
Modern Algebra

October 8, 2018

Chapter IX. The Structure of Rings
IX.3. Semisimple Rings—Proofs of Theorems

() Modern Algebra October 8, 2018 1 / 15



Table of contents

1 Theorem IX.3.2

2 Theorem IX.3.3. Wedderburn-Artin Theorem for Semisimple Artinian
Rings

3 Corollary IX.3.4

4 Corollary IX.3.5

() Modern Algebra October 8, 2018 2 / 15



Theorem IX.3.2

Theorem IX.3.2

Theorem IX.3.2. A nonzero ring R is semisimple if and only if R is
isomorphic to a subdirect product or primitive rings.

Proof. Suppose R is nonzero semisimple and let P be the set of all left
primitive ideals of R. Then by Definition IX.2.1, “left primitive ideal,” for
each P ∈ P we have that R/P is a primitive ring. By the definition of
semisimple (Definition IX.2.9 which states that R is semisimple if
J(R) = {0}) and Theorem IX.2.3(iii), {0} = J(R) = ∩P∈PP.

For each
P ∈ P, let λP : R → R/P and πP :

∏
Q∈P R/Q → R/P be the respective

canonical epimorphisms. Define ϕ : R →
∏

P∈P R/P as
r 7→ {λP(r)}P∈P = {r + P}P∈P . If ϕ(r) = ϕ(s) then
{r + P}P∈P = {s + P}P∈P , or r + P = s + P for all P ∈ P. So r − s ∈ P
for all P ∈ P, but ∩P∈PP = {0} (this is where the semisimplicity of R is
used), so r − s = 0 and r = s. Therefore ϕ is one to one and so is a
monomorphism.
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Theorem IX.3.2

Theorem IX.3.2 (continued 1)

Proof (continued). Also, for each r ∈ R we have
πPϕ(r) = πP ({r + P}P∈P) = r + P, so
πPϕ(R) = {r + P | r ∈ R} = R/P. So by Definition IX.3.A, R is
isomorphic to a subdirect product of primitive rings.

Conversely, suppose there is a family of primitive rings {Ri | i ∈ I} and a
monomorphism of rings ϕ : R →

∏
i∈I Ri such that πkϕ(R) = Rk for each

k ∈ I . Let ψk be the epimorphism (onto) πkϕ. By Corollary III.2.10 (The
First Isomorphism Theorem), Rk

∼= R/Ker(ψk) for each k ∈ I and since
Rk is primitive by hypothesis then, by Definition IX.2.1, Ker(ψk) is a left
primitive ideal of R.

Therefore, by Theorem IX.2.3(ii),

J(R) ⊂ ∩k∈IKer(ψk). (∗)

However, if r ∈ R and ψk(r) = 0 ∈ Rk then the kth component of ϕ(r) in∏
i∈I Ri is zero. Thus if r ∈ ∩k∈IKer(ψk), we must have ϕ(r) = 0.
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Theorem IX.3.2

Theorem IX.3.2 (continued 2)

Theorem IX.3.2. A nonzero ring R is semisimple if and only if R is
isomorphic to a subdirect product or primitive rings.

Proof (continued). Since ϕ is a monomorphism (one to one) by
hypothesis, then we must have r = 0 and so ∩k∈IKer(ψk) = {0}. This
combined with (∗) gives J(R) ⊂ ∩k∈IKer(ψk) = {0}. Therefore,
J(R) = {0} and R is semisimple by Definition IX.2.9, as claimed.
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Theorem IX.3.3. Wedderburn-Artin Theorem for Semisimple
Artinian Rings

Theorem IX.3.3

Theorem IX.3.3. The Wedderburn-Artin Theorem for Semisimple
Artinian Rings.
The following conditions on a ring R are equivalent.

(i) R is a nonzero semisimple left Artinian ring;

(ii) R is a direct product of a finite number of simple ideals each
of which is isomorphic to the endomorphism ring of a finite
dimensional vector space over a division ring;

(iii) there exist division rings D1,D2, . . . ,Dt and
n1, n2, . . . , nt ∈ N such that R is isomorphic to the ring
Matn1(D1)×Matn2(D2)× · · · ×Matnt (Dt).

