For each $P \in \mathcal{P}$, let $\lambda_P : R \to R/P$ and $\pi_P : \prod_{Q \in \mathcal{P}} R/Q \to R/P$ be the respective canonical epimorphisms. Define $\varphi: R \to \prod_{P \in \mathcal{D}} R/P$ as $r \mapsto \{\lambda_P(r)\}_{P \in \mathcal{P}} = \{r + P\}_{P \in \mathcal{P}}$. If $\varphi(r) = \varphi(s)$ then $\{r+P\}_{P\in\mathcal{P}} = \{s+P\}_{P\in\mathcal{P}}$, or r+P = s+P for all $P\in\mathcal{P}$. So $r-s\in P$ for all $P \in P$, but $\bigcap_{P \in \mathcal{P}} P = \{0\}$ (this is where the semisimplicity of R is used), so r - s = 0 and r = s. Therefore φ is one to one and so is a monomorphism.

Theorem IX.3.2 (continued 1)

Proof (continued). Also, for each $r \in R$ we have $\pi_P \varphi(r) = \pi_P (\{r + P\}_{P \in \mathcal{P}}) = r + P$, so $\pi_P \varphi(R) = \{r + P \mid r \in R\} = R/P$. So by Definition IX.3.A, *R* is isomorphic to a subdirect product of primitive rings.

Conversely, suppose there is a family of primitive rings $\{R_i \mid i \in I\}$ and a monomorphism of rings $\varphi : R \to \prod_{i \in I} R_i$ such that $\pi_k \varphi(R) = R_k$ for each $k \in I$. Let ψ_k be the epimorphism (onto) $\pi_k \varphi$. By Corollary III.2.10 (The First Isomorphism Theorem), $R_k \cong R/\text{Ker}(\psi_k)$ for each $k \in I$ and since R_k is primitive by hypothesis then, by Definition IX.2.1, $\text{Ker}(\psi_k)$ is a left primitive ideal of R.

Theorem IX.3.2 (continued 1)

Proof (continued). Also, for each $r \in R$ we have $\pi_P \varphi(r) = \pi_P (\{r + P\}_{P \in \mathcal{P}}) = r + P$, so $\pi_P \varphi(R) = \{r + P \mid r \in R\} = R/P$. So by Definition IX.3.A, *R* is isomorphic to a subdirect product of primitive rings.

Conversely, suppose there is a family of primitive rings $\{R_i \mid i \in I\}$ and a monomorphism of rings $\varphi : R \to \prod_{i \in I} R_i$ such that $\pi_k \varphi(R) = R_k$ for each $k \in I$. Let ψ_k be the epimorphism (onto) $\pi_k \varphi$. By Corollary III.2.10 (The First Isomorphism Theorem), $R_k \cong R/\text{Ker}(\psi_k)$ for each $k \in I$ and since R_k is primitive by hypothesis then, by Definition IX.2.1, $\text{Ker}(\psi_k)$ is a left primitive ideal of R. Therefore, by Theorem IX.2.3(ii),

 $J(R) \subset \cap_{k \in I} \operatorname{Ker}(\psi_k). \quad (*)$

However, if $r \in R$ and $\psi_k(r) = 0 \in R_k$ then the *k*th component of $\varphi(r)$ in $\prod_{i \in I} R_i$ is zero. Thus if $r \in \bigcap_{k \in I} \operatorname{Ker}(\psi_k)$, we must have $\varphi(r) = 0$.

Theorem IX.3.2 (continued 1)

Proof (continued). Also, for each $r \in R$ we have $\pi_P \varphi(r) = \pi_P (\{r + P\}_{P \in \mathcal{P}}) = r + P$, so $\pi_P \varphi(R) = \{r + P \mid r \in R\} = R/P$. So by Definition IX.3.A, *R* is isomorphic to a subdirect product of primitive rings.