Proof. (ii)⇔(iii) By Theorem VII.1.4, the endomorphism ring of a
dimension n vector space over a division ring is isomorphic to Matn(D) for
some division ring D. By Exercise III.2.9(a), Matn(D) has no proper ideals
so that both it and the isomorphic endomorphism ring are simple.
Therefore, (i) and (ii) are equivalent.
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Theorem IX.3.3. Wedderburn-Artin Theorem for Semisimple
Artinian Rings

Theorem IX.3.3 (continued 1)

Proof (continued). (ii)⇒(i) Suppose R is isomorphic to
∏t

i=1 Ri where
each Ri is the endomorphism ring of a vector space (and hence Ri is simple
by Exercise III.2.9(a), as just explained). It is shown in the example after
definition IX.1.5 that each Ri is primitive so, by Theorem 2.10(0), each Ri

is semisimple and J(Ri ) = {0}. Consequently, by Theorem IX.2.17,

J(R) = J

(
t∏

i=1

Ri

)
∼=

t∏
i=1

J(Ri ) = {0}.

So, by definition IX.2.9 of “semisimple,” R is semisimple and the first part
of (i) holds.

By Theorem VII.1.4, each Ri is isomorphic to Matn(D) for some n ∈ N
and some division ring D. By Corollary VIII.1.12, Matn(D) (and hence
each Ri ) is Artinian. By Corollary VIII.1.7,

∏t
i=1 Ri (and hence R) is

Artinian. So the second claim of (i) holds.
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Theorem IX.3.3. Wedderburn-Artin Theorem for Semisimple
Artinian Rings

Theorem IX.3.3 (continued 2)

Proof (continued). (i)⇒(ii) Suppose R is a nonzero semisimple Arintian
ring. Then by the definition of “semisimple,” J(R) = {0} and so by
theorem IX.2.3(iii) J(R) = {0} is the intersection of all left primitive ideals
of R, so R has left primitive ideals (or else we would have
J(R) = R 6= {0}; see Note IX.2.A concerning a set theoretic convention
which we follow).

Suppose that R has only finitely many distinct left primitive ideals:
P1,P2, . . . ,Pt (we show below that this must be the case). By the
definition of “primitive ideal” (Definition IX.2.1), each ring R/Pi is a
primitive ring. Now R satisfies the descending chain condition (that is, is
Artinian) by hypothesis, so by Corollary VIII.1.6, Pi and R/Pi are Artinian
(here we treat R, Pi , and R/Pi as R-modules with B = R in Corollary
VIII.1.6). By the Wedderburn-Artin Theorem for Simple Artinian Rings
(Theorem IX.1.14, the (ii)⇒(i) and (ii)⇒(iii) parts), each R/Pi is a simple
ring isomorphic to an endomorphism ring of a finite dimensional left vector
space over a division ring.
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Theorem IX.3.3. Wedderburn-Artin Theorem for Semisimple
Artinian Rings

Theorem IX.3.3 (continued 3)

Proof (continued). By Theorem III.2.13, since each R/Pi is simple, then
each Pi is a maximal ideal of R. Furthermore, R2 6⊂ Pi (otherwise
(R/Pi )

2 = {0}, which contradicts the definition of “simple ring R/Pi ,”
Definition IX.1.1), whence Pi 6= R2 + Pi = R (by the maximality of Pi ).
Likewise, if i 6= j then P + i 6= Pi + Pj 6= Pj and so Pi + Pj = R by
maximality. So the hypotheses of Corollary III.2.27 are satisfied and so
there is an isomorphism θ mapping
R/(∩t

i=1Pi ) → R/P1 × R/P2 × · · · × R/Pt . By Theorem IX.2.3(iii),
J(R) = ∩t

i=1Pi and so we have

R ∼= T/{0} = R/J(R) = R
/(
∩t

i=1Pi

)
= R/P1 × R/P2 × · · · × R/Pt .

If ιk : R/Pk →
∏t

i=1 R/Pi is the canonical injection (see Theorem
III.2.22(iv)), then each ιk(R/Pk) = (01, 02, . . . , 0k−1,R/Pk , 0k+1, . . . , 0t)
is a simple ideal of

∏r
i=1 R/Pi (since R/Pk is simple).
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Theorem IX.3.3. Wedderburn-Artin Theorem for Semisimple
Artinian Rings

Theorem IX.3.3 (continued 4)

Proof (continued). Under the isomorphism θ showing
∏t

i=1 R/Pi
∼= R,

the images of the ιk(R/Pk), θ(ιk(R/Pk)), are simple ideals of R and

R = θ(ι1(R/P1))× θ(ι2(R/P2))× · · · × θ(ιt(R/Pt)).