Conversely, suppose there is a family of primitive rings $\{R_i \mid i \in I\}$ and a monomorphism of rings $\varphi : R \to \prod_{i \in I} R_i$ such that $\pi_k \varphi(R) = R_k$ for each $k \in I$. Let ψ_k be the epimorphism (onto) $\pi_k \varphi$. By Corollary III.2.10 (The First Isomorphism Theorem), $R_k \cong R/\text{Ker}(\psi_k)$ for each $k \in I$ and since R_k is primitive by hypothesis then, by Definition IX.2.1, $\text{Ker}(\psi_k)$ is a left primitive ideal of R. Therefore, by Theorem IX.2.3(ii),

$$J(R) \subset \cap_{k \in I} \operatorname{Ker}(\psi_k).$$
 (*)

However, if $r \in R$ and $\psi_k(r) = 0 \in R_k$ then the *k*th component of $\varphi(r)$ in $\prod_{i \in I} R_i$ is zero. Thus if $r \in \bigcap_{k \in I} \operatorname{Ker}(\psi_k)$, we must have $\varphi(r) = 0$.

Theorem IX.3.2 (continued 2)

Theorem IX.3.2. A nonzero ring R is semisimple if and only if R is isomorphic to a subdirect product or primitive rings.

Proof (continued). Since φ is a monomorphism (one to one) by hypothesis, then we must have r = 0 and so $\bigcap_{k \in I} \operatorname{Ker}(\psi_k) = \{0\}$. This combined with (*) gives $J(R) \subset \bigcap_{k \in I} \operatorname{Ker}(\psi_k) = \{0\}$. Therefore, $J(R) = \{0\}$ and R is semisimple by Definition IX.2.9, as claimed.

Theorem IX.3.3. The Wedderburn-Artin Theorem for Semisimple Artinian Rings.

The following conditions on a ring R are equivalent.

- (i) R is a nonzero semisimple left Artinian ring;
- (ii) R is a direct product of a finite number of simple ideals each of which is isomorphic to the endomorphism ring of a finite dimensional vector space over a division ring;

(iii) there exist division rings D_1, D_2, \ldots, D_t and $n_1, n_2, \ldots, n_t \in \mathbb{N}$ such that R is isomorphic to the ring $\operatorname{Mat}_{n_1}(D_1) \times \operatorname{Mat}_{n_2}(D_2) \times \cdots \times \operatorname{Mat}_{n_t}(D_t).$

Proof. (ii) \Leftrightarrow (iii) By Theorem VII.1.4, the endomorphism ring of a dimension *n* vector space over a division ring is isomorphic to $Mat_n(D)$ for some division ring *D*. By Exercise III.2.9(a), $Mat_n(D)$ has no proper ideals so that both it and the isomorphic endomorphism ring are simple. Therefore, (i) and (ii) are equivalent.

Theorem IX.3.3. The Wedderburn-Artin Theorem for Semisimple Artinian Rings.

The following conditions on a ring R are equivalent.

- (i) *R* is a nonzero semisimple left Artinian ring;
- (ii) R is a direct product of a finite number of simple ideals each of which is isomorphic to the endomorphism ring of a finite dimensional vector space over a division ring;

(iii) there exist division rings D_1, D_2, \ldots, D_t and $n_1, n_2, \ldots, n_t \in \mathbb{N}$ such that R is isomorphic to the ring $\operatorname{Mat}_{n_1}(D_1) \times \operatorname{Mat}_{n_2}(D_2) \times \cdots \times \operatorname{Mat}_{n_t}(D_t).$

Proof. (ii) \Leftrightarrow (iii) By Theorem VII.1.4, the endomorphism ring of a dimension *n* vector space over a division ring is isomorphic to $Mat_n(D)$ for some division ring *D*. By Exercise III.2.9(a), $Mat_n(D)$ has no proper ideals so that both it and the isomorphic endomorphism ring are simple. Therefore, (i) and (ii) are equivalent.

Theorem IX.3.3 (continued 1)

Proof (continued). (ii) \Rightarrow (i) Suppose *R* is isomorphic to $\prod_{i=1}^{t} R_i$ where each R_i is the endomorphism ring of a vector space (and hence R_i is simple by Exercise III.2.9(a), as just explained). It is shown in the example after definition IX.1.5 that each R_i is primitive so, by Theorem 2.10(0), each R_i is semisimple and $J(R_i) = \{0\}$. Consequently, by Theorem IX.2.17,

$$J(R) = J\left(\prod_{i=1}^{t} R_i\right) \cong \prod_{i=1}^{t} J(R_i) = \{0\}.$$

So, by definition IX.2.9 of "semisimple," R is semisimple and the first part of (i) holds.

By Theorem VII.1.4, each R_i is isomorphic to $Mat_n(D)$ for some $n \in \mathbb{N}$ and some division ring D. By Corollary VIII.1.12, $Mat_n(D)$ (and hence each R_i) is Artinian. By Corollary VIII.1.7, $\prod_{i=1}^{t} R_i$ (and hence R) is Artinian. So the second claim of (i) holds.

Theorem IX.3.3 (continued 1)

Proof (continued). (ii) \Rightarrow (i) Suppose *R* is isomorphic to $\prod_{i=1}^{t} R_i$ where each R_i is the endomorphism ring of a vector space (and hence R_i is simple by Exercise III.2.9(a), as just explained). It is shown in the example after definition IX.1.5 that each R_i is primitive so, by Theorem 2.10(0), each R_i is semisimple and $J(R_i) = \{0\}$. Consequently, by Theorem IX.2.17,

$$J(R) = J\left(\prod_{i=1}^{t} R_i\right) \cong \prod_{i=1}^{t} J(R_i) = \{0\}.$$

So, by definition IX.2.9 of "semisimple," R is semisimple and the first part of (i) holds.

By Theorem VII.1.4, each R_i is isomorphic to $Mat_n(D)$ for some $n \in \mathbb{N}$ and some division ring D. By Corollary VIII.1.12, $Mat_n(D)$ (and hence each R_i) is Artinian. By Corollary VIII.1.7, $\prod_{i=1}^{t} R_i$ (and hence R) is Artinian. So the second claim of (i) holds.

Theorem IX.3.3 (continued 2)

Proof (continued). (i) \Rightarrow (ii) Suppose *R* is a nonzero semisimple Arintian ring. Then by the definition of "semisimple," $J(R) = \{0\}$ and so by theorem IX.2.3(iii) $J(R) = \{0\}$ is the intersection of all left primitive ideals of *R*, so *R* has left primitive ideals (or else we would have $J(R) = R \neq \{0\}$; see Note IX.2.A concerning a set theoretic convention which we follow).

Suppose that *R* has only finitely many distinct left primitive ideals: P_1, P_2, \ldots, P_t (we show below that this must be the case). By the definition of "primitive ideal" (Definition IX.2.1), each ring R/P_i is a primitive ring. Now *R* satisfies the descending chain condition (that is, is Artinian) by hypothesis, so by Corollary VIII.1.6, P_i and R/P_i are Artinian (here we treat *R*, P_i , and R/P_i as *R*-modules with B = R in Corollary VIII.1.6). By the Wedderburn-Artin Theorem for Simple Artinian Rings (Theorem IX.1.14, the (ii) \Rightarrow (i) and (ii) \Rightarrow (iii) parts), each R/P_i is a simple ring isomorphic to an endomorphism ring of a finite dimensional left vector space over a division ring.

()

Theorem IX.3.3 (continued 2)

Proof (continued). (i) \Rightarrow (ii) Suppose *R* is a nonzero semisimple Arintian ring. Then by the definition of "semisimple," $J(R) = \{0\}$ and so by theorem IX.2.3(iii) $J(R) = \{0\}$ is the intersection of all left primitive ideals of *R*, so *R* has left primitive ideals (or else we would have $J(R) = R \neq \{0\}$; see Note IX.2.A concerning a set theoretic convention which we follow).

Suppose that *R* has only finitely many distinct left primitive ideals: P_1, P_2, \ldots, P_t (we show below that this must be the case). By the definition of "primitive ideal" (Definition IX.2.1), each ring R/P_i is a primitive ring. Now *R* satisfies the descending chain condition (that is, is Artinian) by hypothesis, so by Corollary VIII.1.6, P_i and R/P_i are Artinian (here we treat *R*, P_i , and R/P_i as *R*-modules with B = R in Corollary VIII.1.6). By the Wedderburn-Artin Theorem for Simple Artinian Rings (Theorem IX.1.14, the (ii) \Rightarrow (i) and (ii) \Rightarrow (iii) parts), each R/P_i is a simple ring isomorphic to an endomorphism ring of a finite dimensional left vector space over a division ring.