We saw above that each R/Pi is isomorphic to an endomorphism ring of a
finite dimensional left vector space over a division ring (this is where we
used the Wedderburn-Artin Theorem of Simple Artinian Rings), so that
each θ(ιi (R/Pi )) also satisfies this and hence (ii) holds.

To complete the proof we need only show that R cannot have an infinite
number of distinct left primitive ideals. ASSUME that P1,P2,P3, . . . is a
sequence of distinct left primitive ideals of R. An intersection of (left)
ideals is again a (left) ideal by Corollary III.2.3, so
P1 ⊃ P1 ∩P2 ⊃ P1 ∩P2 ∩P3 ⊃ · · · is a descending chain of (left) ideals of
R.
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Theorem IX.3.3. Wedderburn-Artin Theorem for Semisimple
Artinian Rings

Theorem IX.3.3 (continued 5)

Proof (continued). Since R is Artinian by hypothesis, there is n ∈ N
such that P1 ∩ P2 ∩ · · · ∩ Pn = P1 ∩ P2 ∩ · · · ∩ Pn ∩ Pn+1 (in fact, all
intersections beyond this point must be equal), whence
P1 ∩ P2 ∩ · · · ∩ Pn ⊂ Pn+1. We saw above that R2 + P1 = R and
P1 + Pj = R (for i 6= j) for i , j = 1, 2, . . . , n + 1. The proof of Theorem
III.2.25 (see line 5 of page 132) shows that
Pn+1 + (P1 ∩ P2 ∩ · · · ∩ Pn) = R. Consequently Pn+1 = R. But Pn+1 is a
left primitive ideal of R, and R itself is not a left primitive ideal of R (see
the Note after Definition IX.2.1 of “left primitive ideal”), a
CONTRADICTION. So the assumption that R has infinitely many distinct
left primitive ideals is false, and the proof is complete.
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Corollary IX.3.4

Corollary IX.3.4

Corollary IX.3.4.

(i) A semisimple left Artinian ring has an identity.
(ii) A semisimple ring is left Artinian if and only if it is right

Artinian.
(iii) A semisimple left Artinian ring is both left and right

Noetherian.

Proof. (i) By Theorem IX.3.3 (the (i)⇒(iii) part), R is isomorphic to
Matn1(D1)×Matn2(D2)× · · · ×Matnt (Dt) for dome n1, n2, . . . , nt ∈ N
and for some division rings D1,D2, . . . ,Dt . Since a division ring contains
an identity, then each Matni (Di ) contains an identity (the usual ni × ni

identity matrix) and so the direct product and hence R has an identity.

(ii) Theorem IX.3.3 holds if “left” is replaced with “right.” If R is a
semisimple left Artinian ring then by Theorem IX.3.3 (the (i)⇒(iii) part),
R is isomorphic to Matn1(D1)×Matn2(D2)× · · · ×Matnt (Dt) for some
t, n1, n2, . . . , nt ∈ N and some division rings D1,D2, . . . ,Dt .
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Corollary IX.3.4

Corollary IX.3.4 (continued)

Proof (continued). Now by Theorem IX.3.3 (the (iii)⇒(i) part with
“left” replaced with “right”), R is a semisimple right Artinian ring, as
claimed.

(iii) Let A be a semisimple left Artinian ring. By Theorem IX.3.3 (the
(i)⇒(iii) part),

R ∼= Matn1(D1)×Matn2(D2)× · · · ×Matnt (Dt)

for some t, n1, n2, . . . , nt ∈ N and for some division rings D1,D2, . . . ,Dt .
By Corollary VIII.1.12, each Matni (Di ) is Noetherian. By Corollary
VIII.1.7, Matn1(D1)×Matn2(D2)× · · · ×Matnt (Dt) (and hence R) is then
Noetherian, as claimed.
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Corollary IX.3.5

Corollary IX.3.5. If I is an ideal in a semisimple left Artinian ring R, then
I = Re, where e is an idempotent element (that is, e2 = e) which is in the
center of R.