Theorem IX.3.3 (continued 3)

Proof (continued). By Theorem III.2.13, since each R/P_i is simple, then each P_i is a maximal ideal of R. Furthermore, $R^2 \not\subset P_i$ (otherwise $(R/P_i)^2 = \{0\}$, which contradicts the definition of "simple ring R/P_i ," Definition IX.1.1), whence $P_i \neq R^2 + P_i = R$ (by the maximality of P_i). Likewise, if $i \neq j$ then $P + i \neq P_i + P_j \neq P_j$ and so $P_i + P_j = R$ by maximality. So the hypotheses of Corollary III.2.27 are satisfied and so there is an isomorphism θ mapping $R/(\bigcap_{i=1}^t P_i) \rightarrow R/P_1 \times R/P_2 \times \cdots \times R/P_t$. By Theorem IX.2.3(iii), $J(R) = \bigcap_{i=1}^t P_i$ and so we have

 $R \cong T/\{0\} = R/J(R) = R/(\cap_{i=1}^{t} P_i) = R/P_1 \times R/P_2 \times \cdots \times R/P_t.$

If $\iota_k : R/P_k \to \prod_{i=1}^t R/P_i$ is the canonical injection (see Theorem III.2.22(iv)), then each $\iota_k(R/P_k) = (0_1, 0_2, \dots, 0_{k-1}, R/P_k, 0_{k+1}, \dots, 0_t)$ is a simple ideal of $\prod_{i=1}^r R/P_i$ (since R/P_k is simple).

Theorem IX.3.3 (continued 3)

Proof (continued). By Theorem III.2.13, since each R/P_i is simple, then each P_i is a maximal ideal of R. Furthermore, $R^2 \not\subset P_i$ (otherwise $(R/P_i)^2 = \{0\}$, which contradicts the definition of "simple ring R/P_i ," Definition IX.1.1), whence $P_i \neq R^2 + P_i = R$ (by the maximality of P_i). Likewise, if $i \neq j$ then $P + i \neq P_i + P_j \neq P_j$ and so $P_i + P_j = R$ by maximality. So the hypotheses of Corollary III.2.27 are satisfied and so there is an isomorphism θ mapping $R/(\bigcap_{i=1}^t P_i) \rightarrow R/P_1 \times R/P_2 \times \cdots \times R/P_t$. By Theorem IX.2.3(iii), $J(R) = \bigcap_{i=1}^t P_i$ and so we have

$$R \cong T/\{0\} = R/J(R) = R/(\cap_{i=1}^{t} P_i) = R/P_1 \times R/P_2 \times \cdots \times R/P_t.$$

If $\iota_k : R/P_k \to \prod_{i=1}^t R/P_i$ is the canonical injection (see Theorem III.2.22(iv)), then each $\iota_k(R/P_k) = (0_1, 0_2, \dots, 0_{k-1}, R/P_k, 0_{k+1}, \dots, 0_t)$ is a simple ideal of $\prod_{i=1}^r R/P_i$ (since R/P_k is simple).

Theorem IX.3.3 (continued 4)

Proof (continued). Under the isomorphism θ showing $\prod_{i=1}^{t} R/P_i \cong R$, the images of the $\iota_k(R/P_k)$, $\theta(\iota_k(R/P_k))$, are simple ideals of R and

 $R = \theta(\iota_1(R/P_1)) \times \theta(\iota_2(R/P_2)) \times \cdots \times \theta(\iota_t(R/P_t)).$

We saw above that each R/P_i is isomorphic to an endomorphism ring of a finite dimensional left vector space over a division ring (this is where we used the Wedderburn-Artin Theorem of Simple Artinian Rings), so that each $\theta(\iota_i(R/P_i))$ also satisfies this and hence (ii) holds.

To complete the proof we need only show that R cannot have an infinite number of distinct left primitive ideals. ASSUME that P_1, P_2, P_3, \ldots is a sequence of distinct left primitive ideals of R. An intersection of (left) ideals is again a (left) ideal by Corollary III.2.3, so $P_1 \supset P_1 \cap P_2 \supset P_1 \cap P_2 \cap P_3 \supset \cdots$ is a descending chain of (left) ideals of R.