Proof. Let R be a left Artinian semisimple ring. By Theorem IX.3.3(ii), R
is a (ring) direct product of simple ideals, say R = I1 × I2 × · · · × In. Since
each Ij is simple, then for a given ideal I of R we have I ∩ Ij is either {0}
or Ij (since the intersection of ideals is an ideal by Corollary III.2.3).

This
also holds for I = Ii , so R is an internal direct product of the Ij and we do
not treat R as a collection of n-tuples but instead note that each element
of R is a unique sum of elements of the Ij (the uniqueness follows from
Theorem I.8.9); see the Note after Theorem III.2.24 (and page 131 of
Hungerford). After re-indexing (if necessary) we may assume that
I ∩ Ij = Ij for j = 1, 2, . . . , t and I ∩ Ij = {0} for j = t + 1, t + 2, . . . , n. By
Corollary IX.2.4(i), R has an identity 1R . So 1R = e1 + e2 + · · ·+ en for
some ei ∈ Ii .
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Corollary IX.3.5

Corollary IX.3.5 (continued)

Proof (continued). Now Ii Ij ⊂ Ik since Ik is a left ideal of R and Ij ⊂ R,
and Ij Ik ⊂ Ij since Ij is a right ideal of R and Ik ⊂ R. So
Ij Ik ⊂ Ij ∩ Ik = {0} for j 6= k. Therefore,

e1 + e2 + · · ·+ en = 1R = (1r )
2 = (e1 + e2 + · · ·+ en)

2 = e2
1 + e2

2 + · · ·+ e2
n

and so ej = e2
j for each j . Similarly,

(e1 + e2 + · · ·+ et)
2 = e1 + e2 + · · ·+ et and

(et+1 + et+2 + · · ·+ en)
2 = et+1 + et+2 + · · ·+ en. So that

e1 + e2 + · · ·+ et and et+1 + et+2 + · · ·+ en are idempotent. With
e = e1 + e2 + · · ·+ et we have by Exercise III.2.23 that
1R − (et+1 + et+2 + · · ·+ et) = e1 + e2 + · · ·+ et = e is in the center of
R. Since I is an ideal, Re ⊂ I . Conversely, if u ∈ I then
u = u1R = ue1 + ue2 + · · ·+ uen, but for j = t + 1, t + 2, . . . , n we have
uej ∈ I ∩ Ij = {0} and thus u = ue1 + ue2 + · · ·+ uet = ue. So ue ∈ I and
I ⊂ Re. Hence I = Re for idempotent e in the center of R, as claimed.

() Modern Algebra October 8, 2018 15 / 15



Corollary IX.3.5

Corollary IX.3.5 (continued)

Proof (continued). Now Ii Ij ⊂ Ik since Ik is a left ideal of R and Ij ⊂ R,
and Ij Ik ⊂ Ij since Ij is a right ideal of R and Ik ⊂ R. So
Ij Ik ⊂ Ij ∩ Ik = {0} for j 6= k. Therefore,

e1 + e2 + · · ·+ en = 1R = (1r )
2 = (e1 + e2 + · · ·+ en)

2 = e2
1 + e2

2 + · · ·+ e2
n

and so ej = e2
j for each j . Similarly,

(e1 + e2 + · · ·+ et)
2 = e1 + e2 + · · ·+ et and

(et+1 + et+2 + · · ·+ en)
2 = et+1 + et+2 + · · ·+ en. So that

e1 + e2 + · · ·+ et and et+1 + et+2 + · · ·+ en are idempotent. With
e = e1 + e2 + · · ·+ et we have by Exercise III.2.23 that
1R − (et+1 + et+2 + · · ·+ et) = e1 + e2 + · · ·+ et = e is in the center of
R. Since I is an ideal, Re ⊂ I . Conversely, if u ∈ I then
u = u1R = ue1 + ue2 + · · ·+ uen, but for j = t + 1, t + 2, . . . , n we have
uej ∈ I ∩ Ij = {0} and thus u = ue1 + ue2 + · · ·+ uet = ue. So ue ∈ I and
I ⊂ Re. Hence I = Re for idempotent e in the center of R, as claimed.

() Modern Algebra October 8, 2018 15 / 15


	Theorem IX.3.2
	Theorem IX.3.3. Wedderburn-Artin Theorem for Semisimple Artinian Rings
	Corollary IX.3.4
	Corollary IX.3.5