Theorem IX.3.3 (continued 4)

Proof (continued). Under the isomorphism θ showing $\prod_{i=1}^{t} R/P_i \cong R$, the images of the $\iota_k(R/P_k)$, $\theta(\iota_k(R/P_k))$, are simple ideals of R and

 $R = \theta(\iota_1(R/P_1)) \times \theta(\iota_2(R/P_2)) \times \cdots \times \theta(\iota_t(R/P_t)).$

We saw above that each R/P_i is isomorphic to an endomorphism ring of a finite dimensional left vector space over a division ring (this is where we used the Wedderburn-Artin Theorem of Simple Artinian Rings), so that each $\theta(\iota_i(R/P_i))$ also satisfies this and hence (ii) holds.

To complete the proof we need only show that R cannot have an infinite number of distinct left primitive ideals. ASSUME that P_1, P_2, P_3, \ldots is a sequence of distinct left primitive ideals of R. An intersection of (left) ideals is again a (left) ideal by Corollary III.2.3, so $P_1 \supset P_1 \cap P_2 \supset P_1 \cap P_2 \cap P_3 \supset \cdots$ is a descending chain of (left) ideals of R.

Theorem IX.3.3 (continued 5)

Proof (continued). Since R is Artinian by hypothesis, there is $n \in \mathbb{N}$ such that $P_1 \cap P_2 \cap \cdots \cap P_n = P_1 \cap P_2 \cap \cdots \cap P_n \cap P_{n+1}$ (in fact, all intersections beyond this point must be equal), whence $P_1 \cap P_2 \cap \cdots \cap P_n \subset P_{n+1}$. We saw above that $R^2 + P_1 = R$ and $P_1 + P_i = R$ (for $i \neq j$) for i, j = 1, 2, ..., n + 1. The proof of Theorem III.2.25 (see line 5 of page 132) shows that $P_{n+1} + (P_1 \cap P_2 \cap \cdots \cap P_n) = R$. Consequently $P_{n+1} = R$. But P_{n+1} is a left primitive ideal of R, and R itself is not a left primitive ideal of R (see the Note after Definition IX.2.1 of "left primitive ideal"), a CONTRADICTION. So the assumption that R has infinitely many distinct left primitive ideals is false, and the proof is complete.

Theorem IX.3.3 (continued 5)

Proof (continued). Since R is Artinian by hypothesis, there is $n \in \mathbb{N}$ such that $P_1 \cap P_2 \cap \cdots \cap P_n = P_1 \cap P_2 \cap \cdots \cap P_n \cap P_{n+1}$ (in fact, all intersections beyond this point must be equal), whence $P_1 \cap P_2 \cap \cdots \cap P_n \subset P_{n+1}$. We saw above that $R^2 + P_1 = R$ and $P_1 + P_i = R$ (for $i \neq j$) for i, j = 1, 2, ..., n + 1. The proof of Theorem III.2.25 (see line 5 of page 132) shows that $P_{n+1} + (P_1 \cap P_2 \cap \cdots \cap P_n) = R$. Consequently $P_{n+1} = R$. But P_{n+1} is a left primitive ideal of R, and R itself is not a left primitive ideal of R (see the Note after Definition IX.2.1 of "left primitive ideal"), a CONTRADICTION. So the assumption that R has infinitely many distinct left primitive ideals is false, and the proof is complete.

Corollary IX.3.4.

- (i) A semisimple left Artinian ring has an identity.
- (ii) A semisimple ring is left Artinian if and only if it is right Artinian.
- (iii) A semisimple left Artinian ring is both left and right Noetherian.

Proof. (i) By Theorem IX.3.3 (the (i) \Rightarrow (iii) part), R is isomorphic to $Mat_{n_1}(D_1) \times Mat_{n_2}(D_2) \times \cdots \times Mat_{n_t}(D_t)$ for dome $n_1, n_2, \ldots, n_t \in \mathbb{N}$ and for some division rings D_1, D_2, \ldots, D_t . Since a division ring contains an identity, then each $Mat_{n_i}(D_i)$ contains an identity (the usual $n_i \times n_i$ identity matrix) and so the direct product and hence R has an identity.

Corollary IX.3.4.

- (i) A semisimple left Artinian ring has an identity.
- (ii) A semisimple ring is left Artinian if and only if it is right Artinian.
- (iii) A semisimple left Artinian ring is both left and right Noetherian.

Proof. (i) By Theorem IX.3.3 (the (i) \Rightarrow (iii) part), R is isomorphic to $Mat_{n_1}(D_1) \times Mat_{n_2}(D_2) \times \cdots \times Mat_{n_t}(D_t)$ for dome $n_1, n_2, \ldots, n_t \in \mathbb{N}$ and for some division rings D_1, D_2, \ldots, D_t . Since a division ring contains an identity, then each $Mat_{n_i}(D_i)$ contains an identity (the usual $n_i \times n_i$ identity matrix) and so the direct product and hence R has an identity.

(ii) Theorem IX.3.3 holds if "left" is replaced with "right." If R is a semisimple left Artinian ring then by Theorem IX.3.3 (the (i) \Rightarrow (iii) part), R is isomorphic to $\operatorname{Mat}_{n_1}(D_1) \times \operatorname{Mat}_{n_2}(D_2) \times \cdots \times \operatorname{Mat}_{n_t}(D_t)$ for some $t, n_1, n_2, \ldots, n_t \in \mathbb{N}$ and some division rings D_1, D_2, \ldots, D_t .

Corollary IX.3.4.

- (i) A semisimple left Artinian ring has an identity.
- (ii) A semisimple ring is left Artinian if and only if it is right Artinian.
- (iii) A semisimple left Artinian ring is both left and right Noetherian.

Proof. (i) By Theorem IX.3.3 (the (i) \Rightarrow (iii) part), R is isomorphic to $Mat_{n_1}(D_1) \times Mat_{n_2}(D_2) \times \cdots \times Mat_{n_t}(D_t)$ for dome $n_1, n_2, \ldots, n_t \in \mathbb{N}$ and for some division rings D_1, D_2, \ldots, D_t . Since a division ring contains an identity, then each $Mat_{n_i}(D_i)$ contains an identity (the usual $n_i \times n_i$ identity matrix) and so the direct product and hence R has an identity.

(ii) Theorem IX.3.3 holds if "left" is replaced with "right." If R is a semisimple left Artinian ring then by Theorem IX.3.3 (the (i) \Rightarrow (iii) part), R is isomorphic to $\operatorname{Mat}_{n_1}(D_1) \times \operatorname{Mat}_{n_2}(D_2) \times \cdots \times \operatorname{Mat}_{n_t}(D_t)$ for some $t, n_1, n_2, \ldots, n_t \in \mathbb{N}$ and some division rings D_1, D_2, \ldots, D_t .

Corollary IX.3.4 (continued)

Proof (continued). Now by Theorem IX.3.3 (the (iii) \Rightarrow (i) part with "left" replaced with "right"), *R* is a semisimple right Artinian ring, as claimed.

(iii) Let A be a semisimple left Artinian ring. By Theorem IX.3.3 (the (i) \Rightarrow (iii) part),

$$R \cong \operatorname{Mat}_{n_1}(D_1) \times \operatorname{Mat}_{n_2}(D_2) \times \cdots \times \operatorname{Mat}_{n_t}(D_t)$$

for some $t, n_1, n_2, \ldots, n_t \in \mathbb{N}$ and for some division rings D_1, D_2, \ldots, D_t . By Corollary VIII.1.12, each $\operatorname{Mat}_{n_i}(D_i)$ is Noetherian. By Corollary VIII.1.7, $\operatorname{Mat}_{n_1}(D_1) \times \operatorname{Mat}_{n_2}(D_2) \times \cdots \times \operatorname{Mat}_{n_t}(D_t)$ (and hence R) is then Noetherian, as claimed.

Corollary IX.3.4 (continued)

Proof (continued). Now by Theorem IX.3.3 (the (iii) \Rightarrow (i) part with "left" replaced with "right"), *R* is a semisimple right Artinian ring, as claimed.

(iii) Let A be a semisimple left Artinian ring. By Theorem IX.3.3 (the (i) \Rightarrow (iii) part),

$$R \cong \operatorname{Mat}_{n_1}(D_1) imes \operatorname{Mat}_{n_2}(D_2) imes \cdots imes \operatorname{Mat}_{n_t}(D_t)$$

for some $t, n_1, n_2, \ldots, n_t \in \mathbb{N}$ and for some division rings D_1, D_2, \ldots, D_t . By Corollary VIII.1.12, each $\operatorname{Mat}_{n_i}(D_i)$ is Noetherian. By Corollary VIII.1.7, $\operatorname{Mat}_{n_1}(D_1) \times \operatorname{Mat}_{n_2}(D_2) \times \cdots \times \operatorname{Mat}_{n_t}(D_t)$ (and hence R) is then Noetherian, as claimed.

Corollary IX.3.5. If *I* is an ideal in a semisimple left Artinian ring *R*, then I = Re, where *e* is an idempotent element (that is, $e^2 = e$) which is in the center of *R*.

Proof. Let *R* be a left Artinian semisimple ring. By Theorem IX.3.3(ii), *R* is a (ring) direct product of simple ideals, say $R = I_1 \times I_2 \times \cdots \times I_n$. Since each I_j is simple, then for a given ideal *I* of *R* we have $I \cap I_j$ is either {0} or I_j (since the intersection of ideals is an ideal by Corollary III.2.3).

Corollary IX.3.5. If *I* is an ideal in a semisimple left Artinian ring *R*, then I = Re, where *e* is an idempotent element (that is, $e^2 = e$) which is in the center of *R*.

Proof. Let *R* be a left Artinian semisimple ring. By Theorem IX.3.3(ii), *R* is a (ring) direct product of simple ideals, say $R = I_1 \times I_2 \times \cdots \times I_n$. Since each I_j is simple, then for a given ideal *I* of *R* we have $I \cap I_j$ is either {0} or I_j (since the intersection of ideals is an ideal by Corollary III.2.3). This also holds for $I = I_i$, so *R* is an internal direct product of the I_j and we do not treat *R* as a collection of *n*-tuples but instead note that each element of *R* is a unique sum of elements of the I_j (the uniqueness follows from Theorem 1.8.9); see the Note after Theorem III.2.24 (and page 131 of Hungerford).

Corollary IX.3.5. If *I* is an ideal in a semisimple left Artinian ring *R*, then I = Re, where *e* is an idempotent element (that is, $e^2 = e$) which is in the center of *R*.

Proof. Let R be a left Artinian semisimple ring. By Theorem IX.3.3(ii), R is a (ring) direct product of simple ideals, say $R = I_1 \times I_2 \times \cdots \times I_n$. Since each I_i is simple, then for a given ideal I of R we have $I \cap I_i$ is either $\{0\}$ or I_i (since the intersection of ideals is an ideal by Corollary III.2.3). This also holds for $I = I_i$, so R is an internal direct product of the I_i and we do not treat R as a collection of n-tuples but instead note that each element of R is a unique sum of elements of the I_i (the uniqueness follows from Theorem I.8.9); see the Note after Theorem III.2.24 (and page 131 of Hungerford). After re-indexing (if necessary) we may assume that $I \cap I_i = I_i$ for j = 1, 2, ..., t and $I \cap I_i = \{0\}$ for j = t + 1, t + 2, ..., n. By Corollary IX.2.4(i), R has an identity 1_R . So $1_R = e_1 + e_2 + \cdots + e_n$ for some $e_i \in I_i$.

Corollary IX.3.5. If *I* is an ideal in a semisimple left Artinian ring *R*, then I = Re, where *e* is an idempotent element (that is, $e^2 = e$) which is in the center of *R*.

Proof. Let R be a left Artinian semisimple ring. By Theorem IX.3.3(ii), R is a (ring) direct product of simple ideals, say $R = I_1 \times I_2 \times \cdots \times I_n$. Since each I_i is simple, then for a given ideal I of R we have $I \cap I_i$ is either $\{0\}$ or I_i (since the intersection of ideals is an ideal by Corollary III.2.3). This also holds for $I = I_i$, so R is an internal direct product of the I_i and we do not treat R as a collection of n-tuples but instead note that each element of R is a unique sum of elements of the I_i (the uniqueness follows from Theorem I.8.9); see the Note after Theorem III.2.24 (and page 131 of Hungerford). After re-indexing (if necessary) we may assume that $I \cap I_i = I_i$ for j = 1, 2, ..., t and $I \cap I_i = \{0\}$ for j = t + 1, t + 2, ..., n. By Corollary IX.2.4(i), R has an identity 1_R . So $1_R = e_1 + e_2 + \cdots + e_n$ for some $e_i \in I_i$.

Corollary IX.3.5 (continued)

Proof (continued). Now $I_i I_j \subset I_k$ since I_k is a left ideal of R and $I_j \subset R$, and $I_j I_k \subset I_j$ since I_j is a right ideal of R and $I_k \subset R$. So $I_j I_k \subset I_j \cap I_k = \{0\}$ for $j \neq k$. Therefore,

$$e_1 + e_2 + \dots + e_n = 1_R = (1_r)^2 = (e_1 + e_2 + \dots + e_n)^2 = e_1^2 + e_2^2 + \dots + e_n^2$$

and so
$$e_j = e_j^2$$
 for each *j*. Similarly,
 $(e_1 + e_2 + \dots + e_t)^2 = e_1 + e_2 + \dots + e_t$ and
 $(e_{t+1} + e_{t+2} + \dots + e_n)^2 = e_{t+1} + e_{t+2} + \dots + e_n$. So that
 $e_1 + e_2 + \dots + e_t$ and $e_{t+1} + e_{t+2} + \dots + e_n$ are idempotent. With
 $e = e_1 + e_2 + \dots + e_t$ we have by Exercise III.2.23 that
 $1_R - (e_{t+1} + e_{t+2} + \dots + e_t) = e_1 + e_2 + \dots + e_t = e$ is in the center of
R. Since *I* is an ideal, $Re \subset I$. Conversely, if $u \in I$ then
 $u = u1_R = ue_1 + ue_2 + \dots + ue_n$, but for $j = t + 1, t + 2, \dots, n$ we have
 $ue_j \in I \cap I_j = \{0\}$ and thus $u = ue_1 + ue_2 + \dots + ue_t = ue$. So $ue \in I$ and
 $I \subset Re$. Hence $I = Re$ for idempotent *e* in the center of *R*, as claimed. \Box

Corollary IX.3.5 (continued)

Proof (continued). Now $I_i I_j \subset I_k$ since I_k is a left ideal of R and $I_j \subset R$, and $I_j I_k \subset I_j$ since I_j is a right ideal of R and $I_k \subset R$. So $I_j I_k \subset I_j \cap I_k = \{0\}$ for $j \neq k$. Therefore,

$$e_1 + e_2 + \dots + e_n = 1_R = (1_r)^2 = (e_1 + e_2 + \dots + e_n)^2 = e_1^2 + e_2^2 + \dots + e_n^2$$

and so
$$e_j = e_j^2$$
 for each *j*. Similarly,
 $(e_1 + e_2 + \dots + e_t)^2 = e_1 + e_2 + \dots + e_t$ and
 $(e_{t+1} + e_{t+2} + \dots + e_n)^2 = e_{t+1} + e_{t+2} + \dots + e_n$. So that
 $e_1 + e_2 + \dots + e_t$ and $e_{t+1} + e_{t+2} + \dots + e_n$ are idempotent. With
 $e = e_1 + e_2 + \dots + e_t$ we have by Exercise III.2.23 that
 $1_R - (e_{t+1} + e_{t+2} + \dots + e_t) = e_1 + e_2 + \dots + e_t = e$ is in the center of
R. Since *I* is an ideal, $Re \subset I$. Conversely, if $u \in I$ then
 $u = u1_R = ue_1 + ue_2 + \dots + ue_n$, but for $j = t + 1, t + 2, \dots, n$ we have
 $ue_j \in I \cap I_j = \{0\}$ and thus $u = ue_1 + ue_2 + \dots + ue_t = ue$. So $ue \in I$ and
 $I \subset Re$. Hence $I = Re$ for idempotent *e* in the center of *R*, as claimed. \Box